Identifizierbarkeit von Sprachen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Identifizierbarkeit von Sprachen"

Transkript

1 FRIEDRICH SCHILLER UNIVERSITÄT JENA Fkultät für Mthemtik und Informtik INSTITUT für INFORMATIK VORLESUNG IM WINTERSEMESTER STOCHASTISCHE GRAMMATIKMODELLE Ernst Günter Schukt-Tlmzzini 06. Quelle: /home/schukt/ltex/folien/sprchmodelle-00/ssm-06.tex 30. Septemer 2013 Identifizierrkeit von Sprchen 1 Identifizierrkeit von Sprchen Positiveispielsequenz O + = (w t + t IN) wt + L Negtiveispielsequenz O = (w t t IN) wt L Beispielsequenz O = ((w t +,w t ) t IN) w t +,w t wie oen O + vollständig zgl. L, flls lle w L in O + enthlten sind. O vollständig zgl. L, flls lle w L in O + enthlten sind und lle w L in O enthlten sind. O + strukturell vollständig zgl. G, flls jede Produktion von G zur Aleitung mindestens eines w O + enötigt wird. Positivstichproe / Stichproe: O τ + = (w t + t τ) zw. O τ = ((w t +,w t ) t τ) Grmmtik G τ komptiel mit O τ, flls für lle t τ gilt: Identifizierrkeit von Sprchen Knonisch-definite Grmmtiken Quotientenildung Formle Differentition k-rest-äquivlenz Lernen im Vernd mit Orkel Lernen von CFGs mit strukturierten Beispielen Beispiel: Chromosomenkonturen w t + L(G τ ) und w t L(G τ ) Die Klsse G von Grmmtiken heißt zulässig, flls G zählr ist und die Aussge w L(G) für lle w VT, G G entscheidr ist. Identifizierrkeit von Sprchen 2 DEFINITION: G heißt schließlich identifizierr (identifile in the limit), flls es ein Lernverfhren A git, so dß für lle G G und lle zgl. L(G) vollständigen Beispielsequenzen O gilt: Es git ein τ IN mit G t = G τ für lle t τ L(G τ ) = L(G) woei G t = A(O t,g) die im t-ten Schritt us O gelernte Grmmtik ist. DEFINITION: Ein Lernverfhren A pproximiert die Grmmtik G, flls gilt: Für lle w L(G) ex. τ IN mit t τ = w L(G t ) Für lle G mit L(G )\L(G) ex. τ IN mit BEMERKUNGEN: t τ = G t G 1. A ist u.u. ußerstnde, ei G τ zu hlten! 2. A pproximiert L ˆ= A weist schließlich lle nichtkomptilen G zurück Identifizierrkeit von Sprchen 3 Lnguge Identifiction in the Limit (Gold 1967) zählre Klsse G von Grmmtiken inkrementelle Beispielpräsenttion für G G je ein positives & ein negtives Beispiel für L(G) nur ein positives Beispiel für L(G) grmmtisches Lernverfhren A wählt einen Kndidten G t G uf Grundlge der isherigen Lerneispiele SATZ 1: Sei G eine zulässige Klsse von Grmmtiken. Es git ein Lernverfhren A, so dß jede Sprche L(G), G G schließlich identifizierr ist ufgrund einer vollständigen Sequenz positiver und negtiver Beispiele. SATZ 2: Enthlte G Grmmtiken für lle endlichen Sprchen sowie mindestens eine unendliche Sprche L. Dnn ist L nicht schließlich identifizierr llein ufgrund positiver Beispiele. Korollr: Die Klsse G der regulären Sprchen ist nicht schließlich identifizierr llein ufgrund positiver Beispiele. SATZ 3: Sei G eine zulässige Klsse von Grmmtiken. Dnn git es ein Lernverfhren A, so dß lle G G ufgrund einer vollständigen Sequenz positiver Beispiele pproximiert werden können.

