Mathe Leuchtturm Übungsleuchtturm 5.Kl.

Größe: px
Ab Seite anzeigen:

Download "Mathe Leuchtturm Übungsleuchtturm 5.Kl."

Transkript

1 Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C Mathe Leuchtturm Übungsleuchtturm 5.Kl. 00 =Übungskapitel 5.Kl.,Übergangsklasse ;. & 4.Kl. mathematische Kompetenzen Erforderlicher Wissensstand (->Stoffübersicht im Detail siehe auch Wissensleuchtturm der 5.Klasse) Definition der Zahlenmengen N,Z,Q und R und ihr Zusammenhang Kenntnis über mathematische Symbole und über die Sprache der Mathematik Durchschnitt und Vereinigung- Begriffe verstehen können- Anwendung in Beispielen Ziel dieses Kapitels (dieses Übungsleuchtturms) ist: eine Aussage über Zahlenmengen und über den Mengenbegriff in Zusammenhang mit mathematischen Symbolen in der mathematischen Fachsprache als wahr oder falsch bewerten können Lösungen findest du ab Seite 4 Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C Seite

2 2 Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C Ü Gib an. ob die folgenden Aussagen wahr oder falsch sind (warmer oder fauliger Apfelstrudel). Begründe deine Entscheidung!!!.) 2.) 4 7 4, N.) Die Menge der rationalen Zahlen ist eine Obermenge der natürlichen Zahlenmenge. 4.) 5.) Z 6.) R 7.) 22,24,27 { { 200,26, 299 = { 8.) 22,24,27 0,9,24 = 24 9.) {,9,47 { 0,9,24 = {,9 Z = N Q 0.).) Die kleinste natürliche Zahl ist. 2.) Die größte natürliche Zahl ist ). x Z 4.). x Q N =,0,,2,... 5.) 6.) N = N { 0 7.) N* = N { 0 Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C Seite 2

3 Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C 8.) Die Mengen N,Z und Q stehen in folgender Beziehung: Q Z N ) < 97 x 7 inn L = { 8,9,0, ) x 409 inz L = 409, ,... 2.) 22.) x 57 inz L = { 58, 59, ) ,79, Z 24.) 25.) R 27.) R N 28.) * 0 N 26.) 29.) R 7 2.) 9 5.) I 24 0.).) Z.) 0, 45 4.) R I Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C Seite

4 4 Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C Ü w.a... wahre Aussage f.a... falsche Aussage 4.) 7 Begründung: da jede Zahl, die als Bruch darstellbar ist, eine rationale Zahl ist. 2.) 4, N f. A..) Begründung: Die Menge der natürlichen Zahlen wird definiert als N = { 0,,2,,4,5,6,....In dieser Menge gibt es keine Dezimalzahl. Die Menge der rationalen Zahlen ist eine Obermenge der natürlichen Zahlenmenge Begründung: N Z Q R Q N Die Menge der rationalen Zahlen ist eine größere Menge als die Menge der natürlichen Zahlen-daher eine Obermenge-siehe Mengendiagramm! 4.) Begründung: eine gemischte (negative) Zahl ist ja ein unechter Bruch-also ein Bruch Brüche sind rationale Zahlen. 5.) Z f. A. Begründung: eine gemischte (negative) Zahl ist ja ein unechter (negativer) Bruchalso ein Bruch Z = {..., 4,, 2,,0,,2,,4,....In der Menge der ganzen Zahlen sind keine Brüche. Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C Seite 4

5 5 Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C 6.) R Begründung: eine gemischte (negative) Zahl ist ja ein unechter (negativer) Bruch-also ein Bruch. Reelle Zahlen sind ja alle positiven und negativen Zahlen -auch Brüche sind natürlich enthalten. Laut Mengendiagramm : Wenn,dann liegt die Zahl automatisch auch Q R,also die Menge der rationalen in der Menge der reellen Zahlen, weil ja Zahlen in der Menge der reellen enthalten ist. 7.) { 22,24,27 { 200,26, 299 = f. A. Begründung Die Vereinigungsmenge Alle Elemente, die entweder in der.menge oder in der 2.Menge oder in beiden enthalten sind. Vereinigungsmenge alle Elemente zusammen und jene Elemente, die doppelt vorkommen, werden nur einmal gezählt { { 22,24,27,200,26,299 Richtig wäre hier 22,24,27 200,26,299 = Daher kann es nicht die leere Menge sein! 8.) { 22,24,27 { 0,9,24 = { 24 Begründung: In der Durchschnittsmenge liegen jene Elemente, die in beiden Mengen enthalten sind. Wir können in den Mengenklammern jene Elemente unterstreichen, die in beiden Klammern vorkommen. Also insgesamt jene Elemente, die doppelt vorkommen. Hier kommt nur ein Element doppelt vor-nämlich ) {,9,47 { 0,9,24 = {,9 f. A. Die Vereinigungsmenge Alle Elemente, die entweder in der.menge oder in der 2.Menge oder in beiden enthalten sind. Vereinigungsmenge alle Elemente zusammen und jene Elemente, die doppelt vorkommen, werden nur einmal gezählt Richtig wäre hier {,9,47 { 0,9,24 = {,9,47,0,9,24 Daher kann die Vereinigungsmenge nicht nur diese beiden Elemente enthalten! Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C Seite 5

