grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)"

Transkript

1 10. Wärmelehre Temperatur aus mikroskopischer Theorie: <E kin > = 3/2 kt = ½ m <v 2 > <E kin > = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) Körpersensorik gibt nur relatives Maß Messtechnik: alle (reproduzierbar und reversibel) mit T veränderliche Eigenschaften nutzbar: Ausdehnung (i.d.r. Flüssigkeiten) elektrischer Widerstand Kontaktspannung Wärmestrahlung u.v.a.m. 319

2 Ausdehnung des Gefäßvolumens klein (oder bei Eichung berücksichtigt) Fixpunkte: Erstarrung des Wassers bei Normaldruck (genauer: Tripelpunkt) 0 C Sieden des Wassers (bei Normaldruck) 100 C 320

3 Temperaturskalen reproduzierbare Fixpunkte dann Unterteilung: Celsius Def.: 0 o C Schmelzpunkt von Eis (genauer: Tripelpunkt H 2 0: 0.01 o C) Def: 100 o C Siedepunkt von H 2 0 bei Normaldruck Fahrenheit normale Körpertemperatur: 100 o F 100 o F = 37.7 o C Schmelzpunkt Eis/Salzgemisch: 0 o F 0 o F = o C Unterteilung in 100 Skalenteile absolute Temperatur (s.u.) T = 0 K <E kin > = 0 321

4 Absolute Temperaturskala [K] p(t C ) = p o (1 + γ P T C ) p V = N k T abs p o V o = N k T o,abs p o = 10 5 Pa (experimentell) (kinetische Gastheorie) (Normalbedingungen) T o,abs entsprechend 0 o C mit V = V o p / p o = (T abs / T o,abs ) = (1 + γ P T C ) (T abs /T o,abs ) = (1 + γ P T C ) T abs = T o,abs (1 + T C /273.15) daher T C = o C T abs = 0 K T o,abs = K, weil T abs = K für T C = 0 o C wobei T o,abs = T abs (gleiche Skalenteilung) 322

5 Thermische Ausdehnung von Festkörpern T <E> = ½ kt pro Freiheitsgrad und Teilchen hier: Schwingung (Atome) um Ruhelage für E pot,i = ß (r i r i,o ) 2 (Parabel-Potential) wird <r i (t)> t = r i, o Parabel-Potential ist gute Näherung nur für r i r i,o << r i,o für Bindung in Parabelpotential keine Änderung des mittleren Abstands da <r i (t)> t = r i, o keine Ausdehung (T) 323

6 bessere Näherung für E pot (r i ) : Morse-Potential (unsymmetrisch, anharmonisch) E pot (r i ) = E D [1 ( ri ri,o) e α ] 2 < r i > t > r i,o, < r i > - r i,o = r i << r i,o d( r i (T))/dt > 0, < r i > steigt mit T typische Werte: r i,o = 0.1 nm = m r i = 0.1 pm = m r i / r i,o = 10-3 N m = 10-3 m = 1 mm für N =

7 Variation von α mit T durch Änderung des Einflusses der Anharmonizität des Potentials mit E L/L = α [K -1 ] T für Cu (280 K), T = 80 K, L = 1000 mm L = α [K -1 ] T L = [mm] L = = mm = 1.3 mm 325

8 Bimetall-Temperaturmesser Feste Verbindung von zwei Materialien unterschiedliches α bei (z.b. T = 0 o C) gerade bei T > T o Biegung zu einer Seite bei T < T o Biegung zur anderen Seite 326

9 Bolzensprenger Stab: Länge L, Querschnitt q, Elastizitätsmodul E (z.b. für Eisen) Kraft für Dehnung oder Stauchung um L F = E q L/L thermische Dehnung L/L = α T Verhinderung der thermischen Ausdehnung oder Schrumpfung durch Kraft: F = E q α T z.b. Eisen: α T = 10-5 [1/K] 100 [K] = 10-3 (q = π R 2 ; R = 3 mm, L/L = 10-3 ) F = [N/m 2 ] [m 2 ] 10-3 = [N] 327

10 Thermische Ausdehnung T gemessen in o C (T C ) L(T C ) = L(0) ( 1 + α T C ) α = linearer Ausdehnungskoeffizient α T C = L/L(0) α nur näherungsweise konstant α = α o + ß T C i.allg.: ß T C << α o spezielle Materialen: α < 0 möglich besondere Anwendungen: α 0 erwünscht Volumenausdehnung: isotropes Material: V(T C ) = V o (1 + α T C ) 3 V(T C ) V o (1 + 3 α T C ) α T C << 1 anisotropes Material: 3α α x +α y +α z 328

