Die nächste Übung ist vom auf den verlegt worden.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden."

Transkript

1 Allgemeines Einige Hinweise: Die nähste Üung ist vom.. auf den 9..0 verlegt worden. Die alten Klausuren findet Ihr unter folgendem Link: muenster.de/vwt/studieren/pruefungen_marktpreis.htm Wiederholung / Einführung homogener Markt? Bedeutet, dass der reis gleih sein muss. Nash? Jeder nimmt die Entsheidungsgröße des Anderen als gegeen an und entsheidet dann üer seine jeweils optimale Antwort. Von Stakelerg? Ein Unternehmen sieht niht den Aktionsparameter des anderen Unternehmens als gegeen an, sondern erüksihtigt die optimale Strategie des anderen Unternehmens. Cournot? Als Cournot Modelle werden Modelle ezeihnet, die Mengenstrategien etrahten. Bertrand? Als Bertrand Modelle werden Modelle ezeihnet, die reisstrategien etrahten.

2 Vergleih Nash vs. v. Stakelerg: Nash Lösung v. Stakelerg jeweils Duopol reis Menge Menge Menge a > a 4 a a < a a > 4 a a < 4 Die v. Stakelerg Lösung führt zu einem Wohlfahrtsgewinn gegenüer der Nash Lösung, da eine größere Menge ei niedrigerem reis angeoten wird. x a - R U= Stakelergführer U = Stakelergfolger N = Nashlösung M = Monopollösung K = vollkommene Konkurrenz K a - a - 4 N S = = 0 R a - a - a - x Welhe Lösung würde sih ergeen, wenn U Stakelergführer wäre?

3 Aufgae : Üung 4 Vergleihen Sie für einen homogenen Markt mit gegeenen linearen Nahfragefunktionen, identishen renzkosten usw. die Marktergenisse für: vollkommene Konkurrenz Nash Cournot Duopol Stakelerg Lösung Duopol Monopol algeraishe Herleitung + rafik für Vergleih Menge y* reis p* vollkommene Konkurrenz Duopol Stakelerg Duopol Nash Cournot Monopol 4 a a a a = + 0 a a 4 a a

4 Vergleih Beispielrehnung zw. Zeihnung mit p = 0 x und = a = 0, = und = Ergenisse erehnen! Einzeihnen der jeweiligen Menge von U und U auh hier möglih! Zeigen! Mengen reis Diagramm Vergleih von Wohlfahrtseffekten Mengen Mengen DiagrammVergleih der Unternehmen 4

5 Aufgae : Untersuhen Sie die Bertrand Lösung im homogenen Duopol ohne Kapazitätsegrenzung. Bertrand-Lösung im homogenen Duopol ohne Kapazitätsegrenzung Bertrand = reisstrategie Im egensatz zu den Cournot Modellen wird ei Bertrand Modellen niht die roduktionsmenge als Aktionsparameter angesehen, sondern der zu setzende reis. Was edeutet dies unter der Annahme des Nash Lösungskonzeptes? Unter der Annahme des Nash Lösungskonzeptes edeutet dies, dass ein Unternehmen U einen reis setzt und daei davon ausgeht, dass U ei seinem einmal gewählten reis leit. Warum ist diese Annahme/unterstellte Verhaltensweise kritish zu sehen? Diese Annahme ist relativ prolematish, da gilt: In einem homogenen Markt ohne weitere Beshränkungen kann es nur einen einheitlihen reis geen und eide Unternehmen wissen dies. 5

6 Kernüerlegung von Bertrand: Ausgangssituation: Unternehmen U edient isher den Markt als Monopolist und setzt den reis M a mitm. Es tritt ein zweites Unternehmen U in den Markt ein. Die Verteilung der Nahfragemengen auf U und U hängt dann von dem zu wählenden reis des zweiten Unternehmens a. > : U edient den Markt weiterhin alleine < : U edient den Markt alleine = : Es ergit sih eine elieige Marktaufteilung der Monopolmenge * Y M. Niht kooperatives Verhalten & ===K wird angenommen Jedes Unternehmen geht jetzt von einem einmal gewählten reis seines egenspielers aus Nash Annahme, welhes es nun natürlih zu unterieten suht. Da eide diese Üerlegung anstellen, leit als einzige Lösung: = = K ürig. Nur hier wird dem egenspieler die Chane genommen, den eigenen reis zu unterieten. 6

7 Aufgae 4: Untersuhen Sie die Bertrand Lösung im homogenen Duopol mit Kapazitätsegrenzung. Bertrand-Lösung im homogenen Duopol mit Kapazitätsegrenzung Es gilt: - Die jeweilige roduktionskapazität der Unternehmen U und U reiht niht aus, um ei einem reis = K den esamtmarkt zu eliefern. - renzkosten sind identish und konstant K = = K = K max max - Kapazität: Y Y 7