6 6 Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C 0.) Z { N Q = f. A. Begründung: Laut Mengendiagramm kann die Menge der ganzen Zahlen keineswegs aus der Vereinigung der natürlichen und rationalen Zahlen bestehen,da die Menge der rationalen Zahlen alleine schon größer als die Menge der ganzen Zahlen ist. Die kleinste natürliche Zahl ist..) f. A. N = * N = N { 0,,2,,4,5,6,... \ { 0 = {,2,,4,5,6,... Begründung: Die Menge der normalen natürlichen Zahlen beinhaltet Null als kleinstes Element. Die Menge N stern ist eine zusätzliche Nebendefinition. 2.) Die größte natürliche Zahl ist f. A. Begründung: Die Menge der natürlichen Zahlen hat unendlich viele Elemente. x N wäre zum Beispiel gleich eine größere natürliche Zahl. Oder ). x Z Begründung Es gibt unendlich viele ganze Zahlen. 4.). x Q Begründung Es gibt unendlich viele rationale Zahlen. 5.) = {,0,,2,... N f. A. Begründung Die Menge der natürlichen Zahlen enthält keine negativen Zahlen. N = { 0,,2,,4,5,6,... siehe oben N = N 0 f. A. 6.) Begründung: In der Menge der natürlichen Zahlen ist schon Null enthalten! Richtig wäre N = N * { 0 7.) * = N { 0 N f. A. * Begründung: In der Menge N ist Null nicht enthalten, daher kann Null bei der Vereinigung nicht dabei sein! Richtig wäre N = N * { 0 Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C Seite 6

7 7 Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C 8.) Die Mengen N, Z und Q stehen in folgender Beziehung Q Z N f. A. 9.) Begründung: Richtig ist natürlich N Z Q R Das Zeichen müsste umgedreht werden!!!! Q Z N Die rationalen Zahlen sind eine Obermenge der ganzen Zahlen, diese sind eine Teilmenge der natürlichen. 4 4 < 97 Begründung: Wandeln wir die Bruchzahlen in Dezimalzahlen um, haben wir < Die rechte obige Dezimalzahl ist größer, weil sie als negative Zahl eine kleinere Tausendstelstelle aufweist!!! Anders gesagt: bei gleichem Zähler ist jene negative Bruchzahl größer,deren Nenner eine größere Zahl als die andere aufweist (bei positiven Bruchzahlen ist es genau umgekehrt!) x 7 inz L = 8,9,0,... f. A. 20.) Begründung: bei bei größer gleich ist die angegebene Zahl bei der Menge dabei x 7 L = 7,8,9,0,... Richtig wäre 2.) 409 inz L = { 409, ,... x f. A. Begründung: Die angegebenen Elemente sind größer als -409!! x 409 L = 409, ,... Richtig wäre x 409 L = {..., 4097, 4096, 4095, 4094, ) 57 inz L = { 58, 59, x f. A. Begründung: Die angegebenen Elemente sind kleiner als -57!!außerdem ist -57 nicht dabei Richtig wäre x 57 L = { 57, 56, 55,....) 0 0 f.a. weil 0:0 ist verboten! 78 4 w.a. weil 4:78= w.a. weil 0:099=0 000 w.a weil 000:= Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C Seite 7

8 8 Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C 9,79,4 f.a. für rationale Zahlen ist die Definition des Teilers nicht gegeben Der Teiler ist nur für ganze Zahlen an ganzen Zahlen definiert..) Fortsetzung 27 f.a. für rationale Zahlen (also Brüche) ist die Definition des Teilers nicht gegeben. Der Teiler ist nur für ganze Zahlen an ganzen Zahlen definiert. 24.) 25.) + 0 Z f. A. + Begründung Z = {,2,,4,5,... ganzen Zahlen!!! * 0 N f. A. Begründung N * = {,,2,,4,5,6,... natürlichen Zahlen ohne Null!!! Null ist nicht Element der positiven Null ist nicht Element von N stern, der 26.) f. A. Begründung = Quadratwurzelzahlen sind keine rationalen Zahlen, sondern reelle Zahlen. Richtig wäre R 27.) R Begründung = somit eine reelle Zahl Begründung = =rational 28.) R N Begründung Die reellen Zahlen sind eine Obermenge der natürlichensiehe Mengendiagramm anders gesagt: die natürlichen Zahlen sind eine Teilmenge der reellen Zahlen 29.) R Begründung = Quadratwurzelzahlen sind reelle Zahlen. 0.) Z f. A. Begründung: Quadratwurzelzahlen sind keine ganzen Zahlen, sondern reelle Zahlen. (der Ausdruck unter der Wurzel kann eine Quadratzahl oder Nicht- Quadratzahl sein, beide Wurzelergebnisse sind reell, aber nur Nicht- Quadratzahlen wären irrational, d.h. die Nachkommastellen des Ergebnisses brechen nicht ab. ) 0.) ist also eine falsche Aussage. Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C Seite 8

