Grundlagen des Maschinellen Lernens Kap. 4: Lernmodelle Teil II

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundlagen des Maschinellen Lernens Kap. 4: Lernmodelle Teil II"

Transkript

1 1. Motivation 2. Lernmodelle Teil I 2.1. Lernen im Limes 2.2. Fallstudie: Lernen von Patternsprachen 3. Lernverfahren in anderen Domänen 3.1. Automatensynthese 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume über regulären Patterns 4. Lernmodelle Teil II PAC-Lernen 5. Spezielle Lernverfahren 5.1. unüberwachtes Lernen 5.2 überwachtes Lernen 10/1 Offline-Lernen dem Lerner wird ein Sample B mit klassifizierten Beispielen vorgelegt der Student soll anhand der Beispielmenge B eine Klassifikator h bilden, der ein möglichst gutes Klassifikationsverhalten auf realen Daten hat der Student bekommt unklassifizierte Beispiele einzeln angeboten der Student hat stets eine Hypothese, mit der der Lerner ein solches Beispiel klassifiziert der Student erhält als Feedback die Information, ob er das Beispiel richtig klassifiziert hat und kann seine Hypothese ggf. modifizieren Hinweis: Einschränkung auf das Lernen von Klassifikatoren 10/2

2 von Monomen (ein einführendes Beispiel) es sei X = { 0,1 } n der zugrunde liegende Lernbereich es seien x 1,...,x n aussagenlogische Variablen jede Variable x z bzw. ihre Negation x z heißt Literal ein Monom m ist eine Konjunktion von Literalen jedes Monom m beschreibt eine boolesche Funktion von X { 0,1 } Es seien b = b[1],...,b[n] ein Element aus X und m ein Monom. b erfüllt das Literal x z (bzw. x z ), falls b[z] = 1 (bzw. b[z] = 0). b erfüllt das Monom m, falls b jedes Literal in m erfüllt. wir setzen m(b) = 1, falls b das Monom m erfüllt; sonst m(b) = 0!!! 10/3 Lernszenario der Lernprozeß findet in Schritten statt in jedem Lernschritt i hat der Student eine aktuelle Hypothese h i-1 Lernschritt i (i = 1,2,... ): der Lehrer präsentiert dem Studenten ein b i aus X der Student bestimmt h i-1 (b i ) der Lehrer teilt dem Student mit, ob m(b i ) = h i-1 (b i ) gilt der Student bestimmt seine neue Hypothese h i... falls m(b i ) h i-1 (b i ), so hat der Student einen Vorhersagefehler gemacht... der Student soll möglichst wenige Vorhersagefehler machen!!! Hinweis: es sei m das zu lernende Monom 10/4

3 Lernverfahren (schlecht) das Lernverfahren speichert in einer Tabelle alle bisher gesehenen Beispiele b mit der zugehörigen Wert m(b) ab initial ist die Tabelle leer Lernschritt i (i = 1,2,... ): es sei b i das aktuelle unklassifizierte Beispiel falls das Beispiel b i in der Tabelle gespeichert ist, so gibt das Lernverfahren den gespeicherten Wert m(b i ) aus; sonst den Wert 0 falls das Lernverfahren einen Fehler gemacht hat, wird die Tabelle entsprechend modifiziert... das Lernverfahren macht im schlimmsten Fall 2 n Fehler Hinweis: es sei m das zu lernende Monom 10/5 Lernverfahren (besser) das Lernverfahren verwendet Monome als Hypothesen h 0 = x 1 x 1... x n x n Lernschritt i (i = 1,2,... ): es sei b i das aktuelle unklassifizierte Beispiel das Lernverfahren bestimmt h i-1 (b i ) falls h i-1 (b i ) = m(b i ), so setze h i = h i-1 falls h i-1 (b i ) m(b i ), so bestimme alle Literale in h i-1, die das unklassifizierte Beispiel b i nicht erfüllt; h i entsteht aus h i-1 dadurch, daß alle diese Literale aus h i-1 gestrichen werden... das Lernverfahren macht im schlimmsten Fall n+1 Fehler!!! Hinweis: es sei m das zu lernende Monom 10/6