8 Im Bertrand Modell ohne Kapazitätsrestriktion sind wir von einem Monopolisten ausgegangen, der durh den Markteintritt des zweiten Unternehmers dazu 0 gezwungen wurde, den reis K zu akzeptieren. Dieser reis ist nun der Ausgangspunkt für unsere Üerlegungen zum Bertrand 0 Modell mit Kapazitätsrestriktionen. Bietet U zum reis an, so setzt es ohne max Angeot von U die Menge Y a. Diese Menge lässt aer für U noh eine Restnahfrage auf dem Markt zurük. U kann sih als Monopolist für diese Restnahfrage verhalten, da U ja keine Kapazität mehr hat, um aktiv zu werden. U wird also den Monopolpreis und so einen ewinn mahen Rehtek. 0 Für U wäre es jetzt inkonsequent, in zu leien, da es ei einem reis von einen Extragewinn realisieren könnte, da es weiterhin die Menge könnte, allerdings zu einem höheren reis. 0 wählen 0 max Y asetzen Das Modell liefert nun keine eindeutige Aussage leihgewiht: Es git grundsätzlih mehrere Möglihkeiten: Trotz shlehterer Kapazitätsauslastung und möglihem kurzfristigem ewinnsteigungspotential hält U aus Angst vor einem reiskrieg still und akzeptiert die Lösung. oder U unterietet den neuen reis von Unternehmer U und löst eine reissenkungsspirale aus. Diese dauert dann so lange, is es sih wieder lohnt, in die Restnahfrageposition Ausgangssituation U zu gehen, wodurh alles wieder von vorne eginnt. Beide ähnlihen ewinn a=. 8

9 Aufgae 5: Mahen Sie klar, warum es je nah Ausgangslage einen Vorteil zw. einen Nahteil des ersten Zuges geen kann. algeraish + veral + grafish. Im Duopol-Modell von v. Stakelerg im homogenen Markt kommt es zu einem Vorteil des ersten Zuges kennen wir shon! KURZ: Vorteil des ersten Zuges esteht im homogenen Duopol. Ausgangslage: - Unternehmer U und U edienen die Nahfragefunktion: a x x - homogener Markt edeutet einheitlihen reis - renzkosten konstant und identish = = KOCHREZET:. Herleitung der Reaktionsfunktionen Aufstellen und vereinfahen der ewinnfunktion Durh Maximierung der ewinnfunktionen Zunähst: U und U sehen jeweils die Menge des Anderen als gegeen an.. Ermittlung der Nash Cournot Lösung leihsetzen der Reaktionsfunktionen Nun: Der Stakelergführer U sieht niht die Angeotsmenge als gegeen an, sondern erüksihtigt die optimale Strategie des anderen Unternehmens U.. Ermittlung der v. Stakelerg Lösung R in ewinnfunktion von U Stakelergführer 9

10 0 Nash Cournot v.stakelerg a a 4 4 X a a X a a 4 4. Ermittlung der ewinne der Unternehmen in eiden Fällen Nash Cournot: x x p x p a a a a 9 a V. Stakelerg: a S 8 und a F 6

11 5. Interpretation Der Stakelergführer U erreiht einen doppelt so hohen Marktanteil und damit auh einen doppelt so hohen ewinn wie U. Im Vergleih zur Nash Cournot Lösung im homogenen Markt veressert sih U asolut, U vershlehtert sih. Der Stakelergführer U hat hier also den Vorteil des ersten Zuges first moveradvantage gegenüer U. 6. rafishe Darstellung rafik: x a - R U= Stakelergführer U = Stakelergfolger N = Nashlösung M = Monopollösung K = vollkommene Konkurrenz K a - a - 4 N S = = 0 R a - a - a - x

12

13 . Im Duopol Modell v. Stakelerg-Bertrand im heterogenen Markt kommt es zum Nahteil des ersten Zuges. Ausgangslage: - Unternehmen edienen einen heterogenen Markt mit zwei ütern, die von den Nahfragen als unvollkommene Sustitute etrahtet werden Es können untershiedlihe reise estehen, ohne dass ein Anieter alle seine Kunden an den Konkurrenten verliert. - Bertrand => reis ist der Entsheidungsparameter - Die Anieter sehen sih folgender Nahfragefunktion ausgesetzt: x x mit,, 0 mit = Reaktionskoeffizient git an wie stark die Wehselereitshaft der Nahfrager ist esamtnahfrage x x - renzkosten sind konstant und identish = = WAS muss man jetzt mahen??? Algeraishe Bestimmung KOCHREZET. rafishe Bestimmung

14 4 Algeraishe Bestimmung: Nash Bertrand Modell Herleitung der Reaktionsfunktionen: ewinnfunktion von U ei gegeenem : [ ] max Bed.:! 0 0 R R ist definiert für 0 y ökonomish kann keine Reaktion erfolgen, wenn keine Fremdmengen vorliegen. Analog lässt sih R ermitteln. R definiert für 0 y WIE WÄRE DAS WEITERE VOREHEN??? LEICHSETZEN FÜR NASH BERTRAND LÖSUN R in für v.stakelerg.noh nie in Klausur agefragt, aer RAFISCH!