9 9 Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C 44.) R w.a. 99 Begründung Jede Bruchzahl ist eine rationale Zahl und somit eine reelle Zahl, da die Menge der rationalen Zahlen ja eine Teilmenge der reellen Zahlen ist. Die reellen Zahlen sind ja alle Zahlen!!!! 7 2.) 9 Begründung Jede Bruchzahl ist eine rationale Zahl. In diesem Fall als Neuntel eine periodische Dezimalzahl, also ein Element von Q..) 0, 45 w.a. Begründung: 0, 45 = Dies ist eine unendliche periodische Dezimalzahl, also ein Element von Q. 4.) I Begründung: Quadratwurzelzahlen, deren Radikand (Zahl unter der Wurzel) keine Quadratzahl ist, sind Dezimalzahlen, deren Nachkommastellen nicht abbrechen. Daher ist dies eine irrationale Zahl. 5.) I 24 Begründung: Quadratwurzelzahlen, deren Radikand als Bruch (Zahl unter der Wurzel) keine Quadratzahl ist, sind Dezimalzahlen, deren Nachkommastellen nicht abbrechen. Daher ist dies eine irrationale Zahl all right???? Mathe Leuchtturm-Übungen-5.& UE-(./4.)Klasse-Nr.00 Aussagen & Mengen- Teil- C Seite 9

Mathe Leuchtturm Übungsleuchtturm 5.Kl.

Mathe Leuchtturm Übungsleuchtturm 5.Kl. 1 Mathe Leuchtturm Übungsleuchtturm 5.Kl. 00 =Übungskapitel mathematische Kompetenzen 5.Kl.,Übergangsklasse ;. &.Kl. - Teil Erforderlicher Wissensstand (->Stoffübersicht im Detail siehe auch Wissensleuchtturm

Mehr

Mathe Leuchtturm-Übungen-5.& UE-(3./4.)Klasse-Nr.002 Aussagen & Mengen- Teil2- C

Mathe Leuchtturm-Übungen-5.& UE-(3./4.)Klasse-Nr.002 Aussagen & Mengen- Teil2- C 1 Mathe Leuchtturm Übungsleuchtturm 5.Kl. 002 =Übungskapitel 5.Kl.,Übergangsklasse ; 3. &.Kl. mathematische Kompetenzen TEIL 2 Erforderlicher Wissensstand (->Stoffübersicht im Detail siehe auch Wissensleuchtturm

Mehr

Mathe Leuchtturm-Übungen-5.& UE-Klasse (3./4.)-Nr.004-Lückentext-Zahlenmengen- C by Joh Zerbs

Mathe Leuchtturm-Übungen-5.& UE-Klasse (3./4.)-Nr.004-Lückentext-Zahlenmengen- C by Joh Zerbs 1 Mathe Leuchtturm Übungsleuchtturm 5.Kl. 004 =Übungskapitel zu Symbolen und Mengen Sprache der Mathematik Erforderlicher Wissensstand (->Stoffübersicht im Detail siehe auch Wissensleuchtturm der 5.Klasse)

Mehr

Mathe Leuchtturm Übungsleuchtturm 5.Kl.

Mathe Leuchtturm Übungsleuchtturm 5.Kl. 1 Mathe Leuchtturm Übungsleuchtturm 5.Kl. 005 =Übungskapitel Übungsbeispiele zum Mengenverständnis Durchschnitt und Vereinigung ;Differenzmenge Erforderlicher Wissensstand (->Stoffübersicht im Detail siehe

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

1.2 Mengenlehre-Einführung in die reellen Zahlen

1.2 Mengenlehre-Einführung in die reellen Zahlen .2 Mengenlehre-Einführung in die reellen Zahlen Inhaltsverzeichnis Repetition 2 2 Dezimalzahlen 3 3 weitere irrationale Zahlen 4 3. Zusatz: Der Beweis, dass 2 irrational ist.......................... 5

Mehr

1.8 Mengenlehre-Einführung in die reellen Zahlen

1.8 Mengenlehre-Einführung in die reellen Zahlen .8 Mengenlehre-Einführung in die reellen Zahlen Inhaltsverzeichnis Repetition 2 2 irrationale und reelle Zahlen 3 3 weitere irrationale Zahlen 4 3. Zusatz: Der Beweis, dass 2 irrational ist...........................

Mehr

Mathe Leuchtturm Übungsleuchtturm 5.Kl.