4 Beispiel es seien n = 7 und m = x 1 x 2 x 4 x 7 h 0 = x 1 x 1... x 7 x 7 b 1 = b 2 = b 3 = b 4 = m(b 1 ) = 1 0 = h 0 (b 1 ) m(b 2 ) = 0 = 0 = h 1 (b 2 ) m(b 3 ) = 1 0 = h 2 (b 3 ) m(b 4 ) = 1 0 = h 3 (b 4 ) h 1 = x 1 x 2 x 3 x 4 x 5 x 6 x 7 h 2 = x 1 x 2 x 3 x 4 x 5 x 6 x 7 h 3 = x 1 x 2 x 4 x 5 x 7 h 4 = x 1 x 2 x 4 x 7 10/7 zentrale Beobachtungen (1) Jedes Literal, daß in m vorkommt, kommt in jedem h i vor. (2) Der Fall h i-1 (b i ) m(b i ) tritt nur dann ein, wenn m(b i ) = 1 gilt. (3) Wenn h i-1 (b i ) m(b i ) gilt, so wird aus h i-1 mindestens ein Literal gestrichen.... das Lernverfahren macht im schlimmsten Fall n+1 Fehler!!! Hinweis: es sei m das zu lernende Monom 10/8

5 Das allgemeine Lernmodell es sei X ein Lernbereich jedes c X heißt Konzept (/* c(x) = 1, falls x c bzw. c(x) = 0, falls x c */) jedes C 2 X heißt Konzeptklasse Grundannahmen: es gibt einen Lehrer und eine Studenten beide haben sich auf eine Konzeptklasse geeinigt; der Lehrer wählt ein c C aus (/* ohne c zu verraten */) Lehrer präsentiert einzeln unklassifizierte Beispiele; Student bildet Hypothesen Student klassifiziert die Beispiele mit Hilfe seiner aktuellen Hypothese; der Lehrer bewertet die Korrektheit dieser Klassifikation in Bezug auf das aktuell zu lernende Konzept c C 10/9... es sei σ = b 1, b 2,... die vorgelegte Folge von unklassifizierten Beispielen... der Student S lernt schrittweise es sei h i-1 die aktuelle Hypothese von S im Schritt i S erhält das unklassifizierte Beispiel b i S macht eine Vorhersage h i-1 (b i ) S erhält die korrekte Klassifikation c(b i ) S hat einen Vorhersagefehler gemacht, wenn h i-1 (b i ) c(b i ) gilt S hat keinen Vorhersagefehler gemacht, wenn h i-1 (b i ) = c(b i ) gilt S bildet eine neue Hypothese h i und geht zu Schritt i+1 10/10

6 ... es seien c C das zu lernende Konzept und σ = b 1,b 2,... eine Folge von unklassifizierten Beispielen aus X (/* also σ X + */)... der Student lernt erfolgreich wenn er auf jeder Beispielfolge nur endlich viele Vorhersagefehler macht (/* unabhängig davon, welches c C aktuell zu lernen ist */)... die Qualität des Studenten kann beurteilt werden in Bezug auf eine konkrete Beispielfolge σ für ein c C auf alle Beispielfolgen für ein c C auf alle Beispielfolgen für alle c C 10/11... Fehler von S in Bezug auf eine Beispielfolge für ein Konzept c C Error(S,c,σ) bezeichnet die Anzahl der Vorhersagefehler von S auf der Beispielfolge σ.... Fehler von S in Bezug auf ein Konzept c C Error max (S,c) = max { Error(S,c,σ) σ X + } bezeichnet die maximale Anzahl von Vorhersagefehlern von S auf irgendeiner Beispielfolge für c.... Fehler von S in Bezug auf eine Konzeptklasse C Error worst (S,C) = max { Error max (S,c) c C } ist die maximale Anzahl von Vorhersagefehlern von S auf irgendeiner Beispielfolge für irgendein Konzept c C. 10/12