2 Knonisch-definite Grmmtiken 4 GRUNDANNAHMEN: die gesuchte Grmmtik G ist regulär O = (O +,O ) ist eine endliche Beispielmenge O + ist ezüglich G strukturell vollständig O + ist mit der Quellgrmmtik G komptiel Knonisch-definite Grmmtik G K für O + : G = (V N,V T,R,S) V T = {v v kommt in einer Kette w O + vor} Für jedes w O +, w = w 1,...,w n erweitere R um S w1 Zw,1 Zw,1 w2 Zw,2 Zw,2 w3 Zw, Zw,n 2 wn 1 Zw,n 1 Zw,n 1 wn S Zw,1 Zw,2 Zw,n 2 Zw,n 1 w1 w2 wn V N = {S} {Z w,i w O + und 1 i < w } Die knonisch-definite Grmmtik ist komptiel: L(G K ) = O + und L(G K ) O PROBLEM: umfngreiche Lerndten gewltiger Zustndsrum Quotientenildung 5 Quotientenildung Knonisch-definite Grmmtik G K mit V N = {S,Z 1,...,Z n } Prtition {B 0,B 1,...,B r } =: V N der Nichtterminle us V N Der Quotient von G K nch {B 0,B 1,...,B r }: G Q = (V N,V T,R Q,B 0 ) Strtsymol ist o.b.d.a. B 0 mit S B 0 Es ist B i B j R Q flls ex. Z,Z V N mit Z Z und Z B i, Z B j Es ist B i R Q flls ex. Z, V N mit Z und Z B i Sei O + strukturell vollständige Menge von Positiveispielen für L(G) und G K die knonisch-definite Grmmtik für O +. Dnn git es eine Prtition V N der G K-Nichtterminle, so dß für den Quotienten G Q von G K nch V N gilt: L(G Q ) = L(G) Sei G Q ein elieiger Quotient der knonisch-definiten Grmmtik G K von O +. Dnn gilt L(G Q ) O + Quotientenildung 6 Kndidtenmenge ˆ= lle Quotienten von G K G K = {G 1,G 2,...,G η(k) = G K } Aufsteigende Ordnung nch der Anzhl der Nichtterminle von G i G K = η(k) = endlich; dei ist k := #(Nichtterminle von GK) n ( ) n η(0) = 1 und η(n+1) = η(j) j Mindestens ein G G K erfüllt die Komptiilitätsedingung O + L(G) j=0 O L(G) Sei O = (O +, ). Alle Grmmtiken in G K sind potentielle Lösungen des Lernprolems. Sei O = (O +,O ). Die potentiellen Lösungen des Lernprolems ilden eine nichtleere Teilmenge G G K der Klsse ller G K -Quotienten. PROBLEM: G K wächst exponentiell mit G K, d.h. mit O +! Formle Differentition 7 Formle Differentition Sei M ein Menge von Zeichenketten üer V T und V T M = M BEISPIEL: M = {01, 100, 111, 0010} = {w w M} 0 M = {1,010} 1 M = {00,11} Zweite & höhere Aleitungen: M = ( M) und 1... n M = n ( 1... n 1 M) Knonische Aleitungsgrmmtik von O + G A = (V N,V T,R,S) V T = Menge ller Zeichen in O + V N = {U 1,...,U r } = Menge ller O + -Aleitungen ( ) S = U 1 = $ O + U i U j R flls U i = U j U i R flls $ U i