15 5 rafishe Bestimmung: Üer Isogewinnkurven: Aus ewinnfunktion mit fixiertem Betrahtung von zwei renzgeraden: a geht gegen, geht Wenn sehr groß wird, verhält sih die Isogewinnkurve ungefähr wie Je höher der ewinn ist, desto weiter östlih liegt die Isogewinnkurve

16 Nash Bertrand Lösung: 6

17 Vergleih NC Lösung mit einer Lösung ei Stakelerg Verhalten: U setzt R in seine ewinnfunktion ein. rafish heißt das, dass er die Isogewinnkurve suht ei der R die Tangentiale von dieser ist. U erreiht dadurh einen höheren ewinn als im Nash Bertrand leihgewiht. U ermögliht damit jedoh Anieter U eine reispolitik mit <, was U den Vorteil eines noh höheren ewinns vershafft Vergleihe Streke zwishen den Isogewinnkurven N und S => Nahteil des ersten Zuges first mover disadvantage 7

18 Zeihnung für Bertrand-Lösungen im heterogenen Markt. reis reis Diagramm: Hier muss man darauf ahten, auh den negativen Bereih mit einzuzeihnen und alles symmetrish zu halten wenn die Duopolisten gleih sind. renzereihe in die Zeihnung einführen: a Die eiden renzkostengeraden renzgerade i müssen parallel mit geringem Astand zu Ordinate zw. Aszisse liegen. Die Y i =0 renzen möglihst hoh zw. rehts ansetzen und eine leihte Steigung erüksihtigen.. Reaktionsfunktionen R und R einzeihnen: Hier zwishen den jeweiligen renzgeraden auf der Ahse ansetzen und ruhig eine etwas stärkere Steigung wählen z.b. die doppelte/dreifahe Steigung von Y i =0. Dann ungefähr mittig zwishen den Shnittpunkten Y i =0/i zw. Y i =0/ii akniken und ein Stük auf letzterer weiterlaufen lassen. 4. Isogewinnkurven im Nash leihgewiht einzeihnen: Daei eahten, dass der nördlihste zw. westlihste unkt der Isogewinnkurven immer auf den jeweiligen Reaktionsfunktionen liegt hier also im Nash leihgewiht. Die Ausläufer verlaufen asymptotish zu den renzgeraden i zw. ii. Insesondere ist zu eahten, dass die Isogewinnkurve des Nash leihgewihts die Reaktionsfunktion zweimal shneidet. Hier wird das Zeihnen umso einfaher, je größer die Steigung der Reaktionsfunktionen gewählt wurde. 5. Nun ist die Rihtung anzugeen, in der die ewinne steigen. 6. Daraufhin kann die v. Stakelerg Lösung eingezeihnet werden, indem man eine Isogewinnkurve tangential an die R zeihnet und asymptotish auf die renzgeraden laufen lässt. Zu eahten ist daei, dass der Tangentialpunkt niht der westlihste unkt ist: letzterer liegt auf der eigenen Reaktionsfunktion. 7. Jetzt kann die Isogewinnkurve des anderen Unternehmens im v. Stakelerg leihgewiht eingezeihnet werden, hier ergit sih nun der nördlihste unkt der Isogewinnkurve. Letztere verläuft wieder asymptotish zu den renzgeraden. 8. Nun ist zu zeigen, dass die Entfernung zwishen den eiden Isogewinnkurven eim v. Stakelerg Führer U geringer ist als ei U. 9. Am Shluss nohmal üerprüfen, o alles rihtig eshriftet ist. 8

19 9

Allgemeines. Mail an muenster.de. Motivation für die Veranstaltung Übung zur Markt und Preistheorie

Allgemeines. Mail an muenster.de. Motivation für die Veranstaltung Übung zur Markt und Preistheorie Allgemeines Nme: Emil: Stefn Shrmm stefn.shrmm@wiwi.uni muenster.de Motivtion für die Vernstltung Üung zur Mrkt und Preistheorie Inhlt der Klusur Vorlesung Skrit und Üung Sehr gut vorzuereiten! Tis zur

Mehr

Lösungsskizze zur 5. Übung zur Markt und Preistheorie

Lösungsskizze zur 5. Übung zur Markt und Preistheorie Lösungsskizze zur 5. Übung zur Markt und reistheorie Allgemeines: Alte Klausuren sind unter http://www.wiwi.unimuenster.de/vwt/studieren/pruefungen_avwl.htm abrufbar. Der letzte Termin der Übung findet

Mehr

Physik. Lichtgeschwindigkeit

Physik. Lichtgeschwindigkeit hysik Lihtgeshwindigkeit Messung der Lihtgeshwindigkeit in Versuhsaufbau Empfänger s Spiegel Sender l osition 0 d Abb. Versuhsdurhführung Die Spiegel werden auf die osition 0 m geshoben und die hase mit

Mehr

Algorithmen auf Sequenzen

Algorithmen auf Sequenzen Algorithmen auf Sequenzen Vorlesung von Prof. Dr. Sven Rahmann im Sommersemester 2008 Kapitel 5 Approximative Textsuhe Weseite zur Vorlesung http://ls11-www.s.tu-dortmund.de/people/rahmann/teahing/ss2008/algorithmenaufsequenzen