11 10 6 aus α : Volumenausdehnungskoeffizient γ = 3 α γ(cu) = typisch 10-5 < γ FK < << α Flüssigkeit 329

12 Thermische Ausdehnung von Gasen Gase: Ausdehnung isotrop ideales Gas: Wechselwirkungsenergie (WWE) der Teilchen für r > r o WWE << kt Eigenvolumen N V Teilchen << V experimentell (T in Celsius-Skala, T C ): V(T C ) = V o (1 + γ V T C ) p(t C ) = p o (1 + γ P T C ) γ P = γ V = 1/ o C -1 p o = const. V o = const. (für He) Gay-Lussac-Gesetz 330

13 Gasthermometer p(t C ) = p o (1 + γ P T C ) V = V o = const. T C = (1/γ P ) (p(t C ) - p o ) / p o T C = (1/γ P ) p(t C ) / p o T-Messung durch Druckmessung T C = p(t C ) / p o [ o C] 331

14 Avogardo-Konstante und Molvolumen Stoffmenge: 1 Mol (Anzahl der Einheiten : Atome oder Moleküle) 1 mol = Stoffmenge eines Systems, das aus ebensoviel Teilchen (N A ) besteht, wie 12 g des Kohlenstoffnukleids 12 C. auf 12 C bezogen: N A m 12C = 12 [g] = N A 12 m* m* = (1/12) m( 12 C) = mittlere Masse eines Nukleons im 12 C - Kern allgemein: N A = m* -1 = mol -1 Avogardo-Konstante oder Loschmidt-Zahl Die Masse der Stoffmenge 1 mol ist gleich dem Atomgewicht in Gramm N A m Teilchen = A Teilchen [g] A Teilchen = Atomgewicht = m Teilchen /m* 332

15 Avogardo-Konstante Bestimmung von N A : 12 g 12 C durch Massenvergleich mit Massennormal Abzählen der Zahl der Teilchen, z.b. durch Methoden der Röntgen-Strukturanalyse 1 mol Wasserstoff H 2 : 2 g 1 mol Helium 4 He : 4 g 1 mol Kohlenstoff 12 C : 12 g 1 mol Stickstoff 14 N 2 : 28 g 333

16 Wärmemenge und spezifische Wärme (genauer: spezifische Wärmekapazität) Zufuhr Wärmemenge Q (Energie) an Masse M T( Q, M) Q = c M T c = Q / (M T) c = spezifische Wärme (-kapazität) c = Q für M = 1 kg und T = 1 K c von Struktur des Materials abhängig (z.b.: Zahl der Freiheitsgrade bei Gas) alte Einheit Wärmemenge cal oder kcal : Q = 1 kcal 1 kg H 2 0, 14.5 C 15.5 C 334

17 Spezifische Wärmekapazität (WK) von Metallen Vergleich: Al - Cu - Pb molare WK ungefähr gleich, daher WK bei gleichem Gewicht verschieden Atommasse [u] Al : 27.0 Cu: 63.5 Pb: 207 Massen haben gleiches Gewicht (etwas andere Form) eintauchen in Flüssigkeit (T o ) Temperaturausgleich abwarten Ergebnis: T Al > T Cu > T Pb 335

18 Allgemeine Gasgleichung für ideale Gase V M = Volumen der Stoffmenge 1 mol bei 1 bar und 0 o C p V = N k T (bekannt) für V = V M p V M = N A k T mit N A k = R = 8.31 J /(K mol) p V M = R T oder für Stoffmenge ν Mol p V = ν R T V/V M = ν 336

19 Spezifische Molwärme(-kapazität) idealer Gase M mol = Masse eines Mol [kg] Q = c M mol T = C T Q / T = c M mol = C [J / (mol K)] spezifische Molwärme (-kapazität) C = Energie (Wärmemenge) für T = 1 K allgemein: ν = Zahl der Mol Q / T = ν c M mol = ν C Wärmekapazität zu unterscheiden: Q T bei V = const. C C V Q T bei p = const. C C P 337

20 Spezifische Molwärme C P idealer Gase bei konstantem Druck Q T U + W = Q Q = C P T = C V T + p V W = p V ( V Arbeit) ( W = p A x = F x) p V p (V + V) = R T = R (T + T) p V = R T Q = C P T = C V T + R T = (C V + R) T C P = C V + R 338