3 Formle Differentition 8 Formle Differentition 9 Sei G eine reguläre Grmmtik und O = (O +,O ) komptiel zu G sowie O + strukturell vollständig zgl. G. Sei ferner G A die knonische Aleitungsgrmmtik für O + und G A die Menge ller Quotientengrmmtiken von G A. Dnn gilt für lle G G A BEISPIEL (Fortsetzung I): Knonisch-definite Grmmtik GK: S 1 A A 0 A A 1 S 1 B B 1 B B 1 L(G ) O + und für wenigstens ein G G A uch L(G ) O Quotientengrmmtik G zur Prtition S = {{S},{A,A },{B,B }} = {S,A,B}: S 1 A A 0 A A 1 S 1 B B 1 B B 1 Ds ergit G = G mit L(G ) = L(G) = 1(0 1 )1. BEMERKUNGEN: G A ist i.. weniger umfngreich ls G K. Es gilt nicht notwendigerweise G G A! Quotientengrmmtik G zur Prtition S = {{S},{A,B },{A,B }} = {S,S,S }: S 1 S S 0 S S 1 (S 1 S ) S 1 S (S 1) Es gilt L(G ) = 1(0 1)1 = O+. BEISPIEL: Grmmtik G 2 mit V N = {S,A,B} und V T = {0,1} und den PS-Regeln S 1 A 1 B A 0 A 1 B 1 B 1 und den Positiveispielen O + = {101,111}. Wie sehen G K, G A und G A us? Quotientengrmmtik G zur Prtition S = {{S,A,B },{A,B }} = {S,S }: S 1 S S 0 S S 1 (S 1 S) S 1 S (S 1) Es gilt L(G ) = 1 (0 1)1. Quotientengrmmtik G zur Prtition S = {{S},{A,B,A,B }} = {S,S }: S 1 S S 0 S S 1 (S 1 S ) S 1 S (S 1) Es gilt L(G ) = 1{0,1} 1. Formle Differentition 10 BEISPIEL (Fortsetzung II): Aleitungen: Knonische Aleitungsgrmmtik GA: Es gilt L(GA) = 1(0 1)1 L(G). Quotientenildung: S = U$ = = {101,111} U0 = 0O+ = A = U1 = 1O+ = {01,11} B = U10 = 0U1 = {1} U11 = 1U1 = {1} C = U111 = 1U11 = {$} S 1 A 1S = A, 0S = A 0 B 0A = B A 1 B 1A = B (B 1 C) 0B =, 1B = C B 1 1B = C, $ C {S,A} {S,B} {A,B} {S,A,B} S 1 S S 1 A S 1 A S 1 S S 0 B A 0 S A 0 A S 0 S S 1 B A 1 S A 1 A S 1 S B 1 S 1 A 1 S 1 1 (0 1)1 (1{0,1}) 1 1{0,1} 1 {0,1} 1 unvergleichr unvergleichr L(G) L(G) 1101? 10101? 1011? 01? 1001! 1001! Nur die Grmmtik GA selst ist komptiel mit (O+, L(G)). k-rest-äquivlenz 11 k-reste Für M VT, z V T und k IN definiere den k-rest k-reste-äquivlenz k zm = {w V T zw M und w k} Seien U w = w O + und U v = v O + zwei Zustände der knonischen Aleitungsgrmmtik G A von O +. Die eiden Zustände heißen k-rest-äquivlent, flls gilt: BEMERKUNG: k wo + = k vo + Der Quotient von G A zgl. dieser Äquivlenzreltion heißt G R ; G R G A Die Menge ller Quotienten von G R enthält u.u. keine komptilen Grmmtiken! BEISPIEL: O + = {01,100,111,0010} w k 4 k = 3 k = 2 k = 1 U0 $ O+ {01, 100, 111} {01} U1 0 {1, 010} {1, 010} {1} {1} U2 1 {00, 11} {00, 11} {00, 11} U3 00 {10} {10} {10} U4 01 {$} {$} {$} {$} U5 10 {0} {0} {0} {0} U6 11 {1} {1} {1} {1}