Mehr

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft Studiengang Modul Art der Leistung Klausur-Kennzeihen Betriebswirtshat Wirtshatsmathematik Prüungsleistung Datum.6.8 BB-WMT-P 86 Bezüglih der Anertigung Ihrer Arbeit sind olgende Hinweise verbindlih: Verwenden

Mehr

Verkürzungsfaktor bei Antennen und Koax-Leitungen

Verkürzungsfaktor bei Antennen und Koax-Leitungen 071111 hb9tyx@lusterte.om Verkürzungsaktor bei Antennen und Koax-Leitungen Vielleiht haben Sie sih beim Bau von Antennen oder Umwegleitungen auh shon geragt, woher eigentlih der Verkürzungsaktor stammt.

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme

Mehr

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Einleitung. Übersicht Teil 2. Übersicht

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Einleitung. Übersicht Teil 2. Übersicht Üersiht Teil apitel 6: Spiele mit simultanen und seuentiellen Spielzügen apitel 6 apitel 5 Üersiht Teil Üersiht Einleitung Darstellung von simultanen Spielzügen in extensiver Form Normalform vs extensive

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Tehnishe Universität Münhen Zentrum Mathematik Mihael Stroel Geometriekalküle WS 7/8 http://www-m.ma.tum.de/geometriekalkuelews78 Lösungen zu Aufgaenlatt 5 (8. Dezemer 7 Aufgae. Dualisieren und Doppelverhältnis.

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Insiderwissen 2013. Hintergrund

Insiderwissen 2013. Hintergrund Insiderwissen 213 XING EVENTS mit der Eventmanagement-Software für Online Eventregistrierung &Ticketing amiando, hat es sich erneut zur Aufgabe gemacht zu analysieren, wie Eventveranstalter ihre Veranstaltungen

Mehr

2. Stragegische Asymmetrien - Stackelberg-Modelle und Markteintritt. Vorlesung 8. Stackelberg-Modell = Sequentielles Duopol

2. Stragegische Asymmetrien - Stackelberg-Modelle und Markteintritt. Vorlesung 8. Stackelberg-Modell = Sequentielles Duopol Vorlesung 8. Stragegishe Asymmetrien - Stakelberg-Modelle und Markteintritt Stakelberg-Modell = Sequentielles Duopol Übungsaufgabe aus Vorlesung 7: Räumliher und politisher Wettbewerb Angenommen jeder

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005 Prof. Dr. Shmidt-Thieme / Mihael Rottmann Areitslatt Algera SS 2005 Gruppen Lösungen.) i) Die ist neutrales Element der Multiplikation. (M, é ) ist damit keine Gruppe, denn es git keine inversen Elemente

Mehr

Lineare Gleichungen und lineare Gleichungssysteme mit zwei Variablen. 1.1 Beispiel einer linearen Gleichung mit zwei Variablen 2

Lineare Gleichungen und lineare Gleichungssysteme mit zwei Variablen. 1.1 Beispiel einer linearen Gleichung mit zwei Variablen 2 KBWR, Duisurg Seite von 30 9..006 Lineare Gleichungen und lineare Gleichungssysteme mit zwei Varialen Inhalt: Seite. Beispiel einer linearen Gleichung mit zwei Varialen. Normalform einer linearen Gleichung

Mehr

Beispiellösungen zu Blatt 111

Beispiellösungen zu Blatt 111 µ κ Mathematisches Institut Georg-August-Universität Göttingen Beispiellösungen zu Blatt 111 Aufgabe 1 Ludwigshafen hat einen Bahnhof in Dreiecksform. Markus, Sabine und Wilhelm beobachten den Zugverkehr

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Weiterführende Aufgaben zu chemischen Gleichgewichten

Weiterführende Aufgaben zu chemischen Gleichgewichten Weiterführende Aufgaben zu hemishen Gleihgewihten Fahshule für Tehnik Suhe nah Ruhe, aber durh das Gleihgewiht, niht durh den Stillstand deiner Tätigkeiten. Friedrih Shiller Der Shlüssel zur Gelassenheit

Mehr

Materialien für den Kindergarten. Liebe Erzieherin, lieber Erzieher,

Materialien für den Kindergarten. Liebe Erzieherin, lieber Erzieher, Materialien für den Kindergarten Liebe Erzieherin, lieber Erzieher, die Musik nimmt einen ganz besonderen Platz im Herzen der Kinder ein: Kinder lieben Musik! Und ganz nebenbei hat die Musik einen außerordentlih

Mehr

Straf-Taten sind kriminelle Handlungen und Gewalt-Taten.

