My Box - Englischladen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "My Box - Englischladen"

Transkript

1 Werbung2011:Lout :54 Seite 1 Christin Cech-Melicher M Box - Englischlen Die Englischlen bieten einen spielerischen Zugng zu Rechtschreib- un Grmmtikbereichen, ie besoners legsthenen Lernenen häufig Probleme bereiten. Sie sin gleichermßen für s Trining in Legstheniestunen wie uch für s Lernen zu Huse un zum Einstz in en verschieenen Formen es Offenen Unterrichts geeignet. Ds Mteril versucht uf iktisch möglichst vielfältige Weise ie verschieenen Teilleistungsbereiche in s Smptomtrining zu integrieren. Die einzelnen Lernlen enthlten u.. Arbeitsblätter mit Worterrbeitungen, Spiegelschriften, Rätsel, un je nch Box vriierene Spiele wie Domino, Memor, Qurtett un Puzzle. Ds Mteril befinet sich in einer Le, um eigene Ergänzungen zu ermöglichen. Folgene Len sin erhältlich: M Box - Irregulr Verbs ISBN (SB-Nr ) M Box - Numbers ISBN (SB-Nr ) M Box - Pronouns ISBN (SB-Nr ) M Box - Question Wors ISBN (SB-Nr ) M Box - Trick Wors 1 ISBN (SB-Nr ) M Box - Trick Wors 2 ISBN (SB-Nr ) c. 100 S./Le, A4, in Schchtel geliefert Iel bei Legsthenie/LRS un für en Offenen Unterricht. Ab er 5. Schulstufe.

2 Memor - Homophones Memor - Homophones: Englisch/Germn 1 Mischt ie Krten un legt sie verkehrt uf en Tisch! 2 Nun sucht ie zusmmengehörenen Kärtchen! no nein know wissen too uch two zwei re rot re er/sie/es ls here hier her hören

3 wrist he teeth shouler fist tooth leg mouth foot hir fingers ee hn rm knee feet nose bck toes er Spiegelschrift: Bo Spiegelschrift: Bo. Cn ou re the wors n write them own correctl?. Knnst u ie Wörter lesen un richtig ufschreiben? Spiegelschrift: Bo Spiegelschrift: Bo. Cn ou re the wors n write them own correctl?. Knnst u ie Wörter lesen un richtig ufschreiben?

4 Reihen legen - Colours Reihen legen - Colours 1 Prtner A legt eine Reihe mit minestens 5 Krten us seinem Krtenset uf. 2 Prtner B schut ie ufgelegte Reihe gut n un merkt sie sich. 3 Dnn reht er ie Krten um un legt us seinem Krtenset ie Reihe in er gleichen Reihenfolge nch. Die umgerehte Krtenreihe wir zum Vergleichen ufgereht. 4 Wenn lles richtig wr, knn ie Anzhl er ufgelegten Krten gesteigert weren. 5 Entweer legt nch Prtner B Krten vor oer Prtner A mcht mehrere Durchgänge hintereinner un es wir erst später gewechselt. re green blck ornge blue brown pink purple/violet ellow white

5 Jumble wors - TV-wors TV-wors. Cn ou fin the wors n write them own correctl?. Knnst u ie Wörter finen un richtig ufschreiben? tcwh VT ormepgmr xcigtnie grbnio vtuefoir eth wsne Jumble wors - TV-wors TV-wors. Cn ou fin the wors n write them own correctl?. Knnst u ie Wörter finen un richtig ufschreiben? oonsctr msfil ctietvee nsitreegnti ernut eopmrmgr izqu nswerte

6 It s rining letters - Ds It s rining letters - Ds. Cn ou fin the s of the week? Write them own.. Knnst u ie Wochentge hier finen? Schreibe sie uf! u S n h r u s T o n M u t S r It s rining letters - Ds It s rining letters - Ds. Cn ou fin the s of the week? Write them own.. Knnst u ie Wochentge hier finen? Schreibe sie uf! i F r Wn e e s u T s e