Mathe Leuchtturm Übungsleuchtturm 5.Kl. 1 by Mathe Leuchtturm Übungsleuchtturm 5.Kl. 014 Übungskapitel Erforderlicher Wissensstand (->Stoffübersicht im Detail siehe auch Wissensleuchtturm der 5.Klasse) Verschiedene Lösungsmethoden von quadratischen

Mehr

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen.

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Mengenlehre 2 Mengenlehre Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Üblicherweise werden Mengen mit Großbuchstaben

Mehr

Mathematische Grundkompetenzen - Bruchrechnung

Mathematische Grundkompetenzen - Bruchrechnung Mathe Leuchtturm-Übungen-2.Kl.-Nr.07-Brüche-Grundkompetenzen C by Joh Zerbs Mathe Leuchtturm Übungsleuchtturm Übungskapitel 07 Arithmetik: Mathematische Grundkompetenzen - Bruchrechnung Erforderlicher

Mehr

Mathe Leuchtturm Übungsleuchtturm

Mathe Leuchtturm Übungsleuchtturm 1 Mathe Leuchtturm-Übungen-3.&UE-Klasse-Nr.010-Tetgleichungen C by Joh Zerbs Mathe Leuchtturm Übungsleuchtturm 010 =Übungskapitel Ein Einstieg zum Kapitelblock Terme, Formeln und Gleichungen Erforderlicher

Mehr

1.2 Mengenlehre I-Einführung in die reellen Zahlen

1.2 Mengenlehre I-Einführung in die reellen Zahlen .2 Mengenlehre I-Einführung in die reellen Zahlen Inhaltsverzeichnis Checkliste 2 2 Repetition 2 3 Dezimalzahlen 3 4 Die Darstellung von Brüchen als Dezimalzahlen 3 5 irrationale Zahlen 4 6 Beispiele von

Mehr

Mathematik Quadratwurzel und reelle Zahlen

Mathematik Quadratwurzel und reelle Zahlen Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel

Mehr

Rudolf Brinkmann Seite 1 30.04.2008

Rudolf Brinkmann Seite 1 30.04.2008 Rudolf Brinkmann Seite 1 30.04.2008 Der Mengenbegriff und Darstellung von Mengen Eine Menge, ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung und unseres Denkens welche

Mehr

Mathematik p sitiv! Lösungen. Wolfram Thorwartl Günther Wagner Helga Wagner LÖSUNGEN. 5. Klasse AHS

Mathematik p sitiv! Lösungen. Wolfram Thorwartl Günther Wagner Helga Wagner LÖSUNGEN. 5. Klasse AHS Reifeprüfung durchgeführt. Diese neue Form der Matura, auf die bereits ab der. Klasse hingearbeitet wird, erfordert spezielle Grundkompetenzen und vernetztes mathematisches Denken. Im vorliegenden Lösungsband

Mehr

2 Mengenlehre. 2.1 Grundlagen Definition

2 Mengenlehre. 2.1 Grundlagen Definition 2 Mengenlehre 2.1 Grundlagen Einer der wichtigsten Grundbegriffe in der Mathematik ist der Mengenbegriff. Die zugehörige Theorie - die Mengenlehre - bildet die Grundlage für die gesamte Mathematik. Nur

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei

Mehr

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens.

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens. 1 Reelle Zahlen - Quadratwurzeln Wir kennen den Flächeninhalt A = 49 m 2 eines Quadrats und möchten seine Seitenlänge x berechnen Es ist also jene Zahl x zu ermitteln, die mit sich selbst multipliziert

Mehr

Über mich Organisatorisches Mathematik Wiederholung Mengenlehre Zahlen. Mathematik W1. Mag. Rainer Sickinger LMM, BRP

Über mich Organisatorisches Mathematik Wiederholung Mengenlehre Zahlen. Mathematik W1. Mag. Rainer Sickinger LMM, BRP Mathematik W1 Mag. Rainer Sickinger LMM, BRP v 3 Mag. Rainer Sickinger Mathematik W1 1 / 47 Mag. rer. nat. Rainer Peter Josef Sickinger 2010-2015: Informatik und Mathematikstudium an der Johannes Kepler

Mehr

1 Mengen und Mengenoperationen

1 Mengen und Mengenoperationen 1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

1.Rationale und irrationale Zahlen. Quadratwurzel.

1.Rationale und irrationale Zahlen. Quadratwurzel. 1.Rationale und irrationale Zahlen 1.1Quadratwurzeln Die Quadratwurzel aus einer rationalen Zahl 5 = 5; denn 5 = 5 und 5 > 0 r > 0 (geschrieben r ) ist diejenige nichtnegative Zahl, deren Quadrat r ergibt.