7 Zentrale Fragestellungen es sei C eine Konzeptklasse Wie viele Fehler muß man einem Online-Lernverfahren für C zugestehen? (/* Fokus: untere Schranke */) Wie viele Fehler macht ein Online-Lernverfahren für C? (/* Fokus: obere Schranke */)... mit opt(c) bezeichnet man die optimale Fehlerschranke eines Online- Lernverfahrens für die Klasse C opt(c) = min { Error worst (S,C) S ist ein Online-Lernverfahren für C } 10/13 Der Halving-Algorithmus es sei C eine endliche Konzeptklasse setze initial H = C es sei b das aktuelle unklassifizierte Beispiel - setze H 1 = { c H c(b) = 1 } und H 0 = { c H c(b) = 0 } - falls H 1 H 0, setze h(b) = 1, setze h(b) = 0 (/* das nennt man majority vote */) - falls h(b) c(b), so setze H = H c(b), sonst ändere H nicht... je Vorhersagefehler wird mindestens die Hälfte aller Konzepte aus H gestrichen 10/14

8 Konsequenzen es sei C eine endliche Konzeptklasse... der Halving-Algorithmus S halving macht im worst case höchstens log 2 ( C ) viele Vorhersagefehler!!!... Error worst (S halving,c) log 2 ( C ) Es sei C eine endliche Konzeptklasse. Dann gilt: opt(c) log 2 ( C ).... das bestmögliche Online Lernverfahren für C macht im worst case höchstens log 2 ( C ) Fehler (/* allgemeine obere Schranke */) Hinweis: mit C wird die Anzahl der Konzepte in C bezeichnet 10/15 Anmerkung Der Halving-Algorithmus ist i.a. nicht sehr effizient.... für bestimmte Konzeptklassen gibt es recht effiziente Verfahren, die im average case nur wenige Vorhersagefehler machen (/* bspw. Winnow nicht Thema dieser Vorlesung */) 10/16

9 zentraler Begriff zum Nachweis einer unteren Schranke... die Vapnik-Chervonenkis-Dimension... Maß für die strukturelle Vielfalt von Konzeptklassen 10/17 Beispiel X = R 2 C ist die Menge aller achsenparallelen Rechtecke Frage Welche Varianten gibt es, diese Punkte auf Konzepte aus C zu verteilen? es gibt kein Konzept, das die beiden äußeren, aber nicht den mittleren Punkt enthält... 10/18

10 Beispiel X = R 2 C ist die Menge aller achsenparallelen Rechtecke Frage Welche Varianten gibt es, diese Punkte auf Konzepte aus C zu verteilen? 10/19 Beispiel X = R 2 C ist die Menge aller achsenparallelen Rechtecke Frage Welche Varianten gibt es, diese Punkte auf Konzepte aus C zu verteilen? 10/20

11 Beispiel X = R 2 C ist die Menge aller achsenparallelen Rechtecke Frage Welche Varianten gibt es, diese Punkte auf Konzepte aus C zu verteilen? 10/21 Beispiel X = R 2 C ist die Menge aller achsenparallelen Rechtecke Frage Welche Varianten gibt es, diese Punkte auf Konzepte aus C zu verteilen? es gibt kein Konzept, das die beiden äußeren, aber nicht einen der mittleren Punkte enthält... 10/22

12 Beispiel X = R 2 C ist die Menge aller achsenparallelen Rechtecke Frage Welche Varianten gibt es, diese Punkte auf Konzepte aus C zu verteilen?... jede Variante ist möglich 10/23 Beispiel X = R 2 C ist die Menge aller achsenparallelen Rechtecke Frage Welche Varianten gibt es, diese Punkte auf Konzepte aus C zu verteilen?... nicht jede Variante ist möglich 10/24

13 Hilfsbegriff es seien X ein Lernbereich und C eine Konzeptklasse über X Eine endliche Teilmenge von E X ist zerlegbar durch die Konzeptklasse C, falls es zu jeder Zerlegung E = E 1 E 2 mit E 1 E 2 = ein Konzept c C gibt, so daß gilt: E 1 c und E 2 co-c. mit anderen Worten... für alle b E gilt: E 1 (b) = 1 oder E 2 (b) = 1 wenn E 1 (b) = 1, so ist E 2 (b) = 0 wenn E 1 (b) = 0, so ist E 2 (b) = 1 wenn E 1 (b) = 1, so ist c(b) = 1 wenn E 2 (b) = 1, so ist c(b) = 0 10/25 Hilfsbegriff es seien X ein Lernbereich und C eine Konzeptklasse über X Eine endliche Teilmenge von E X ist zerlegbar durch die Konzeptklasse C, falls es zu jeder Zerlegung E = E 1 E 2 mit E 1 E 2 = ein Konzept c C gibt, so daß gilt: E 1 c und E 2 co-c. C: achsenparallele Rechtecke E = { b 1,b 2,b 3 } b 1 b 3 E 1 = { b 1,b 2 } E 2 = { b 3 } b 2... E is shattered by C 10/26