21 Spezifische Molwärme CV idealer Gase bei konstantem Volumen Q T Erhöhung innerer Energie U im thermischen Gleichgewicht <E> T = mittlere Energie pro Teilchen <E> T = <E kin > T + <E rot > T + <E vib > T = f ½ k T <E> M = mittlere Energie pro Mol = N A <E> T <E> M = f ½ N A k T = f ½ R T im thermischen Gleichgewicht: Q = U = ν C V T = ν f ½ R T C V = ½ f R spez. Molwärme bei V = const. 339

22 Spezifische Molwärme C P und C V Zusammenhang mit Struktur der Teilchen C V = ½ f R C P = C V + R = ½ (f + 2) R C P / C V = (f + 2) / f = κ ( kappa ) 340

23 Zur Zahl der Freiheitsgrade der Schwingungen bei größere Molekülen Zahl der Eigenschwingungen S Zahl der Schwingungsfreiheitsgrade fvib = 2S Moleküle aus N Atomen ist eine Einheit (bestimmt z.b. Molgewicht) Bewegungsformen zusammengesetzt aus Bewegung der einzelnen Atome Jedes Atom macht (i Prinzip) Bewegung in alle 3 Raumrichtungen (x, y, z) Insgesamt 3 N unabhängige Bewegungsmöglichkeiten Wieviel davon als Schwingungen darstellbar? 3 N (Translation SP) (Rotation um Haupt-T-Achsen) 3 N 3 3 = 3 N 6 (Zahl der Schwingungen) (für nicht-lineares Molekül) 341

24 Variation der spezifischen Wärmekapazität mit der Temperatur = Transl. Rotation Vibration Zahl der Freiheitsgrade, die angeregt sind ( Energie aufnehmen, daher zu CV beitragen) steigt mit T ( C V steigt mit T) f f eff (T) C V = ½ f eff R = ( U/ T) V E vib = (n + ½ ) E* vib nicht angeregt wenn E* vib >> kt 342

25 spezifische Wärmekapazität von Festkörpern Viele Schwingungen Phonenspektrum Vibrationsenergie auch quantisiert niederfrequente Schwingungen hochfrequente Schwingungen E vib, min < kt 300 K E vib, min > kt 300 K 343

26 jedes Atom (einzeln betrachtet) hat 3 Schwingungsfreiheitsgrade wenn kt E max vib, min : alle Schwingungen angeregt <E mol > = 6 ½ N A k T (N A k = R) C V = 3 R (bei hohen T) Dulong-Petit-Gesetz 344

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10. Inhalt 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.4 Wärmekapazität Aufgabe: - Temperaturverhalten von Gasen, Flüssigkeiten, Festkörpern

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

Zur Erinnerung. p R 8

Zur Erinnerung. p R 8 Zur Erinnerung Stichworte aus der 17. Vorlesung: Viskosität laminare Strömung, Gesetz von Hagen- Poiseuille F R V M t u dv R 8 z 4 Gleichungen der Strömungslehre Temeratur, Temeraturskalen, thermische

Mehr

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH 3 Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Wärme 5 Themen Begriffsklärung Anwendungen Temperaturskalen Modellvorstellung Wärmeausdehnung Thermische Ausdehnung Phasenübergänge

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle Zustandsformen der Materie hermische Eigenschaften der Materie Aggregatzustände: fest flüssig suprafluide gasförmig überkritisch emperatur skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind:

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind: Was ist Physikalische Chemie? Die klassischen eilgebiete der Physikalischen Chemie sind: 1) hermodynamik (z. B. Energetik chemischer Reaktionen, Lage von Gleichgewichten). 2) Kinetik chemischer Reaktionen

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Kalorimetrie (Wärmelehre)

Kalorimetrie (Wärmelehre) Thermische Molekularbewegung Phasenübergänge Reaktionswärme Kalorimetrie (Wärmelehre) Gase Flüssigkeiten/Festkörper Ideales Gasgesetz Dulong-Petit-Gesetz 1 Thermodynamik Beschreibung der Zustände und deren

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #7 am 18.01.006 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 010 10. 14. Mai 010 Physik für Bauingenieure Übungsblatt 4 1. Wie viele Luftmoleküle befinden sich im Hörsaal Gruppenübungen