Mehr

1 Zahlenmengen und einige mathematische Symbole

1 Zahlenmengen und einige mathematische Symbole 1 Zahlenmengen und einige mathematische Symbole Inhalt 1.1 Vorbemerkung................................................... 3 1.2 Zahlenmengen................................................... 4 1.3 Summenzeichen..................................................

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

Die gesamte Bruchrechnung wird hier in Kompetenzfragen verpackt. Dein Wissensstand sollte also die Übungsleuchttürme von 007 bis 016 beinhalten.

Die gesamte Bruchrechnung wird hier in Kompetenzfragen verpackt. Dein Wissensstand sollte also die Übungsleuchttürme von 007 bis 016 beinhalten. Mathe Leuchtturm-Übungen-.Klasse-Nr.0-Brüche-KOMPETENZCHECK C by Joh Zerbs Mathe Leuchtturm Übungsleuchtturm 0 Übungskapitel Die gesamte Bruchrechnung wird hier in Kompetenzfragen verpackt. Dein Wissensstand

Mehr

Mathe Leuchtturm Übungsleuchtturm

Mathe Leuchtturm Übungsleuchtturm Mathe Leuchtturm-Übungen-.&UE-Kl.-Nr.00-Rechnen in Q-Brüche -C by Joh Zerbs Mathe Leuchtturm Übungsleuchtturm 00 Übungskapitel Die Menge der rationalen Zahlen Q Erforderlicher Wissensstand (->Stoffübersicht

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK

ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 08 Grundbegriffe der Mengenlehre 8. GRUNDBEGRIFFE

Mehr

Mathe Leuchtturm Übungsleuchtturm =Übungskapitel

Mathe Leuchtturm Übungsleuchtturm =Übungskapitel Mathe Leuchtturm-Übung-.Klasse-Nr.00 Mathe Leuchtturm Übungsleuchtturm =Übungskapitel.Klasse Rechnen und Darstellen mittels Variablen- Formen und Aussagen Die Sprache der Mathematik - Mathematische Grundkompetenzen

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenburg/Ostfriesland/Wilhelmshaven Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre

Mehr

Die Sprache der Mathematik

Die Sprache der Mathematik Die Sprache der Mathematik Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Diese Lehrveranstaltung...... ist Pflicht für alle Studenten der Informatik und

Mehr

2.2 Quadratwurzeln. e) f) 8

2.2 Quadratwurzeln. e) f) 8 I. Quadratwurzeln Rechne im Kopf und erkläre, wie du vorgegangen bist!, H a) 7 8 b) 5 6 c) 9 d) 6 9 e) 0 _ f) 8 _ g) 7 _ 00 h) 5 _ 69 Teilweises Wurzelziehen ist dann möglich, wenn sich eine Zahl so zerlegen

Mehr

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 4 23. Oktober 2009 Kapitel 1. Mengen, Abbildungen und Funktionen (Fortsetzung) Berechnung der Umkehrfunktion 1. Man löst die vorgegebene Funktionsgleichung

Mehr

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1 Mathematik (BG27) 2 3 { Objekt} { Menge } { Element } { } Reihenfolge spielt keine Rolle Unterscheidbarkeit der Objekte (redundanzfrei) 4 Objekt, 58 7,6 Beschreibung 81521 4/2,3/1,4 2 4 315 77 3,23 32

Mehr

Reelle Zahlen (R)

Reelle Zahlen (R) Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große

Mehr

Eine Menge ist die Zusammenfassung von bestimmten unterschiedenen Objekten zu einem Ganzen.

Eine Menge ist die Zusammenfassung von bestimmten unterschiedenen Objekten zu einem Ganzen. 1. Grundlagen Damit wir uns im Gebiet der Zahlen orientieren können, müssen wir uns einer gemeinsam festgelegten Sprache bedienen. In diesem ersten Kapitel erhalten Sie einen kurzen Abriss über die gängigsten

Mehr

Mathe Leuchtturm Übungsleuchtturm

Mathe Leuchtturm Übungsleuchtturm Mathe Leuchtturm-Übungen-2.Klasse-Nr.06-Division von Brüchen C by Joh Zerbs Mathe Leuchtturm Übungsleuchtturm 06 Übungskapitel Arithmetik: Brüche Erforderlicher Wissensstand (->Stoffübersicht im Detail

Mehr

Nummer Seite Bemerkungen

Nummer Seite Bemerkungen Zahlenmengen A. Zahlenmengen A.1 Einführung siehe Frommenwiler Kapitel 1.1.1 ab Seite 8! A.2 Übungen, Frommenwiler Lösen Sie die folgenden Aufgaben: Nummer Seite Bemerkungen 3 8 4 9 A.3 Doppelstrich-Buchstaben

Mehr

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Definition 1.1 (Menge) Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen.