7 Gri - Soup Soup, Cn ou fin soup lso in this gri? How often? times s o u p e f i b w e o e e e w s s e e f u e e s e h s o u p p s f f o f o f u m b l u m s u u s s p s b e s o u p e l e e o e o o e e s e s f e u u t u f e s o s o u p f w p l w u e x e m u e b e e p, Knnst u soup uch in iesem Rster finen? Wie oft? Ml Look like this: Schu so: oer: oer: Pe Gri - Pe, Cn ou fin pe lso in this gri? How often? times p e c p e l e p e e o e e s e o e p o p n p e p e p p n p e o p k p n p e e p i o e e r c l o p e n g l m g e e k l p r p g p e e e e e r h p m b p e s e, Knnst u pe uch in iesem Rster finen? Wie oft? Ml Look like this: Schu so: oer: oer:

My Box - Englischladen

My Box - Englischladen Werbung_2011:Layout 1 25.07.2011 07:54 Seite 1 Christina Cech-Melicher My Box - Englischladen Die Englischladen bieten einen spielerischen Zugang zu Rechtschreib- und Grammatikbereichen, die besonders

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

At school. In my classroom. eraser. workbook. pencil case. book. desk. board. sharpener. chair. pencil. exercise book. schoolbag scissors

At school. In my classroom. eraser. workbook. pencil case. book. desk. board. sharpener. chair. pencil. exercise book. schoolbag scissors 12 At school Das lernst du hier: Wörter und Sätze, die du für die Schule brauchst. Was es mit den Zahlen auf sich hat, und wie du sagen kannst, wie viel von etwas vorhanden ist. In my classroom eraser

Mehr

forty-three 43 1. Write the correct names in the boxes. nose neck foot head leg ear mouth body hair eye arm face hand

forty-three 43 1. Write the correct names in the boxes. nose neck foot head leg ear mouth body hair eye arm face hand My Body 1. Write the correct names in the boxes. nose neck foot head leg ear mouth body hair eye arm face hand 2. How many of them have you got? I ve got legs. I ve got feet. I ve got arms. I ve got head.

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

CREATE YOUR OWN PERFUME BUSINESS CONCEPT. Der Duft für Ihr erfolgreiches Business

CREATE YOUR OWN PERFUME BUSINESS CONCEPT. Der Duft für Ihr erfolgreiches Business CREATE YOUR OWN PERFUME BUSINESS CONCEPT Der Duft für Ihr erfolgreihes Business DAS BUSINESS CONCEPT Fszinieren einfh. In wenigen Shritten zum iniviuellsten Weregeshenk er Welt. Wollen Sie sih von Ihren

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Musterfragen HERMES 5.1 Foundation

Musterfragen HERMES 5.1 Foundation Musterfrgen HERMES 5.1 Fountion Inhlt Seite 2 A Seite 3 Einführung Multiple-Choie-Frgen HERMES ist ein offener Stnr er shweizerishen Bunesverwltung. Die Shweizerishe Eigenossenshft, vertreten urh s Informtiksteuerungsorgn

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: All about me - Englisch in der Grundschule

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: All about me - Englisch in der Grundschule Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: All about me - Englisch in der Grundschule Das komplette Material finden Sie hier: Download bei School-Scout.de Liebe Kolleginnen,

Mehr

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart Aussihten A1 Autorin: Snj Mzurni Rektion: Rente Weer Lyout: Clui Stumpfe Stz: Regin Krwtzki, Stuttgrt Ernst Klett Sprhen GmH, Stuttgrt 2010 www.klett.e Alle Rehte vorehlten. Aussihten A1 Aussihten A1 Aufgenltt

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006

STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006 STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006 Die Wirtshfts- un Sozilwissenshftlihe Fkultät er Universität Bern erlässt, gestützt uf Artikel 39 Astz

Mehr

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort Einführung in ie Progrmmierung Vorlesung 4: Topologil Sort : Hintergrun Bertrn Meer Letzte Üerreitung 3. Jnur 4 3 Topologil sort 4 Prouziere eine zu einer gegeenen Prtiellen Ornung komptile Vollstänige

Mehr

DOWNLOAD. Me and my body. Erste Schritte in Englisch. Anne Scheller. Downloadauszug aus dem Originaltitel: Klasse 3 4