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 10. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität 9. Thermodynamik 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala 93 9.3 Thermische h Ausdehnung 9.4 Wärmekapazität 9. Thermodynamik Aufgabe: - Temperaturverhalten von Gasen,

Mehr

Vorlesung #7. M.Büscher, Physik für Mediziner

Vorlesung #7. M.Büscher, Physik für Mediziner Vorlesung #7 Zustandsänderungen Ideale Gase Luftfeuchtigkeit Reale Gase Phasenumwandlungen Schmelzwärme Verdampfungswärme Dampfdruck van-der-waals Gleichung Zustandsdiagramme realer Gase Allgem. Gasgleichung

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 04.11.2011 Lösung Übung 2

Übungen zur VL Chemie für Biologen und Humanbiologen 04.11.2011 Lösung Übung 2 Übungen zur VL Chemie für Biologen und Humanbiologen 04.11.2011 Lösung Übung 2 1. Wie viel mol Eisen sind in 12 x 10 23 Molekülen enthalten? ca. 2 Mol 2. Welches Volumen Litern ergibt sich wenn ich 3 mol

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr

im 1. Fachsemester Vladimir Dyakonov / Volker Drach Professor Dr. Vladimir Dyakonov, Experimentelle Physik VI

im 1. Fachsemester Vladimir Dyakonov / Volker Drach Professor Dr. Vladimir Dyakonov, Experimentelle Physik VI Physik für Mediziner im 1. Fachsemester #9 02/11/2010 Vladimir Dyakonov / Volker Drach dyakonov@physik.uni-wuerzburg.de Wärmelehre Teil 1 - Energie, Wärmekapazität Def. 1: Lehre der Energie, ihrer Erscheinungsform

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 1. Hauptsatz der Thermodynamik: du = dq + dw, U = E kin + E pot Keine externen Felder: dw = -pdv Metalle: Thermische Ausdehnung: a 10-6

Mehr

Energieumsatz bei Phasenübergang

Energieumsatz bei Phasenübergang Energieumsatz bei Phasenübergang wenn E Vib > E Bindung schmelzen verdampfen Q Aufbrechen von Bindungen Kondensation: Bildung von Bindungen E Bindung Q E Transl. E Bindung für System A B durch Stöße auf

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen:

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen: Der Magnus-Effekt Rotierender Körper in äußerer Strömung: Ohne Strömung: Körper führt umgebendes Medium an seinen Oberflächen mit Keine resultierende Gesamtkraft. ω Mit Strömung: Geschwindigkeiten der

Mehr

22. Chemische Bindungen

22. Chemische Bindungen .05.03. Chemische Bindungen Molekül: System aus zwei oder mehr Atomen Kleinste Einheit einer Substanz, die deren chemische Eigenschaften ausweist Quantenmechanisches Vielteilchensystem: Exakte explizite

Mehr

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion

Mehr

Vorlesung Physik für Pharmazeuten PPh Wärmelehre

Vorlesung Physik für Pharmazeuten PPh Wärmelehre Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung kinetische Gastheorie Zurückführung der makroskopischen Zusammenhänge: p(v,t) auf mikroskopische Ursachen. Atomistische Natur der Gase lange umstritten, Akzeptanz Ende 19. Jahrh., Boltzmann. Modell des

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 26. 30. April 2010 Physik für Bauingenieure Übungsblatt 2 Gruppenübungen 1. Springende Kugeln Die nebenstehende

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg 2. Fluide Phasen 2.1 Die thermischen Zustandsgrößen 2.1.1 Masse m [m] = kg bestimmbar aus: Newtonscher Bewegungsgleichung (träge Masse): Kraft = träge Masse x Beschleunigung oder (schwere Masse) Gewichtskraft

Mehr

Wir werden in dieser Vorlesung für Temperaturen in der Kelvinskala das Symbol T verwenden, für Temperaturen in der Celsius-Skala das Symbol θ.

Wir werden in dieser Vorlesung für Temperaturen in der Kelvinskala das Symbol T verwenden, für Temperaturen in der Celsius-Skala das Symbol θ. Wärmelehre Betrachten wir mehrere Körper, die sich in einem Wärmebad befinden, so sagt uns die Erfahrung, dass sie alle dieselbe Temperatur haben werden. Verbinden wir einen heißen Körper mit einem kalten

Mehr

Thermodynamik. Vorlesung 1. Nicolas Thomas

Thermodynamik. Vorlesung 1. Nicolas Thomas Thermodynamik Vorlesung 1 Thermodynamik ist nur ein bisschen schwerig. Geschichtlicher Hintergrund! Im 19. Jahrhundert Zunahme an Mechanisierung durch Konstruktion von Maschinen und Motoren.! Besonders

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

R 1 T T 1 T 2. Abbildung 5.1: Temperaturabhängigkeit des elektrischen Widerstands als Eichkurve für die Temperaturmessung.