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

Rationale Zahlen Die Menge Q- die Brüche. Auffrischen der Begriffe aus der 1.und 2.Klasse. Wiederholung der Grundtechniken der Bruchrechnung

Rationale Zahlen Die Menge Q- die Brüche. Auffrischen der Begriffe aus der 1.und 2.Klasse. Wiederholung der Grundtechniken der Bruchrechnung Mathe Leuchtturm-Übg-.Kl.&UEkl--009--Rechnen-Q-Brüche-Grundlagen Mathe Leuchtturm Übungsleuchtturm 009- Übungskapitel Rationale Zahlen Die Menge Q- die Brüche Bruchrechnung Auffrischen der Begriffe aus

Mehr

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge.

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge. Vorkurs Mathematik 17.08.-28.08.15 Dozent: Dipl.-Math. Karsten Runge E-mail: karsten.runge@hs-bochum.de www.hs-bochum.de\imt > Mathematik-Vorkurs > Mathematik-Werkstatt Die Mathematik-Werkstatt bietet

Mehr

1.9 Ungleichungen (Thema aus dem Gebiet Algebra)

1.9 Ungleichungen (Thema aus dem Gebiet Algebra) 1.9 Ungleichungen (Thema aus dem Gebiet Algebra) Inhaltsverzeichnis 1 Ungleichungen 2 2 Intervalle 2 3 Äquivalenzumformungen bei Ungleichungen 3 4 Doppelungleichungen 5 4.1 Verfahren, um Doppelungleichungen

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen inkl. der 0 ganzen Zahlen rationalen

Mehr

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle. 1 Grundlagen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Werkes,

Mehr

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen):

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen): Prof. U. Stephan WiIng 1. Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Bitte lösen Sie die folgenden Aufgaben und prüfen Sie, ob Sie Lücken dabei haben. Bestimmen Sie jeweils die

Mehr

Das Jahr der Mathematik

Das Jahr der Mathematik Das Jahr der Mathematik Eine mathematische Sammlung - kinderleicht Thomas Ferber Forschung und Lehre Sun Microsystems GmbH Die Themen 1 2 Sind die Zahlen universell? π-day 3 Die Eine Million $-Frage 4

Mehr

Schritt 1: Bedeutung rationale bzw. irrationale Zahl klären

Schritt 1: Bedeutung rationale bzw. irrationale Zahl klären Aufgabe 1 Schritt 1: Bedeutung rationale bzw. irrationale Zahl klären Rationale Zahlen sind positive Bruchzahlen Q, ihre Gegenzahlen und die Null. Also alle Zahlen, die als Quotient zweier ganzer Zahlen

Mehr

Mathe Leuchtturm Übungsleuchtturm

Mathe Leuchtturm Übungsleuchtturm Mathe Leuchtturm-Übungen-.&UE-Kl.-Nr.0-Der Term-0-Aufstellen C by Joh Zerbs Mathe Leuchtturm Übungsleuchtturm 0 Übungskapitel Erforderlicher Wissensstand (->Stoffübersicht im Detail und know -how-theorie

Mehr

Mengen, Zahlen, Maße, Prozente

Mengen, Zahlen, Maße, Prozente Welche der beiden Zahlen ist größer? (A) 7,03 10 7 (B) 7,03 10 6 Michael Langer (HLW Graz) Mengen, Zahlen, Maße, Prozente 1 / 27 Welche der beiden Zahlen ist größer? (A) 7,03 10 7 (B) 7,03 10 6 Lösung

Mehr

Mathe Leuchtturm Übungsleuchtturm

Mathe Leuchtturm Übungsleuchtturm 1 Mathe Leuchtturm-Übung-1.Klasse-Nr.008 C by Joh Zerbs Mathe Leuchtturm Übungsleuchtturm 008 =Übungskapitel Ökotraktor Lösungen findest du ab Seite 3 1.) Nenne einen geometrischen Körper, der keine windschiefen

Mehr

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N =

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

QUADRATWURZELN FRANZ LEMMERMEYER

QUADRATWURZELN FRANZ LEMMERMEYER QUADRATWURZELN FRANZ LEMMERMEYER Nach den negativen Zahlen und den Brüchen steht in Klasse 8 eine weitere Erweiterung des Zahlbereichs an. Den ersten Schritt dazu machen die Quadratwurzeln.. Quadratwurzeln

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition N N 0 Z Q Z + + Q 0 A = {a 1,, a n } Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen

Mehr

1 Mengen und Aussagen

1 Mengen und Aussagen $Id: mengen.tex,v 1.2 2010/10/25 13:57:01 hk Exp hk $ 1 Mengen und Aussagen Der wichtigste Grundbegriff der Mathematik ist der Begriff einer Menge, und wir wollen damit beginnen die klassische, 1878 von

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 5. September 2011 Definition (Menge) Wir verstehen unter einer Menge eine Zusammenfassung von unterscheidbaren Objekten zu einem

Mehr

Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. teilbar, wenn die letzte Ziffer der Zahl

Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. teilbar, wenn die letzte Ziffer der Zahl 6.. Schuljahr Natürliche Zahlen 1 Teilbarkeit und Primzahlen Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. Endzifferregel Eine Zahl ist durch 5 teilbar,

Mehr

Vorlesung Diskrete Strukturen Die Sprache der modernen Mathematik

Vorlesung Diskrete Strukturen Die Sprache der modernen Mathematik Vorlesung Diskrete Strukturen Die Sprache der modernen Mathematik Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Ein rechteckiger Garten hat die Seitenlängen a = 55,0 m und b = 42,0 m.