14 Begriff: Vapnik-Chervonenkis-Dimension es seien X ein Lernbereich und C eine Konzeptklasse über X Die VC-Dimension von C ist die Kardinalität der größten endlichen Teilmenge E von X, die durch C zerlegbar ist. Falls beliebig große endliche Teilmengen E von X durch C zerlegbar sind, so ist die VC-Dimension der Konzeptklasse C unendlich. 10/27 Grundlegendes Resultat Es sei C eine endliche Konzeptklasse mit VC-Dimension d. Dann gilt: d opt(c) log 2 ( C ).... das best mögliche Online-Lernverfahren für C macht im worst case mindestens d und höchstens log 2 ( C ) Fehler 10/28

15 opt(c) log 2 ( C ): siehe Analyse von S halving d opt(c): wähle unklassifizierte Beispiele b 1,..., b d, so daß die Menge E = { b 1,...,b d } durch C zerlegbar ist wähle c mit: Beispiel b 1 h 0 (b 1 ) Beispiel b 2 Online h 1 (b 2 ) Lernverfahren Beispiel b d b d-1 (b d ) c(b 1 )=1-h 0 (b 1 ) c(b 2 )=1-h 1 (b 2 )... c(b d )=1-h d-1 (b d )... es gibt ein solches c C; der Student macht mindestens d Vorhersagefehler beim Lernen von c auf der Beispielfolge σ = b 1,..., b d,... 10/29

Grundlagen des Maschinellen Lernens Kapitel 4: PAC Lernen

Grundlagen des Maschinellen Lernens Kapitel 4: PAC Lernen Kapitel 4:. Motivation 2. Lernmodelle Teil I 2.. Lernen im Limes 2.2. Fallstudie: Lernen von Patternsprachen 3. Lernverfahren in anderen Domänen 3.. Automatensynthese 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Aufgabe 1: IS-Kurve Leiten Sie graphisch mit Hilfe

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Additive Modelle Katharina Morik Informatik LS 8 Technische Universität Dortmund 7.1.2014 1 von 34 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 34 Ausgangspunkt:

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Logische Folgerung. Definition 2.11

Logische Folgerung. Definition 2.11 Logische Folgerung Definition 2.11 Sei 2A eine aussagenlogische Formel und F eine endliche Menge aussagenlogischer Formeln aus A. heißt logische Folgerung von F genau dann, wenn I ( ) =1für jedes Modell

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

SUDOKU - Strategien zur Lösung

SUDOKU - Strategien zur Lösung SUDOKU Strategien v. /00 SUDOKU - Strategien zur Lösung. Naked Single (Eindeutiger Wert)? "Es gibt nur einen einzigen Wert, der hier stehen kann". Sind alle anderen Werte bis auf einen für eine Zelle unmöglich,

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Unterscheidung: Workflowsystem vs. Informationssystem

Unterscheidung: Workflowsystem vs. Informationssystem 1. Vorwort 1.1. Gemeinsamkeiten Unterscheidung: Workflowsystem vs. Die Überschneidungsfläche zwischen Workflowsystem und ist die Domäne, also dass es darum geht, Varianten eines Dokuments schrittweise

Mehr

Timed Automata (Zeitbeschriftete Automaten) [R. Alur: Timed Automata]

Timed Automata (Zeitbeschriftete Automaten) [R. Alur: Timed Automata] Timed Automata (Zeitbeschriftete Automaten) [R. Alur: Timed Automata] Formalismus zur Behandlung von Dense Time unterstützt durch Verifikationstools, z.b. UPPAAL Transitionssysteme (Automaten) mit Zeitbeschriftungen