4 Lernen im Vernd mit Orkel 12 Lernen mit Orkel Der Quotientenvernd einer Grmmtik Sei O + Menge positiver Lerneispiele für die reguläre Quellgrmmtik G und G K die Menge der Quotienten von G K (O + ). Definiere die Reltion G 1 G 2 gdw. (Prtition von G1 ist feiner ls Prtition von G2) Dnn ist eine Hlordnung und (G K, ) ildet einen Vernd. Es gilt G 1 G 2 = L(G 1 ) L(G 2 ) Po s Lernverfhren: (1) Wähle zwei -minimle Grmmtiken G 1, G 2. (ENDE, flls Vernd nur noch einen Kndidten enthält) (2) Teste die Äquivlenz L(G 1 ) = L(G 2 ) Flls JA, eliminiere G 1 und gehe nch (1). (3) Konstruiere die Differenz G 12 = G 1 G 2, welche Ketten us L(G 1 )\L(G 2 ) erzeugt. Wähle ein w L(G 12 ) und efrge ds Orkel nch w L(G). Flls JA, eliminiere G 2, sonst eliminiere G 1. Gehe nch (1). Sei G eine Klsse regulärer Grmmtiken. Jedes G G ist schließlich identifizierr durch eine strukturell vollständige Menge O + positiver Lerndten, wenn ein Orkel verfügr ist. Lernen von CFGs mit strukturierten Beispielen 13 Lernen kontextfreier Grmmtiken Die CFG G heißt vollständig reduziert, wenn gilt: R enthält keine Regeln A $ mit A S R enthält keine Regeln A B mit A,B V N Für jedes α (V N V T ) mit S α existiert ein w V T mit α w Jede Regel us R wird von mindestens einem w L(G) genutzt Die Klmmergrmmtik [G] zu G Erweitere V T um die (neuen) Symole [ und ]. Ersetze jede Regel A α durch A [α]. Strukturierte positive Beispielsequenzen: (nlog: O, vollständige Sequenzen,...) O + = (w t w t L([G]) und t IN) Menge der Links- und Rechtsterminle von η zgl. G L t (η) = { V T η α oder (η Aβ mit L t (β))} R t (η) = { V T η α oder (η βa mit R t (β))} (d.h. Lt(η) flls in einer Stzform einer Aleitung us η ds m weitesten links stehende Terminlsymol ist; η,α,β (VN VT) ) Lernen von CFGs mit strukturierten Beispielen 14 Algorithmus von CRESPI-REGHIZZI BEISPIEL: Arithmetische Ausdrücke üer V T = {,+,(,)} (0) Beispiele O 1 + = {w 1 } mit w 1 = [[]+[[]+[]]] (1) Loklisiere erstes inneres Klmmerpr; erzeuge Produktion N (2) Nmensgeung für ds neue Nichtterminl: N L t (α) R t (α) (3) Sustituiere neues Nichtterminl in ds Lerneispiel (1 ) Erzeuge N + (2 ) Benenne N + + w 1 = [ +[ + ]] (3 ) Sustituiere w 1 = [ ] (1 ) Erzeuge N (2 ) Benenne N + + Es ergit sich nch Umtufen die Grmmtik G 1 : S B B A+A B A+B A B + + A Es ist L(G 1 ) = {++,+++,...} und O 1 + L(G 1 ) Lernen von CFGs mit strukturierten Beispielen 15 Zweites Lerneispiel, O+ 2 = {w 1,w 2 } w 2 = [[([[]+[]])]+[]] Folgende Produktionsregel werden generiert (G 2 ): S D D +( + D C +A C ( ) C (B) B + + B A+A A A Dnn gilt die Komptiilität {w 2 } L(G 2) und für die Vereinigungsgrmmtik gilt L(G 2 ) = L(G 1 G 2) L(G 1 ) L(G 2) Mit den zusätzlichen Beispielen w3 = ((++))++(+) w7 = (+)+(+)+ w4 = (+(+)+) w8 = ++(+) w5 = ((+)+((+)+)) w9 = (+(+)) w6 = +((+)+) w10 = +(+)+(+)+(+) ergit sich Grmmtik G 10, die lle* rithmet. Ausdrücke enthält: S B C D E F F C +E C +C C +F F +( +) E A+C A+E A+F E + + D C +A C +B C +D D +( + C (B) (C) (E) (F) C ( ) B A+A A+B A+D B + + A A (*) die Ausdrücke, (), (()) etc. lssen sich durch die Beispiele w11 =, w12 = () nlernen