R 1 T T 1 T 2. Abbildung 5.1: Temperaturabhängigkeit des elektrischen Widerstands als Eichkurve für die Temperaturmessung. Kapitel 5 Wärmelehre In den vorangegangenen Kapiteln haben wir gesehen, daß die Eigenschaften mechanischer Systeme mit den Grundgrößen Länge (Einheit: Meter), Zeit (Einheit: Sekunde) und Masse (Einheit:

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen!

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! 1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ****** Druck und Volumen Gesetz von Boyle-Mariotte:

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang lektrotechnik - kinetische Gastheorie - Prof. Dr. Ulrich Hahn WS 008/09 Molekularbewegung kleine sichtbare Teilchen in Flüssigkeiten oder Gasen: unregelmäß äßige Zitterbewegung

Mehr

Kapitel 2 Thermische Ausdehnung

Kapitel 2 Thermische Ausdehnung Kapitel 2 Thermische Ausdehnung Die Ausdehnung von Festkörpern, Flüssigkeiten und Gasen hängt von der Temperatur ab. Für Festkörper und Flüssigkeiten ist diese temperaturabhängige Ausdehnung zusätzlich

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

Zur Erinnerung V M. Stichworte aus der 17. Vorlesung: Viskosität. laminare Strömung, Gesetz von Hagen- Poiseuille. Gleichungen der Strömungslehre

Zur Erinnerung V M. Stichworte aus der 17. Vorlesung: Viskosität. laminare Strömung, Gesetz von Hagen- Poiseuille. Gleichungen der Strömungslehre Zur Erinnerung Stichworte aus der 17. Vorlesung: Viskosität laminare Strömung, Gesetz von Hagen- Poiseuille F R = η u dv V M ρ = t π p = ρ R 8η z 4 Gleichungen der Strömungslehre Temperatur, Temperaturskalen,

Mehr

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Gasthermometer 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 21.06.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Zustandgleichung des idealen Gases Ein ideales

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015. Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015. Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015 Physik-Institut der Universität Zürich Inhaltsverzeichnis 5 Absoluter Nullpunkt der Temperaturskala

Mehr

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt 9 8. Wärmelehre 8. emperatursala Wärmeenergie: emperatur: inetische und potentielle Energie, die ein System bei emperaturänderung aunimmt oder abgibt Maß ür mittlere inetische Energie eines Systems (im

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 2007 ladimir Dyakonov #2 am 10.01.2007 Raum E143, el. 888-5875, email: dyakonov@hysik.uni-wuerzburg.de 10.2 emeraturmessung Wärmeausdehnung

Mehr

Temperaturabhängigkeit von ρ s (T) für einige Stoffe. ρ s = spezifischer Widerstand. Variation mit Temperatur bezogen auf T = 300 K

Temperaturabhängigkeit von ρ s (T) für einige Stoffe. ρ s = spezifischer Widerstand. Variation mit Temperatur bezogen auf T = 300 K Temperaturabhängigkeit von ρ s (T) für einige Stoffe ρ s = spezifischer Widerstand Variation mit Temperatur bezogen auf T = 300 K 77 Temperatur-Abhängigkeit von Widerständen normaler (ohmscher) Widerstand:

Mehr

II. Der nullte Hauptsatz

II. Der nullte Hauptsatz II. Der nullte Hauptsatz Hauptsätze... - sind thermodyn. Gesetzmäßigkeiten, die als Axiome (Erfahrungssätze) formuliert wurden - sind mathematisch nicht beweisbar, basieren auf Beobachtungen und Erfahrungen

Mehr

Thermische Bewegung, Temperatur und Wärme

Thermische Bewegung, Temperatur und Wärme hermische Bewegung, emperatur und Wärme Im heorieteil haben Sie die ersten Begriffe der statistischen Mechanik wie Boltzmann- Verteilung, emperatur oder Wärme kennengelernt. Wir wollen nun einige experimentelle

Mehr

Lehre der Energie, ihrer Erscheinungsform und Fähigkeit, Arbeit zu verrichten.