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Serienbrief aus Outlook heraus Schritt 1 Zuerst sollten Sie die Kontakte einblenden, damit Ihnen der Seriendruck zur Verfügung steht. Schritt 2 Danach wählen Sie bitte Gerhard Grünholz 1 Schritt 3 Es öffnet

Mehr

TREND SEARCH VISUALISIERUNG. von Ricardo Gantschew btk Berlin Dozent / Till Nagel

TREND SEARCH VISUALISIERUNG. von Ricardo Gantschew btk Berlin Dozent / Till Nagel von Ricardo Gantschew btk Berlin Dozent / Till Nagel 01 IDEE Einige kennen vielleicht GoogleTrends. Hierbei handelt es sich um eine Anwendung, bei der man verschiedenste Begriffe auf die Häufigkeit ihrer

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Algorithms for Regression and Classification

Algorithms for Regression and Classification Fakultät für Informatik Effiziente Algorithmen und Komplexitätstheorie Algorithms for Regression and Classification Robust Regression and Genetic Association Studies Robin Nunkesser Fakultät für Informatik

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Einführung in Petri-Netze

Einführung in Petri-Netze Einführung in Petri-Netze Modellierung und Analysen von Workflows Vertretung: Stephan Mennicke, Reaktive Systeme SS 2012 Organisatorisches In der 24. KW (11.06. 17.06.): Vorlesung am Dienstag, 15:00 Uhr

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Lösungen zur Vorrundenprüfung 2006

Lösungen zur Vorrundenprüfung 2006 Lösungen zur Vorrundenprüfung 2006 Zuerst einige Bemerkungen zum Punkteschema. Eine vollständige und korrekte Lösung einer Aufgabe ist jeweils 7 Punkte wert. Für komplette Lösungen mit kleineren Fehlern

Mehr

Kompetitive Analysen von Online-Algorithmen

Kompetitive Analysen von Online-Algorithmen Kompetitive Analysen von Online-Algorithmen jonas echterhoff 16. Juli 004 1 Einführung 1.1 Terminologie Online-Algorithmen sind Algorithmen, die Probleme lösen sollen, bei denen Entscheidungen getroffen

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN 2005-2010 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Schmerz warnt uns! Der Kopfschmerztyp Migräne. Was sind typische Merkmale des Migränekopfschmerzes?

Schmerz warnt uns! Der Kopfschmerztyp Migräne. Was sind typische Merkmale des Migränekopfschmerzes? Check it out! - Trainingswoche 1 - Schmerz warnt uns! Schmerz hat eine Warnfunktion! Durch Schmerz bemerkst du, dass mit deinem Körper etwas nicht in Ordnung ist, dass du dich zum Beispiel verletzt hast

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

ARBEITSPAPIERE DER NORDAKADEMIE

ARBEITSPAPIERE DER NORDAKADEMIE ARBEITSPAPIERE DER NORDAKADEMIE ISSN 1860-0360 Nr. 2008-05 Ausbildungscontrolling: Zur Effizienz dualer Studiengänge Dietger Mainz September 2008 Eine elektronische Version dieses Arbeitspapiers ist verfügbar

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Grundlagen des Maschinellen Lernens Kap. 1: Einleitung

Grundlagen des Maschinellen Lernens Kap. 1: Einleitung Gliederung der Vorlesung 1. Einleitung Einführende Beispiele Grundszenario des induktiven Lernens 2. Induktives Lernen von formalen Sprachen Patterns & Patternsprachen Lernproblem und Lösung Szenario des

Mehr

Produktionsplanung und steuerung (SS 2011)

Produktionsplanung und steuerung (SS 2011) Produktionsplanung und steuerung (SS 2011) Teil 1 Sie arbeiten seit 6 Monaten als Wirtschaftsingenieur in einem mittelständischen Unternehmen in Mittelhessen. Das Unternehmen Möbel-Meier liefert die Büroaustattung

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Qualität und Verlässlichkeit Das verstehen die Deutschen unter Geschäftsmoral!