Ein rechteckiger Garten hat die Seitenlängen a = 55,0 m und b = 42,0 m. 1 Ein rechteckiger Garten hat die Seitenlängen a = 55,0 m und b = 42,0 m. Welche Seitenlänge hat ein quadratischer Garten, der einen um 10% größeren Flächeninhalt hat? Von einem Quadrat ist die Länge der

Mehr

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch 1.2 Mengenlehre Grundlagen der Mathematik 1 1.2 Mengenlehre Definition: Menge, Element, Variablenraum Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert

Mehr

Mathematischer Vorkurs MATH

Mathematischer Vorkurs MATH Mathematischer Vorkurs MATH (01.09.2014 19.09.2014) AOR Dr. Andreas Langer WS 2014-2015 Mathematischer Vorkurs TU Dortmund Seite 1 / 254 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund

Mehr

Potenzen mit rationalem Exponenten Seite 1

Potenzen mit rationalem Exponenten Seite 1 Potenzen mit rationalem Exponenten Seite 1 Kapitel mit 1271 Aufgaben Seite WIKI Regeln und Formeln 0 Level 1 Grundlagen Aufgabenblatt 1 (176 Aufgaben) 05 Lösungen zum Aufgabenblatt 1 08 Aufgabenblatt 2

Mehr

Wiederholung der Algebra Klassen 7-10

Wiederholung der Algebra Klassen 7-10 PKG Oberstufe 0.07.0 Wiederholung der Algebra Klassen 7-0 06rr5 4. (a) Kürze so weit wie möglich: 4998 (b) Schreibe das Ergebnis als gemischte Zahl und als Dezimalbruch: (c) Schreibe das Ergebnis als Bruch:

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt. 1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Kapitel 1: Aussagen, Mengen

Mehr

FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT

FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT Dirix Workbooks, Seefeld am Pilsensee Autor: Martin Dirix ISBN 978-3-7347-7405-8 1.

Mehr

1 Loesungen zu Analysis 1/ 1.Uebung

1 Loesungen zu Analysis 1/ 1.Uebung Loesungen ausgewaehlter Beispiele zu Analysis I, G. Bergauer, Seite 1 1 Loesungen zu Analysis 1/ 1.Uebung 1.1 Einleitung Gegeben Mengen X, A mit A X. Sei die Menge durch A = {a X : a erfuellt B} gegeben,

Mehr

Mengenlehre: Mengen und Zahlen

Mengenlehre: Mengen und Zahlen TH Mittelhessen, Sommersemester 2016 Lösungen zu Übungsblatt 3 Fachbereich MNI, Diskrete Mathematik 2./9./12. Mai 2016 Prof. Dr. Hans-Rudolf Metz Mengenlehre: Mengen und Zahlen Aufgabe 1. Gegeben seien

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2007/2008. Erforderliche Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2007/2008. Erforderliche Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dr. Christoph Barbian e Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 007/008 Erforderliche Vorkenntnisse In der

Mehr

Münchner Volkshochschule. Planung. Tag 02

Münchner Volkshochschule. Planung. Tag 02 Planung Tag 02 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 45 Mengenlehre VII Mengenoperationen: 1) Vereinigungsmenge: A B { x x A x B} 2) Schnittmenge: A 3) Differenzmenge: B { x x A x B} A \ B

Mehr

3 Zahlen und Arithmetik

3 Zahlen und Arithmetik In diesem Kapitel werden Zahlen und einzelne Elemente aus dem Bereich der Arithmetik rekapituliert. Insbesondere werden die reellen Zahlen eingeführt und einige Rechenregeln wie Potenzrechnung und Logarithmieren

Mehr

Mengenlehre. Wolfgang Kippels 17. September Inhaltsverzeichnis

Mengenlehre. Wolfgang Kippels 17. September Inhaltsverzeichnis Mengenlehre Wolfgang Kippels 17. September 2017 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Allgemeiner Mengenbegriff.......................... 3 1.2 Zahlenmengen................................. 4 1.2.1 Spezielle

Mehr

2 Mengen. Menge. Die Summenformel. Die leere Menge. Das kartesische Produkt. Die Produktformel. Die Potenzmenge. Die Binomialzahlen.