5 Lernen von CFGs mit strukturierten Beispielen 16 Der Crespi-Reghizzi-Algorithmus erzeugt freie Opertorvorrnggrmmtiken Alle rechten Seiten von Produktionen sind verschieden. Alle rechten Seiten eines Nichtterminls esitzen dieselen Rechts- und Linksterminle. Zwei verschiedene Nichtterminle esitzen nicht dssele L t R t -Pr. Der Crespi-Reghizzi-Algorithmus erzeugt eine minimle hinsichtlich der Anzhl der Nichtterminle und Produktionsregeln freie Opertorvorrnggrmmtik, die mit der gegeenen (positiven) Beispielmenge verträglich ist. Beispiel: Chromosomenkonturen 17 Beispiel: Chromosomenkonturen Formkodierung der Kontursegmente Außenogen c Innenogen (eng) d Innenogen (weit) gerdes Segment Kerngrmmtik für die Kontureschreiung c d d c S BB zwei Symmetriehälften B c ARM d ARM je zwei Chromosomenrme ARM??? us den Dten lernen!!! Strukturierte Beispiele für Chromosomenrme w 1 w 2 w 3 w 4 Gelernte Grmmtik = [[[[]]]] = [[[[]]]] = [[[[[]]]]] = [[[]]] ARM G G G F H F E F H E E

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Teil III. Grammatische Inferenz STOCHASTISCHE GRAMMATIKMODELLE. Grammatikinduktion Maschinelles Lernen einer Grammatik aus Beispielsätzen

Teil III. Grammatische Inferenz STOCHASTISCHE GRAMMATIKMODELLE. Grammatikinduktion Maschinelles Lernen einer Grammatik aus Beispielsätzen STOCHASTISCHE GRAMMATIKMODELLE Vorlesung im Sommersemester 2017 Teil III Grammatische Inferenz Prof. E.G. Schukat-Talamazzini Stand: 6. März 2017 Grammatikinduktion Maschinelles Lernen einer Grammatik

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Teil V: Formale Sprachen

Teil V: Formale Sprachen Formle Sprchen Teil V: Formle Sprchen 1. Sprchen und Grmmtiken 2. Endliche Automten Frnz-Josef Rdermcher & Uwe Schöning, Fkultät für Ingeneurwissenschften und Informtik, Universität Ulm, 2008/09 Formle

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm Reguläre δ: Σ (Q Q Ω) Beispiel δ 0 δ 0 1 2 1 2 0 1 2 δ Formle Automt Reguläre Definition Ein nicht-deterministischer, endlicher Automt esteht us einer

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur Grundlgen der Theoretischen Infomtik SS 213 Institut für Informtik Prof. Dr. Ulrich Furch Dr. Mnfred Jckel Dr. Björn Pelzer Christin Schwrz Nchklusur Modul Grundlgen der Theoretischen Informtik 4IN118/INLP1

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Copyright, Page 1 of 5 Der Faktorraum

Copyright, Page 1 of 5 Der Faktorraum www.mthemtik-netz.de Copright, Pge of 5 Der Fktorrum Ein sehr wichtiges Konstrukt, welches üerll in der Mthemtik Verwendung findet, ist der Fktorrum, oft uch Quotientenrum gennnt. Dieser ist selst ein

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

Reguläre Ausdrücke, In12 G8

Reguläre Ausdrücke, In12 G8 Reguläre Ausdrücke, In2 G8 Beweise, dss A* unendlich viele Elemente esitzt. Hinweis: Indirekter Beweis R A = {0,} Bilde A 3, A 4 A = {,, c} Bilde A 2, A 3 A = {,, c} Gi die Menge ller Wörter der Länge

Mehr

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden.

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden. Aufgensmmlung GTI Hinweise. Dies ist eine Aufgensmmlung zum Lernen für die Klusur, keine Proeklusur. Die Zeitduer, die für die Lösung vorgesehen ist, ist lso nicht uf drei Stunden normiert. Für die Klusur

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle ysteme, utomten, Prozesse 2010 M rockschmidt, F Emmes, C Fuhs, C Otto, T tröder Hinweise: Die Husufgben sollen in Gruppen von je 2 tudierenden us dem gleichen Tutorium berbeitet

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Grundbegriffe der Informatik Aufgabenblatt 6

Grundbegriffe der Informatik Aufgabenblatt 6 Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 2015 Bltt 6 26.05.2015 Üungen zur Vorlesung Grundlgen der Mthemtik II Lösungsvorschlg 21. ) Ein Qudrt mit der Seitenlänge + und dmit dem