Straf-Taten sind kriminelle Handlungen und Gewalt-Taten. Liebe Düsseldorfer und Düsseldorferinnen. Die Stadt-Verwaltung Düsseldorf bittet alle Düsseldorfer Bürger um ihre Mithilfe. Bitte füllen Sie den Fragebogen aus. Shiken Sie den ausgefüllten Fragebogen an

Mehr

7. Grassmannsche Vektoren und die Drehungen im Raum.

7. Grassmannsche Vektoren und die Drehungen im Raum. 7. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen im vorigen Kapitel gesehen, wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Michelson-Versuche ohne Lorentz-Kontraktion

Michelson-Versuche ohne Lorentz-Kontraktion Miheson-Versuhe ohne Lorentz-Kontraktion Horst P. H. Meher, Potsdam Zusammenfassung Der Miheson-Versuh (MV) und seine zahreihen Wiederhoungen sowie Varianten und Modifikationen iefern mit ihren Nuresutaten

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Zwei unbekannte Zahlen und alle vier Rechenarten

Zwei unbekannte Zahlen und alle vier Rechenarten Zwei unekannte Zahlen und alle vier Rechenarten HELMUT MALLAS Online-Ergänzung MNU 8/1 (15.1.015) Seiten 1, ISSN 005-58, Verlag Klaus Seeerger, Neuss 1 HELMUT MALLAS Zwei unekannte Zahlen und alle vier

Mehr

GEP1 Grundlagen der Elektrotechnik 1 für Mechatroniker LABOR FÜR GRUNDLAGEN DER ELEKTROTECHNIK. GEP1 Versuch 1. Weitere Übungsteilnehmer:

GEP1 Grundlagen der Elektrotechnik 1 für Mechatroniker LABOR FÜR GRUNDLAGEN DER ELEKTROTECHNIK. GEP1 Versuch 1. Weitere Übungsteilnehmer: Department nformationsund Elektrotechnik Studiengruppe: Üungstag: LABOR FÜR GRNDLAGEN DER ELEKTROTECHNK GEP1 Versuch 1 Protokollführer (Name, Vorname): Weitere Üungsteilnehmer: Professor: Testat: Messungen

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

21 Spezielle Relativitätstheorie

21 Spezielle Relativitätstheorie Spezielle Relativitätstheorie Hofer 1 21 Spezielle Relativitätstheorie 21.1. Raum und Zeit Die Relativitätstheorie ist neben der Quantentheorie eine der beiden großen Revolutionen der Physik des 20. Jahrhunderts.

Mehr

für die bessere Energieeffizienz...

für die bessere Energieeffizienz... Premium Armaturen + Systeme Automatisher Hydraulisher Abgleih durh Q-Teh Produktübersiht für die bessere Energieeffizienz... Einleitung Automatisher / manueller Hydraulisher Abgleih zu heiß! zu kalt! 3

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

... Matrikel-Nummer Name Vorname Semester THERMODYNAMIK DER GRENZFLÄCHEN. Wintersemester 2005/06 KLAUSUR

... Matrikel-Nummer Name Vorname Semester THERMODYNAMIK DER GRENZFLÄCHEN. Wintersemester 2005/06 KLAUSUR Klausur "Thermodynamik der Grenzflähen" WS 005/06 S. Universität Regensurg Naturwissenshaftlihe Fakultät IV- Chemie und Pharmazie Bitte ausfüllen... Matrikel-Nummer Name Vorname Semester THERMODYNAMIK

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Das Chemische Gleichgewicht Massenwirkungsgesetz

Das Chemische Gleichgewicht Massenwirkungsgesetz Das Chemishe Gleihgewiht Massenwirkungsgesetz Reversible Reaktionen: Beisiel : (Bodenstein 899 Edukt (Reaktanden Produkt H + I HIH Beobahtung: Die Reaktion verläuft unvollständig! ndig! D.h. niht alle

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

UNTERRICHTSPLAN LEKTION 16

UNTERRICHTSPLAN LEKTION 16 Lektion 16 Wir haen hier ein Prolem. UNTERRICHTSPLAN LEKTION 16 1 Was war denn das jetzt?, Gruppenareit a Die TN sehen sich das Foto an. Fragen Sie, wo die Personen sind, und erklären Sie, dass Lift auch

Mehr

32. Lebensdauer von Myonen 5+5 = 10 Punkte

32. Lebensdauer von Myonen 5+5 = 10 Punkte PD. Dr. R. Klesse, Prof. Dr. A. Shadshneider S. Bittihn, C. von Krühten Wintersemester 2016/2017 Theoretishe Physik in 2 Semestern I Musterlösung zu den Übungen 9 und 10 www.thp.uni-koeln.de/ rk/tpi 16.html

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

in der Bundesrepublik Deutschland für das Berichtsjahr 1954/55

in der Bundesrepublik Deutschland für das Berichtsjahr 1954/55 Ergenisse der ßerufseratungsstatistik in der Bundesrepulik Deutshland für das Berihtsjahr 54/55 Beilage zu den Amtlihen Nahrihten der Bundesanstalt für Areitsvermittlung und Areitslosenversiherung Nr.