2 Mengen. Menge. Die Summenformel. Die leere Menge. Das kartesische Produkt. Die Produktformel. Die Potenzmenge. Die Binomialzahlen. 2 Mengen Menge Die Summenformel Die leere Menge Das kartesische Produkt Die Produktformel Die Potenzmenge Die Binomialzahlen Der Binomialsatz Unendliche Mengen Springer Fachmedien Wiesbaden 2016 A. Beutelspacher,

Mehr

1 Aufbau des Zahlensystems

1 Aufbau des Zahlensystems 1 Aufbau des Zahlensystems 1.1 Die Menge N der natürlichen Zahlen 1.1.1 Definition Die mathematischen Eigenschaften dieser durch das Abzählen von Gegenständen motivierten Zahlenmenge lassen sich auf die

Mehr

Potenzen und Wurzeln

Potenzen und Wurzeln Potenzen und Wurzeln Anna Heynkes 18.6.2006, Aachen Dieser Text soll zusammenfassen und erklären, wie Potenzen und Wurzeln zusammenhängen und wie man mit ihnen rechnet. Inhaltsverzeichnis 1 Die Potenzgesetze

Mehr

Mengen, Logik. Jörn Loviscach. Versionsstand: 17. Oktober 2009, 17:42

Mengen, Logik. Jörn Loviscach. Versionsstand: 17. Oktober 2009, 17:42 Mengen, Logik Jörn Loviscach Versionsstand: 17. Oktober 2009, 17:42 1 Naive Mengenlehre Mengen sind die Grundlage fast aller mathematischen Objekte. Ob die Zahl 7, ein Kreis in der Ebene, die Relation

Mehr

Vorlesungsmodul Vorkurs Mathematik - VorlMod VkMa -

Vorlesungsmodul Vorkurs Mathematik - VorlMod VkMa - Vorlesungsmodul Vorkurs Mathematik - VorlMod VkMa - Matthias nsorg 15. September 2001 bis 26. Mai 2003 Zusammenfassung Studentische Mitschrift zum Vorkurs Mathematik bei Christine Fremdt (Wintersemester

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Tandembogen und Irrgarten eine Einführung der irrationalen Zahlen. Irmgard Letzner, Berlin. M 1 Die rationalen Zahlen Brüche würfeln und berechnen

Tandembogen und Irrgarten eine Einführung der irrationalen Zahlen. Irmgard Letzner, Berlin. M 1 Die rationalen Zahlen Brüche würfeln und berechnen S 1 Tandembogen und Irrgarten eine Einführung der irrationalen Zahlen Irmgard Letzner, Berlin M 1 Die rationalen Zahlen Brüche würfeln und berechnen Ein Würfelspiel für 2 Spieler Materialien r 2 Würfel

Mehr

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

Dezimalzahlen. Umwandlung von Brüchen in Dezimalzahlen. H Z E z h t zt 17,206. Komma

Dezimalzahlen. Umwandlung von Brüchen in Dezimalzahlen. H Z E z h t zt 17,206. Komma Dezimalzahlen H Z E z h t zt Hunderter Zehner Einer zehntel hundertstel tausendstel 1 7 2 0 6 zehntausendstel 17,206 Komma Umwandlung von Brüchen in Dezimalzahlen Aufgabe 1 Wandle in eine Dezimalzahl um.

Mehr

Man kann die natürlichen Zahlen in verschiedenen Klassen einteilen:

Man kann die natürlichen Zahlen in verschiedenen Klassen einteilen: A.1.1 Zahlenmengen Die Menge der natürlichen Zahlen, die mit N bezeichnet werden N = {1, 2, 3, 4, 5,... } benutzen wir im Alltag, um mehrere gleichartige Gegenstände zu zählen. Es gibt unendlich viele

Mehr

Polynomgleichungen. Gesetzmäßigkeiten

Polynomgleichungen. Gesetzmäßigkeiten Polynomgleichungen Gesetzmäßigkeiten Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable x nur in der 1. Potenz, so spricht

Mehr

Zusätzliche Stoffgebiete werden in den Lösungen der Übungsleuchttürme stets ausführlich behandelt.

Zusätzliche Stoffgebiete werden in den Lösungen der Übungsleuchttürme stets ausführlich behandelt. Wissensleuchtturm- Stoffübersicht-Know how-5.klasse & UE klasse- C by Joh Zerbs Ein Wissensleuchtturm ist eine abschließende Zusammenfassung des Stoffs einer Schulstufe in Schwerpunkt-Übersichtsform am

Mehr

Mathe Leuchtturm Übungsleuchtturm

Mathe Leuchtturm Übungsleuchtturm 1 Mathe Leuchtturm Übungsleuchtturm 004 =Übungskapitel TEIL 1 Erforderlicher Wissensstand (->Stoffübersicht im Detail siehe auch Wissensleuchtturm der UE-und 3.Kl.) Kenntnis des erweiterten Koordinatensystems

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents Mengen und ihre Darstellung Darstellung endlicher Mengen Darstellung unendlicher

Mehr