Lehre der Energie, ihrer Erscheinungsform und Fähigkeit, Arbeit zu verrichten. Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 Vladimir Dyakonov Raum E143, Tel. 888-5875, email: dyakonov@physik.uni-wuerzburg.de 10 Wärmelehre/Thermodynamik Lehre der Energie,

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Wärmelehre Teil 1 - Energie, Wärmekapazität Def. 1: Lehre der Energie, ihrer Erscheinungsform und

Mehr

Vorlesung am 7. Juni 2010

Vorlesung am 7. Juni 2010 Materialwissenschaften, SS 2008 Ernst Bauer, Ch. Eisenmenger-Sittner und Josef Fidler 1.) Kristallstrukturen 2.) Strukturbestimmung 3.) Mehrstoffsysteme 4.) Makroskopische Eigenschaften von Festkörpern

Mehr

Die Einheit Mol Stoffmengen können in verschiedenen Einheiten gemessen werden:

Die Einheit Mol Stoffmengen können in verschiedenen Einheiten gemessen werden: Cusanus-Gymnasium Wittlich W. Zimmer 1/5 Die Einheit Mol Stoffmengen können in verschiedenen Einheiten gemessen werden: a) durch die Angabe ihrer Masse b) durch die Angabe ihres Volumens c) durch die Anzahl

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Mode der Bewegung, Freiheitsgrade

Mode der Bewegung, Freiheitsgrade Mode der Bewegung, Freiheitsgrade Bewegungsmoden (normal modes of motion) : Jede UNABHÄNGIGE Bewegungsmöglichkeit der Atome (unabhängig: im quantenmechanischen Sinne durch orthogonale Wellenfunktionen

Mehr

Temperatur Wärme Thermodynamik

Temperatur Wärme Thermodynamik Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten

Mehr

Zustandsbeschreibungen

Zustandsbeschreibungen Aggregatzustände fest Kristall, geordnet Modifikationen Fernordnung flüssig teilgeordnet Fluktuationen Nahordnung gasförmig regellose Bewegung Unabhängigkeit ngigkeit (ideales Gas) Zustandsbeschreibung

Mehr

Chemische Thermodynamik: Grundlagen

Chemische Thermodynamik: Grundlagen Cheische herodynai: Grundlagen Marosoische Größen aros. Obserable in aros. Syste Intensie Größen (engenunabhängig): Druc eeratur Magnetfeld H r Magnetisierung M r Eletrisches Feld E r... Etensie Größen

Mehr

Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14)

Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14) Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung F Temperatur In der Wärmelehre lernen wir

Mehr

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm Energie bei chemischen Reaktionen Chemische Reaktionen sind Stoffumwandlungen bei denen Teilchen umgeordnet und chemische Bindungen gespalten und neu geknüpft werden, wodurch neue Stoffe mit neuen Eigenschaften

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Formelsammlung Baugruppen

Formelsammlung Baugruppen Formelsammlung Baugruppen RCL-Schaltungen. Kondensator Das Ersatzschaltbild eines Kondensators C besteht aus einem Widerstand R p parallel zu C, einem Serienwiderstand R s und einer Induktivität L s in

Mehr

Der elektrische Strom

Der elektrische Strom Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei

Mehr

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert TH 01 Wärmekapazität und Wirkungsgrad (Pr_PhI_TH01_Wärmekapazität_6, 30.8.009)

Mehr

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol 2. Zustandsgrößen 2.1 Die thermischen Zustandsgrößen 2.1.1. Masse und Molzahl Reine Stoffe: Ein Mol eines reinen Stoffes enthält N A = 6,02214. 10 23 Atome oder Moleküle, N A heißt Avogadro-Zahl. Molzahl:

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 14. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

Die Avogadro-Konstante N A

Die Avogadro-Konstante N A Die Avogadro-Konstante N A Das Ziel der folgenden Seiten ist es, festzustellen, wie viele Atome pro cm³ oder pro g in einem Stoff enthalten sind. Chemische Reaktionen zwischen Gasen (z.b. 2H 2 + O 2 2

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen von verschiedenen Metallen

Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen von verschiedenen Metallen 14. Vorlesung EP II. Wärmelehre 1. Temperatur und Stoffmenge 11. Ideale Gasgleichung 1. Gaskinetik 13. Wärmekapazität Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen

Mehr

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie Seminar zur Theorie der Teilchen und Felder Van der Waals Theorie Tobias Berheide 18.11.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das Van der Waals Gas 3 2.1 Das ideale Gas..............................