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Physik I Übung 11 - Lösungshinweise

Physik I Übung 11 - Lösungshinweise Physik I Übung 11 - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 04.07.2012 Franz Fujara Aufgabe 1 Das Lied der Moreley Die shöne Moreley singe eine besondere Art von Welle, die ein sehr

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Die Kryptographie, aus dem Altgriehishen Geheimshrift abgeleitet, ist die Wissenshaft der Vershlüsselung von Nahrihten. Ursprünglih in der Antike eingesetzt, um diplomatishen

Mehr

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 3

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 3 Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 3 PR 11.3.1: Intertemporale Preisdiskriminierung Def.: unterschiedliche Preise zu unterschiedlichen Zeitpunkten Entspricht PD 3. Grades Nur sinnvoll

Mehr

Strategische Asymmetrien Stackelberg-Modelle und Markteintritt

Strategische Asymmetrien Stackelberg-Modelle und Markteintritt Strategische Asymmetrien Stackelberg-Modelle und Markteintritt Stackelberg-Modelle In den Cournot- bzw. Bertrand-Modellen agieren die Firmen gleichzeitig. Diese Annahme ist nicht immer gerechtfertigt.

Mehr

Dynamische Methoden der Investitionsrechnung

Dynamische Methoden der Investitionsrechnung 4 Dynamische Methoden der Investitionsrechnung Lernziele Das Konzept des Gegenwartswertes erklären Den Überschuss oder Fehlbetrag einer Investition mit Hilfe der Gegenwartswertmethode berechnen Die Begriffe

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

SUDOKU - Strategien zur Lösung

SUDOKU - Strategien zur Lösung SUDOKU Strategien v. /00 SUDOKU - Strategien zur Lösung. Naked Single (Eindeutiger Wert)? "Es gibt nur einen einzigen Wert, der hier stehen kann". Sind alle anderen Werte bis auf einen für eine Zelle unmöglich,

Mehr

Modellierung des Oligopolwettbewerbs

Modellierung des Oligopolwettbewerbs Modellierung des Oligopolwettbewerbs Mengenwettbewerb bei homogenen Gütern: Cournot-Duopol Preiswettbewerb: Bertrand-Paradox und Preiswettbewerb bei heterogenen Produkten Strategische Selbstbindung und

Mehr

Übung 6 - Musterlösung

Übung 6 - Musterlösung Experimentaphysik für Lehramtskandidaten und Meteoroogen 6. Mai 00 Übungsgruppeneiter: Heiko Dumih Übung 6 - Musterösung Aufgabe 5: Kupfereiter Cu-Leiter: Länge =.5m, Eektronenadung q =.60 0 9 C, Leitungseektronendihte

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenurg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 0 KREIS und KUGEL Bogenlänge rπα = 80 Das Verhältnis r πα = 80 heißt Bogenmaß, ist nur vom Mittelpunktswinkel α ahängig

Mehr

International Unicycling Federation

International Unicycling Federation International Uniyling Federation Wettkampf-Regeluh 2010 Die Üersetzung wurde von einem Üersetzungsüro im Auftrag des durhgeführt. Stand: 12/2009 Copyright 2009 y the International Uniyling Federation,

Mehr

Modellierung des Oligopolwettbewerbs

Modellierung des Oligopolwettbewerbs Modellierung des Oligopolwettbewerbs Mengenwettbewerb bei homogenen Gütern: Cournot-Duopol Preiswettbewerb: Bertrand-Paradox und Preiswettbewerb bei heterogenen Produkten Strategische Selbstbindung und

Mehr

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer:

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer: WS 0 Fourier-Reihe: Jede einigrermaßen gutartige 1 periodishe reelle Zeitfuntion x(t) ann mittels einer Fourier-Reihe dargestellt werden als eine Summe omplexer Amplituden (Fourier-Synthese): xt () e n

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

Physik 4, Übung 11, Prof. Förster

Physik 4, Übung 11, Prof. Förster Physik 4, Übung 11, Prof. Förster Christoph Hansen Emailkontakt ieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik 1. Röntgenstrahlung und Compton-Effekt a) Je nah Entstehung untersheidet man bei Röntgenstrahlung u. a. zwishen Bremsstrahlung,

Mehr

Höhenmessung mittels Seeinterferometer unter Ausnutzung der solaren Radiostrahlung

Höhenmessung mittels Seeinterferometer unter Ausnutzung der solaren Radiostrahlung Höhenmessung mittels Seeintererometer unter Ausnutzung der solaren Radiostrahlung Christian Monstein Eine ür Amateure neue Anwendung radioastronomisher Messmethoden besteht in der relativen Höhenmessung

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Zyklische Ungleichungen in 3 Variablen und Wege der Symmetrisierung

Zyklische Ungleichungen in 3 Variablen und Wege der Symmetrisierung Zyklishe Ungleihungen in Varilen und Wege der Symmetrisierung Yimin Ge August 006 Symmetrishe Ungleihungen hen gegenüber zyklishen Ungleihungen mehrere Vorteile. Einerseits kann man ohne Beshänkung der