Qualität und Verlässlichkeit Das verstehen die Deutschen unter Geschäftsmoral! Beitrag: 1:43 Minuten Anmoderationsvorschlag: Unseriöse Internetanbieter, falsch deklarierte Lebensmittel oder die jüngsten ADAC-Skandale. Solche Fälle mit einer doch eher fragwürdigen Geschäftsmoral gibt

Mehr

Empfehlung für die Durchführung von Leistungsnachweisen in der Sprechfunkausbildung

Empfehlung für die Durchführung von Leistungsnachweisen in der Sprechfunkausbildung N:\Web\Sprechfunkausbildung\Teil2\Sprechfunkausbildung_Teil2.pdf Empfehlung für die Durchführung von Leistungsnachweisen in der Sprechfunkausbildung Teil II Anleitung zur Tabelle für die Lehrgangsbewertung

Mehr

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah Lernmaterial für die Fernuni Hagen effizient und prüfungsnah www.schema-f-hagen.de Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem

Mehr

Seminar über Software Model Checking Vortrag zum Thema Predicate Abstraction

Seminar über Software Model Checking Vortrag zum Thema Predicate Abstraction Seminar über Software Model Checking Vortrag zum Thema Predicate Abstraction Robert Mattmüller Betreuer: Prof. Dr. Stefan Leue Wintersemester 2003/2004 1. Dezember 2003 1 Software Model Checking Predicate

Mehr

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7.

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. Semestralklausur zur Vorlesung Web Mining Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. 2004 Name: Vorname: Matrikelnummer: Fachrichtung: Punkte: (1).... (2)....

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Kleiner Satz von Fermat

Kleiner Satz von Fermat Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt

Mehr

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer Algorithmen und Datenstrukturen Große Übung vom 29.10.09 Nils Schweer Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/courses/ws0910/aud/index.html Kleine Übungen

Mehr

Übung Theoretische Grundlagen Nachtrag zur Vorlesung Dirk Achenbach 21.11.2013

Übung Theoretische Grundlagen Nachtrag zur Vorlesung Dirk Achenbach 21.11.2013 Übung Theoretische Grundlagen Nachtrag zur Vorlesung Dirk Achenbach 21.11.2013 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory of the

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 6

Mehr

Netzwerkversion PVG.view

Netzwerkversion PVG.view Netzwerkversion PVG.view Installationshinweise Einführung Die Programm PVG.view kann zur Netzwerkversion erweitert werden. Die Erweiterung ermöglicht, bestehende oder neu erworbene Programmlizenzen im

Mehr

Mathematische Maschinen

Mathematische Maschinen Mathematische Maschinen Ziel: Entwicklung eines allgemeinen Schemas zur Beschreibung von (mathematischen) Maschinen zur Ausführung von Algorithmen (hier: (partiellen) Berechnungsverfahren). Mathematische

Mehr

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung)

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Epertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Im Folgenden wird mit Hilfe des Programms EXEL, Version 007, der Firma Microsoft gearbeitet. Die meisten

Mehr

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 schlechte@zib.de Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick

Mehr

Systeme 1. Kapitel 6. Nebenläufigkeit und wechselseitiger Ausschluss

Systeme 1. Kapitel 6. Nebenläufigkeit und wechselseitiger Ausschluss Systeme 1 Kapitel 6 Nebenläufigkeit und wechselseitiger Ausschluss Threads Die Adressräume verschiedener Prozesse sind getrennt und geschützt gegen den Zugriff anderer Prozesse. Threads sind leichtgewichtige

Mehr

Vorab möchte ich Ihnen aber gerne noch ein paar allgemeine Informationen zum praktischen Teil der AEVO-Prüfung weitergeben.

Vorab möchte ich Ihnen aber gerne noch ein paar allgemeine Informationen zum praktischen Teil der AEVO-Prüfung weitergeben. SO FINDE ICH DIE RICHTIGE UNTERWEISUNG FÜR DIE ADA-PRÜFUNG Hilfen & Tipps für die Auswahl & Durchführung der Unterweisungsprobe Sehr geehrte Damen und Herren, ich freue mich, dass ich Ihnen in diesem kostenlosen

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Leseprobe. Wolfgang Ertel. Angewandte Kryptographie. ISBN (Buch): 978-3-446-42756-3. ISBN (E-Book): 978-3-446-43196-6