Mehr

3.1 Allgemeine Eigenschaften des He 3.1.1. p-t-phasenübergang 121

3.1 Allgemeine Eigenschaften des He 3.1.1. p-t-phasenübergang 121 3.1 Allgemeine Eigenschaften des He 3.1.1. p-t-phasenübergang 121 3. Helium Im Sommersemester befassen wir uns generell mit Tieftemperaturphysik. Beginnen wollen wir mit einer Temperaturskala (Fig. 3.1),

Mehr

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 361 4. Chemische Reaktionen 4.1. Allgemeine Grundlagen (Wiederholung) 4.2. Energieumsätze chemischer

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

c~åüüçåüëåüìäé=açêíãìåç== = = = k~ãéw=

c~åüüçåüëåüìäé=açêíãìåç== = = = k~ãéw= c~åüüçåüëåüìäéaçêíãìåç k~ãéw mêçñkaêkjfåökdk_~äáéä c_p j~íêkjkêkw Klausur: Bordnetze 14.7.2004 Aufgabe 1: Es sollen zwei massive Cu-Leiter auf Ihre Stromtragfähigkeit untersucht werden. Der eine hat einen

Mehr

E2: Wärmelehre und Elektromagnetismus 3. Vorlesung

E2: Wärmelehre und Elektromagnetismus 3. Vorlesung E2: Wärmelehre und Elektromagnetismus 3. Vorlesung 16.04.2018 https://xkcd.com/1978/ Heute: - Gleichverteilungssatz - 1. Hauptsatz - Volumenarbeit - Wärmekapazität - Wärmekapazität des idealen Gases -

Mehr

Spezifische Wärme fester Körper

Spezifische Wärme fester Körper 1 Spezifische ärme fester Körper Die spezifische, sowie die molare ärme von Kupfer und Aluminium sollen bestimmt werden. Anhand der molaren ärme von Kupfer bei der Temperatur von flüssigem Stickstoff soll

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

Wärmelehre. Kapitel 3

Wärmelehre. Kapitel 3 Kapitel 3 171 Wärmelehre 12 Grundbegriffe ± Temperaturskalen ± Temperaturmessung 12.1 Grundbegriffe Mithilfe unseres Wärmesinns nehmen wir Wärme und Kälte wahr. Dieser subjektiven Empfindung liegt eine

Mehr

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr

Thermische Ausdehnung

Thermische Ausdehnung Versuch: TA Fachrichtung Physik Physikalisches Grundpraktikum Aktualisiert: am 16. 09. 2009 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Thermische Ausdehnung Inhaltsverzeichnis

Mehr

Grund- und Angleichungsvorlesung Physik der Wärme.

Grund- und Angleichungsvorlesung Physik der Wärme. 2 Grund- und Angleichungsvorlesung Physik. Physik der Wärme. WS 17/18 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

Zwei neue Basisgrössen in der Physik

Zwei neue Basisgrössen in der Physik Nachtrag zur orlesung am vergangenen Montag Zwei neue Basisgrössen in der Physik 9. Wärmelehre, kinetische Gastheorie Temperatur T: Wärme ist verknüpft mit ungeordneter Bewegung der Atome oder Moleküle.

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand

1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand 1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand Wie erfolgt die Beschreibung des Zustands eines Systems? über Zustandsgrößen (makroskopische Eigenschaften, die den Zustand eines Systems kennzeichnen)

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

E2: Wärmelehre und Elektromagnetismus 3. Vorlesung

E2: Wärmelehre und Elektromagnetismus 3. Vorlesung E2: Wärmelehre und Elektromagnetismus 3. Vorlesung 16.04.2018 https://xkcd.com/1978/ Heute: - Gleichverteilungssatz - 1. Hauptsatz - Volumenarbeit - Wärmekapazität - Wärmekapazität des idealen Gases -

Mehr

Stöchiometrie. (Chemisches Rechnen)

Stöchiometrie. (Chemisches Rechnen) Ausgabe 2007-10 Stöchiometrie (Chemisches Rechnen) ist die Lehre von der mengenmäßigen Zusammensetzung chemischer Verbindungen sowie der Mengenverhältnisse der beteiligten Stoffe bei chemischen Reaktionen

Mehr