Mehr

Zertifikat B1. Zertifikat B1 Modelltest 1 2013 HUEBER Verlag

Zertifikat B1. Zertifikat B1 Modelltest 1 2013 HUEBER Verlag Zertifikat B1 ein Gemeinshaftsprodukt von: Goethe-Institut Österreihishes Sprahdiplom Deutsh (ÖSD) Universität Freiurg/Shweiz Modelltest 1 Lesen Teil 1 Areitszeit: 10 Minuten Lesen Sie den Text und die

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Tim n Übu~gen. Timing 1

Tim n Übu~gen. Timing 1 Tim n Üu~gen Es folgen einige Üungen zum Veressern des Timings Sie sollten täglih geüt werden und es sollen eigene Wege und Variationen dazu erfunden werden Hierei ist wihtig, daß Sie ei allen Timing Üungen

Mehr

Nash-GG als gegenseitige beste Antworten. Man kann Nash-GG einfach charakterisieren in termini bester Antworten

Nash-GG als gegenseitige beste Antworten. Man kann Nash-GG einfach charakterisieren in termini bester Antworten 1 Nash-GG als gegenseitige beste Antworten Man kann Nash-GG einfach charakterisieren in termini bester Antworten Eine beste Antwort von Spieler i gegen die Strategie s i ist - die nutzenmaximierende Strategie,

Mehr

A Lösungen zu Einführungsaufgaben zu QueueTraffic

A Lösungen zu Einführungsaufgaben zu QueueTraffic A Lösungen zu Einführungsaufgaben zu QueueTraffic 1. Selber Phasen einstellen a) Wo im Alltag: Baustelle, vor einem Zebrastreifen, Unfall... 2. Ankunftsrate und Verteilungen a) poissonverteilt: b) konstant:

Mehr

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat.

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat. Hans Walser, [20150318] Brennpunkte der Ellipse 1 Worum geht es? Eine Ellipse sei durh fünf Punkte,...,P 5 gegeben (Abb. 1). P5 P 4 P 3 Abb. 1: Eine Ellipse durh fünf Punkte Gesuht sind die Brennpunkte

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Würde man nun versuchen die Aufgabe 6.2 des vorigen Abschnittes rechnerisch zu lösen, so stößt man auf folgende noch unlösbare Gleichung: h 1

Würde man nun versuchen die Aufgabe 6.2 des vorigen Abschnittes rechnerisch zu lösen, so stößt man auf folgende noch unlösbare Gleichung: h 1 0 Die Logarithmusfunktion Würde man nun versuhen die Aufgae 6. des vorigen Ashnittes rehnerish zu lösen, so stößt man auf folgende noh unlösare Gleihung: h 0,88 www.etremstark.de 0,88 h Gesuht ist also

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

5. Ursachen und Wirkungen internationalen Handelns. 5.1 Faktorausstattungen und inter-industrieller Handel: Das Heckscher-Ohlin-Modell

5. Ursachen und Wirkungen internationalen Handelns. 5.1 Faktorausstattungen und inter-industrieller Handel: Das Heckscher-Ohlin-Modell 5. Ursahen und Wirkungen internationalen Handelns 5. Faktorausstattungen und inter-industrieller Handel: Das Heksher-Ohlin-Modell Das Riardo-Modell reiht zur Erklärung von Handel niht mehr aus, wenn mit

Mehr

Seit dem Jahr 1992 wird in den USA

Seit dem Jahr 1992 wird in den USA For tildung Bak to sleep plus tummy time Hannelore Willenorg Eltern interpretieren die in der geurtshilflihen Ateilung durh Kinderkrankenshwestern, Heammen und Kinderärzte erhaltenen Ratshläge zur rihtigen

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

25 kann ohne Rest durch 5 geteilt werden! ist wahr

25 kann ohne Rest durch 5 geteilt werden! ist wahr Lehrbrief 2: Lektion 8 - C -Praxis 4-1 - 5.2 Einfache Entscheidungen mit if und die Vergleichsoperatoren Nun tauchen wir immer tiefer in die Geheimnisse von C ein und beschäftigen uns mit einem sehr wichtigen

Mehr

T7 - Bestimmung der Oberflächenspannung homologer wässriger Alkohollösungen (Traubesche Regel)

T7 - Bestimmung der Oberflächenspannung homologer wässriger Alkohollösungen (Traubesche Regel) T7 - Bestimmung der Oberflähenspannung homologer wässriger Alkohollösungen (Traubeshe Regel) Aufgaben:. Messung der Oberflähenspannung von vershieden konzentrierten wässrigen Lösungen der homologen Alkohole

Mehr

VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt 5

VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt 5 Georg Nöldeke Frühjahrssemester 010 VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt 5 1. Zur Erinnerung: Der gewinnmaximierende Preis ist im Fall konstanter Grenzkosten in der Höhe von c durch die

Mehr

Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut wird, dass sie für sich selbst sprechen können Von Susanne Göbel und Josef Ströbl

Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut wird, dass sie für sich selbst sprechen können Von Susanne Göbel und Josef Ströbl Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut Von Susanne Göbel und Josef Ströbl Die Ideen der Persönlichen Zukunftsplanung stammen aus Nordamerika. Dort werden Zukunftsplanungen schon