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 2011/12 Minimierung von DFAs Frge Wie können wir feststellen, o ein DFA M = (Z, Σ, δ, q 0,

Mehr

Karlsruher Institut für Technologie

Karlsruher Institut für Technologie Krlsruher Institut für Technologie Lehrstuhl für Progrmmierprdigmen Sprchtechnologie und Compiler WS 2010/2011 Dozent: Prof. Dr.-Ing. G. Snelting Üungsleiter: Mtthis Brun Lösung zu Üungsltt 1 Ausge: 18.04.2012

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Nico Döttling Dirk Achench Tois Nilges Vorlesung Theoretische Grundlgen der Informtik Üungsltt Nr. svorschlg Aufge (K) (4 Punkte): Semi-Thue-Systeme

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19 Inhalt 1 inführung 2 Automatentheorie und ormale prachen Grammatiken Reguläre prachen und endliche Automaten Kontextfreie prachen und Kellerautomaten Kontextsensitive und yp 0-prachen 3 Berechenbarkeitstheorie

Mehr

13. Quadratische Reste

13. Quadratische Reste ChrNelius: Zhlentheorie (SS 007) 3 Qudrtische Reste Wir ehndeln jetzt ei den Potenzresten den Sezilfll m und führen die folgende Begriffsildung ein: (3) DEF: Seien n und teilerfremd heißt qudrtischer Rest

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

Übung Grundbegriffe der Informatik

Übung Grundbegriffe der Informatik Üung Grundegriffe der Informtik 11. Üung Krlsruher Institut für Technologie Mtthis Jnke, Geäude 50.34, Rum 249 emil: mtthis.jnke ät kit.edu Mtthis Schulz, Geäude 50.34, Rum 247 emil: schulz ät ir.uk.de

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA Dnk Vorleung Grundlgen der Theoretichen Informtik / Einführung in die Theoretiche Informtik I Bernhrd Beckert Diee Vorleungmterilien ieren gnz weentlich uf den Folien zu den Vorleungen von Ktrin Erk (gehlten

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

DEA1 Deterministische Version

DEA1 Deterministische Version Endliche Automten 4 Deterministische endliche Automten Zu dem nichtdeterministischen Automten EA git es eine deterministische Version. EA Akzeptor für Wörter üer X = { } mit mindestens einem führenden.

Mehr

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort Einführung in ie Progrmmierung Vorlesung 4: Topologil Sort : Hintergrun Bertrn Meer Letzte Üerreitung 3. Jnur 4 3 Topologil sort 4 Prouziere eine zu einer gegeenen Prtiellen Ornung komptile Vollstänige

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung Technische Universität München Sommer 2016 Prof. J. Esprz / Dr. M. Luttenerger, S. Sickert Lösung Einführung in die theoretische Informtik Klusur Bechten Sie: Soweit nicht nders ngegeen, ist stets eine

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

Was bisher geschah: Formale Sprachen

Was bisher geschah: Formale Sprachen Was isher geschah: Formale Sprachen Alphaet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen reguläre Ausdrücke: Syntax, Semantik, Äquivalenz Wortersetzungssysteme Wortersetzungsregeln

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ).

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Technische Informatik 2

Technische Informatik 2 TiEl-F Sommersemester 24 Technische Informtik 2 (Vorlesungsnummer 2625) 23--- TiEl-F Prof. Dr.-Ing. Jürgen Doneit Zimmer E29 Tel.:73 54 455 doneit@fh-heilronn.de 23--- TiEl-F35 Digitltechnik 23--3- . Digitlschltungen,

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ. x Σ.x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ). F3

Mehr

Übungsblatt 1. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 1. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informtik Lehrstuhl Prof. Dr. D. Wgner Üungsltt Vorlesung Theoretische Grundlgen der Informtik im WS 78 Ausge 9. Oktoer 27 Age 7. Novemer 27, : Uhr (im Ksten im UG von Geäude

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlgen der Theoretischen Informtik / Einführung in die Theoretische Informtik I Bernhrd Beckert Institut für Informtik Sommersemester 2007 B. Beckert Grundlgen d. Theoretischen Informtik:

Mehr

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet Der endliche Automt Modell: Eingend rechtsseitig unegrenzt F F F F F F F F F F F F F F Lesekopf S 1 Definition: Ein endlicher Automt ist ein 5-Tupel A = ( Σ;S;F;s 0 ; ϕ ) Dei ist Σ= {e 1;e 2...e n} Ds

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Endliche Automaten. Prof. Dr. W. Vogler. Sommersemester 2007

Endliche Automaten. Prof. Dr. W. Vogler. Sommersemester 2007 Endliche Automten Prof. Dr. W. Vogler Sommersemester 2007 1 INHALTSVERZEICHNIS i Inhltsverzeichnis 1 Wörter und Monoide 1 2 Endliche Automten 4 3 Anwendung: Diophntische Gleichungen 9 4 Minimierung endlicher

Mehr

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006 1 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte Modellierung,

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5.1 Linere Ahängigeit/Unhängigeit von Vetoren Eine esondere Rolle in der nlytischen Geometrie

Mehr

Formale Techniken in der Software-Entwicklung: Reaktive Systeme

Formale Techniken in der Software-Entwicklung: Reaktive Systeme Formle Techniken in der Softwre-Entwicklung: Rektive Systeme Christin Prehofer LMU München uf Bsis von Mterilien von Mrtin Wirsing SS 2012 C. Prehofer: Formle Techniken in der Softwre-Entwicklung: Rektive

Mehr

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten Fkultät IV Deprtment Mthemtik Lehrstuhl für Mthemtische Logik und Theoretische Informtik Prof. Dr. Dieter Spreen Dipl.Inform. Christin Uhrhn Grundlgen der Theoretischen Informtik, WS11/12 Minimle Automten

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3 Lehrgng: Digitltechnik ( Grundlgen ) Dtum: Nme: Seite: Inhltsverzeichnis: Im Lehrgng verwendete Gtter ( Üersicht ) Seite 3 Aufu von Zhlensystemen deziml, dul ( Infoseite ) Seite 4 ( Areitsltt ) Seite 5

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundegriffe der Informtik Üung Simon Wcker Krlsruher Institut für Technologie Wintersemester 2015/2016 GBI Grundegriffe der Informtik Krlsruher Institut für Technologie 1 / 9 Regex-Bäume Anzhl A = {,

Mehr

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten)

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 2.7.24 Klusur üer den Stoff der Vorlesung Grundlgen der Informtik II (9 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (SS 24) Ich estätige,

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informtik Sommersemester 27 Üungsltt 3 Üungsltt Wir unterscheiden zwischen Üungs- und Agelättern.

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Bestimmung der Adsorptionsisotherme von Essigsäure an Aktivkohle

Bestimmung der Adsorptionsisotherme von Essigsäure an Aktivkohle S2-Adsorptionsisothermen_UWW rstelldtum 28.3.214 7:41: Üungen in physiklischer Chemie für Studierende der Umweltwissenschften Versuch Nr.: S2 Version 214 Kurzezeichnung: Adsorptionsisotherme estimmung

Mehr

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ I. Vektorräume ================================================================== 1. Geometrische Definition von Vektoren -----------------------------------------------------------------------------------------------------------------

Mehr

(Analog nennt man a die und b die des Winkels β.)

(Analog nennt man a die und b die des Winkels β.) Mthemtik Einführung Ws edeutet ds Wort und mit ws eschäftigt sich die? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Eck' Beispiel: Pentgon ds Fünfeck mit 5 Winkeln

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mthemtik 1 für Ingenieure (Sommersemester 2016) Kpitel 10: Integrlrechnung einer Veränderlichen Prof. Miles Simon Nch Folienvorlge von Prof. Dr. Volker Kibel Otto-von-Guericke Universität Mgdeburg.

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13 Inhltsverzeichnis Inhltsverzeichnis... 3.Logik... 2 3. Zhlensysteme... 2 3.2 Grundegriffe zweiwertiger Logik... 3 3.3 Rechengesetze für logische Ausdrücke... 9 3.4 Logische Funktionen... 24 3.5 Logische

Mehr