Leseprobe. Wolfgang Ertel. Angewandte Kryptographie. ISBN (Buch): 978-3-446-42756-3. ISBN (E-Book): 978-3-446-43196-6 Leseprobe Wolfgang Ertel Angewandte Kryptographie ISBN (Buch): 978-3-446-42756-3 ISBN (E-Book): 978-3-446-43196-6 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-42756-3

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Technische Universität Kaiserslautern Prof Dr Sven O Krumke Dr Sabine Büttner MSc Marco Natale Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Aufgabe 1 (Konvertieren

Mehr

Professionelle Seminare im Bereich MS-Office. Serienbrief aus Outlook heraus

Professionelle Seminare im Bereich MS-Office. Serienbrief aus Outlook heraus Serienbrief aus Outlook heraus Schritt 1 Zuerst sollten Sie die Kontakte einblenden, damit Ihnen der Seriendruck zur Verfügung steht. Schritt 2 Danach wählen Sie bitte Schritt 3 Es öffnet sich das folgende

Mehr

Zwischenmenschliche Beziehungen erfolgreich gestalten

Zwischenmenschliche Beziehungen erfolgreich gestalten Vera F. Birkenbihl KOMMUNIKATIONS- TRAINING Zwischenmenschliche Beziehungen erfolgreich gestalten Inhalt Vorwort.............................. 7 Teil I: Theorie 1. Das Selbstwertgefühl (SWG).................

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, 2001.

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Klausur für Studiengänge INF und IST

Klausur für Studiengänge INF und IST Familienname: Matrikelnummer: Studiengang: (bitte ankreuzen) INF IST MED Vorname: Email-Adresse: Immatrikulationsjahr: Klausur für Studiengänge INF und IST sowie Leistungsschein für Studiengang Medieninformatik

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4. Kapitel 4: Schaltungen mit Delays Seite 1

Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4. Kapitel 4: Schaltungen mit Delays Seite 1 Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4 Kapitel 4: Schaltungen mit Delays Seite 1 Schaltungen mit Delays Inhaltsverzeichnis 4.1 Einführung 4.2 Addierwerke

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Folie 1: Fehlerbaumanalyse (FTA) Kurzbeschreibung und Ziel Die Fehlerbaumanalyse im Englischen als Fault Tree Analysis bezeichnet und mit FTA

Folie 1: Fehlerbaumanalyse (FTA) Kurzbeschreibung und Ziel Die Fehlerbaumanalyse im Englischen als Fault Tree Analysis bezeichnet und mit FTA Folie 1: Fehlerbaumanalyse (FTA) Kurzbeschreibung und Ziel Die Fehlerbaumanalyse im Englischen als Fault Tree Analysis bezeichnet und mit FTA abgekürzt dient der systematischen Untersuchung von Komponenten

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren)

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren) Was bisher geschah Wissensrepräsentation und -verarbeitung in Logiken klassische Aussagenlogik klassische Prädikatenlogik: Wiederholung Syntax, Semantik Normalformen: bereinigt Pränex Skolem ( -Eliminierung)

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Einführung in die Fuzzy Logic

Einführung in die Fuzzy Logic Einführung in die Fuzzy Logic Entwickelt von L. Zadeh in den 60er Jahren Benutzt unscharfe (fuzzy) Begriffe und linguistische Variablen Im Gegensatz zur Booleschen Logik {0,} wird das ganze Intervall [0,]

Mehr

1 Part-of-Speech Tagging

1 Part-of-Speech Tagging 2. Übung zur Vorlesung NLP Analyse des Wissensrohstoes Text im Sommersemester 2008 Dr. Andreas Hotho, Dipl.-Inform. Dominik Benz, Wi.-Inf. Beate Krause 28. Mai 2008 1 Part-of-Speech Tagging 1.1 Grundlagen

Mehr

Mailen... 20 Gruppe erfassen... 20 Gruppe bearbeiten... 21 Vereinfachtes Auswählen der Mitglieder... 22

Mailen... 20 Gruppe erfassen... 20 Gruppe bearbeiten... 21 Vereinfachtes Auswählen der Mitglieder... 22 Handbuch Diese Homepage wurde so gestaltet, dass Benutzer und auch Administratoren, die Daten an einem Ort haben und sie von überall bearbeiten und einsehen können. Zusätzlich ermöglicht die Homepage eine

Mehr