Mehr

Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität

Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität Prof. Dr. Isabel Schnabel The Economics of Banking Johannes Gutenberg-Universität Mainz Wintersemester 2009/2010 1 Aufgabe

Mehr

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart Aussihten A1 Autorin: Snj Mzurni Rektion: Rente Weer Lyout: Clui Stumpfe Stz: Regin Krwtzki, Stuttgrt Ernst Klett Sprhen GmH, Stuttgrt 2010 www.klett.e Alle Rehte vorehlten. Aussihten A1 Aussihten A1 Aufgenltt

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

4. BEZIEHUNGEN ZWISCHEN TABELLEN

4. BEZIEHUNGEN ZWISCHEN TABELLEN 4. BEZIEHUNGEN ZWISCHEN TABELLEN Zwischen Tabellen können in MS Access Beziehungen bestehen. Durch das Verwenden von Tabellen, die zueinander in Beziehung stehen, können Sie Folgendes erreichen: Die Größe

Mehr

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit Teilnehmer/Apotheke/Ort (Zus/1) Frgeogen 1 zur Areitsmppe Durh Zustzempfehlung zu mehr Kunenzufrieenheit Bitte kreuzen Sie jeweils ie rihtige(n) Antwort(en) in en Felern is n! 1. Worin esteht ie Beeutung

Mehr

Kreativ visualisieren

Kreativ visualisieren Kreativ visualisieren Haben Sie schon einmal etwas von sogenannten»sich selbst erfüllenden Prophezeiungen«gehört? Damit ist gemeint, dass ein Ereignis mit hoher Wahrscheinlichkeit eintritt, wenn wir uns

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Kompetitive Analysen von Online-Algorithmen

Kompetitive Analysen von Online-Algorithmen Kompetitive Analysen von Online-Algorithmen jonas echterhoff 16. Juli 004 1 Einführung 1.1 Terminologie Online-Algorithmen sind Algorithmen, die Probleme lösen sollen, bei denen Entscheidungen getroffen

Mehr

Barocker Kontrapunkt Invention: idealtypische ( akademische ) Form

Barocker Kontrapunkt Invention: idealtypische ( akademische ) Form Hans Peter Reutter: Invention 1 Baroker Kontrapunkt Invention: iealtypishe ( akaemishe ) Form Bis zum Ene er Barokzeit sin ie Bezeihnungen für polyphone Formen eigentlih ziemlih austaushbar: Fuge, Rierar,

Mehr

Bewertung des Blattes

Bewertung des Blattes Bewertung des Blattes Es besteht immer die Schwierigkeit, sein Blatt richtig einzuschätzen. Im folgenden werden einige Anhaltspunkte gegeben. Man unterscheidet: Figurenpunkte Verteilungspunkte Längenpunkte

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Aufgabe 1: IS-Kurve Leiten Sie graphisch mit Hilfe

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Modellierung des Oligopolwettbewerbs

Modellierung des Oligopolwettbewerbs 1. Marktmacht und optimale Preissetzung 2. Oligopolwettbewerb 3. Wettbewerbspolitik und Regulierung Modellierung des Oligopolwettbewerbs Mengenwettbewerb bei homogenen Gütern: Cournot Duopol, Stackelberg

Mehr

Geometrische Figuren und Körper

Geometrische Figuren und Körper STNRUFGEN Geometrishe Figuren und Körper Geometrishe Figuren und Körper Welhe Shreiweisen geen den Winkel β des neenstehenden reieks PQR rihtig wieder? β = Qrp β = rp β = PQR R β = QRP β = pq q p P r Q

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fahbereih Grundlagenwissenshaften Prof. Dr. Viola Weiÿ Wintersemester /6 Übungsaufgaben Serie : Vektorrehnung. Gegeben seien die Vektoren a =, b =, = (a) Berehnen Sie a + b und a

Mehr

Die klassische Beschäftigungstheorie und -politik Deutsche Sparkassenzeitung, Nr. 65, 09.09.1977, Seite 2

Die klassische Beschäftigungstheorie und -politik Deutsche Sparkassenzeitung, Nr. 65, 09.09.1977, Seite 2 Deutsche Sparkassenzeitung, Nr. 65, 09.09.1977, Seite 2 1 Die Beseitigung der nach allgemeiner Ansicht zu hohen Arbeitslosigkeit ist heute das wirtschaftspolitische Problem Nummer eins. Um dieses Problem

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

ÜBUNGSSATZ 01 ZERTIFIKAT DEUTSCH FÜR DEN BERUF. Kandidatenblätter STRUKTUREN UND WORTSCHATZ ZEIT: 30 MINUTEN. ZDfB_Ü01_SW_06 120206

ÜBUNGSSATZ 01 ZERTIFIKAT DEUTSCH FÜR DEN BERUF. Kandidatenblätter STRUKTUREN UND WORTSCHATZ ZEIT: 30 MINUTEN. ZDfB_Ü01_SW_06 120206 Felix Brndl Münhen ZDfB_Ü01_SW_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 30 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Lesen Sie den folgenden Text zuerst

Mehr