DOWNLOAD. Me and my body. Erste Schritte in Englisch. Anne Scheller. Downloadauszug aus dem Originaltitel: Klasse 3 4 DOWNLOAD Anne Scheller Me and my body Erste Schritte in Englisch Klasse 3 4 auszug aus dem Originaltitel: Mit Geschichten, vielfältigen Übungen und Materialien zur Portfolio-Arbeit THE TERRIBLE TOM Luke

Mehr

Hallo. Hallo. Guten Tag. Hallo. Was siehst du? Sprich. Wer spricht? Höre und zeige. 1. Höre und sprich nach. 2

Hallo. Hallo. Guten Tag. Hallo. Was siehst du? Sprich. Wer spricht? Höre und zeige. 1. Höre und sprich nach. 2 Hllo Guten Tg. Hllo. 1 1b 2 Ws siehst du? Sprich. Wer spricht? Höre und zeige. 1 Höre und sprich nch. 2 Hllo Deutsch ls Zweitsprche, DOI 10.1007/ 978-3-662-56270-3_1 1 Hllo 3 Höre und sprich nch. 3 Woher

Mehr

Shortest Path Algorithmus von Edsger Dijkstra

Shortest Path Algorithmus von Edsger Dijkstra Shortest Pth Algorithmus von Esger Dijkstr Mihel Dienert 16. Dezemer 2010 Inhltsverzeihnis 1 Shortest Pth Algorithmus 1 1.1 Grphen................................. 1 1.2 Knoten..................................

Mehr

German Section 31 - Online activitites

German Section 31 - Online activitites No. 01 Kleidung Clothes t- die Sandalen sandals No. 02 Hör zu und schreibe! Listen and write! t- die Sandalen sandals No. 03 den, die oder das? The definite article (accusative) Ich mag den gelben Hut.

Mehr

Mathematische Grundlagen Physik für Maschinenbau/Elektrotechnik. Sommersemester 2011

Mathematische Grundlagen Physik für Maschinenbau/Elektrotechnik. Sommersemester 2011 Mthemtische Grunlgen Physik für Mschinenbu/Elektrotechnik Sommersemester 2 Vektoren Mechnik: Kräfte/Bewegungen llgemein beschrieben urch Richtung un Betrg Vektoren Vektoren: Objekte mit zwei (2D) oer rei

Mehr

16.3 Unterrichtsmaterialien

16.3 Unterrichtsmaterialien 16.3 Unterrichtsmterilien Vness D.l. Pfeiffer, Christine Glöggler, Stephnie Hhn und Sven Gembll Mteril 1: Alignieren von Nukleotidsequenzen für die Verwndtschftsnlyse Für eine Verwndtschftsnlyse vergleicht

Mehr

Einfache Elektrische Netzwerke

Einfache Elektrische Netzwerke un esstechnik Netzwerke un Schltungen Nme, Vornme Testt Besprechung:..8 Abgbe:..8 infche lektrische Netzwerke Aufgbe : Strommessung ( Wir berechnen zuerst ie Wierstäne,, un. m B messen wir Ströme bis zu

Mehr

1. Ableitung von Funktionen mit einer Veränderlichen

1. Ableitung von Funktionen mit einer Veränderlichen . Ableitung von Funktionen mit einer Veränerlichen. Algebrische Interprettion Die Ableitung einer Funktion f f f+ f = lim. 0 = ist efiniert ls In Worten usgerückt ist ie Ableitung er Grenzwert er Änerungsrte

Mehr

Relationen: Verkettungen, Wege, Hüllen

Relationen: Verkettungen, Wege, Hüllen FH Gießen-Frieerg, Sommersemester 00 Lösungen zu Üungsltt 9 Diskrete Mthemtik (Informtik) 9./. Juni 00 Prof. Dr. Hns-Ruolf Metz Reltionen: Verkettungen, Wege, Hüllen Aufge. Es ezeihne R ie Reltion {(,

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

KV 1. Klasse: Datum: Name: Zeige, was du schon auf Englisch kannst! Male die für dich zutreffenden Sprechblasen an! Das kann ich sonst noch:

KV 1. Klasse: Datum: Name: Zeige, was du schon auf Englisch kannst! Male die für dich zutreffenden Sprechblasen an! Das kann ich sonst noch: KV 1 Zeige, was du schon auf Englisch kannst! Male die für dich zutreffenden Sprechblasen an! Das kann ich sonst noch: 97 KV 2 Zeige, was du schon auf Englisch kannst! Male die für dich zutreffenden Sprechblasen

Mehr

2 German sentence: write your English translation before looking at p. 3

2 German sentence: write your English translation before looking at p. 3 page Edward Martin, Institut für Anglistik, Universität Koblenz-Landau, Campus Koblenz 2 German sentence: write your English translation before looking at p. 3 3 German sentence analysed in colour coding;

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Superförster. Deutschland sucht den. Spieldauer: etwa 20 Minuten. 2 bis 4 Spieler ab 9 Jahren. Ein Kartenspiel für. Begeisterung wecken

Superförster. Deutschland sucht den. Spieldauer: etwa 20 Minuten. 2 bis 4 Spieler ab 9 Jahren. Ein Kartenspiel für. Begeisterung wecken Ein Kartenspiel für 2 bis 4 Spieler ab 9 Jahren Spielauer: etwa 20 Minuten Worum geht s? Ihr sei Förster un versucht, le eure Aufgaben im W zu erleigen. Für Klimaschutz un Nachhtigkeit gibt es Pluspunkte;

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Quadratische Funktionen und p-q-formel

Quadratische Funktionen und p-q-formel Arbeitsblätter zum Ausdrucken von softutor.com Qudrtische Funktionen und -q-formel Gib den Vorfktor und die Anzhl der Schnittstellen mit der -Achse n. x 3 Beschreibe die Reihenfolge beim Umformen einer

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

HK Hebelverschlusskupplung Das Original

HK Hebelverschlusskupplung Das Original Heelverschlusskupplung Ds Originl Kupplung s Originl Unüertroffen seit er Erfinung vor üer 50 Jhren Die Vorteile Schnell Schnell zu öffnen, schnell zu schließen, ohne Spezil werkzeug, uch ei Dunkelheit

Mehr

1. So ein Mann (Son Of Man) 2. Auf einmal (For The First Time) 3. Du brauchst einen Freund

1. So ein Mann (Son Of Man) 2. Auf einmal (For The First Time) 3. Du brauchst einen Freund Phil Colls TARZAN 1. So (Son Of Mn) 2. Auf (For The First Ti). Du bruchst en Fre (Who Bett Thn Me) für Fruenchor Klvi Musik Text: Phil Colls Deutsch Text: Frnk Lenrt Chorrung: Psqule Thibut Pet Schnur

Mehr

Lektion 9: Konjugation von Verben im Präsens (conjugation of verbs in present tense)

Lektion 9: Konjugation von Verben im Präsens (conjugation of verbs in present tense) Lektion 9: Konjugation von Verben im Präsens (conjugation of verbs in present tense) Verben werden durch das Anhängen bestimmter Endungen konjugiert. Entscheidend sind hierbei die Person und der Numerus

Mehr

Optik. Beugung am Doppelspalt und an Mehrfachspalten. LD Handblätter Physik P5.3.1.2. 0713-Bi. Wellenoptik Beugung. Versuchsziele.

Optik. Beugung am Doppelspalt und an Mehrfachspalten. LD Handblätter Physik P5.3.1.2. 0713-Bi. Wellenoptik Beugung. Versuchsziele. Optik Wellenoptik Beugung LD Hnblätter Physik Beugung m Doppelsplt un n Mehrfchsplten Versuchsziele! Untersuchung er Beugung m Doppelsplt bei verschieenen Spltbstänen.! Untersuchung er Beugung m Doppelsplt

Mehr

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung Kids Ernährung für Tipps 10 Spiel mit uns! gesunden Zur Weißt du noch, wie du Rd fhren lerntest? Ds Wichtigste dei wr zu lernen ds Gleichgewicht zu hlten. Sold es gefunden wr, konntest du die Pedle gleichmäßig

Mehr

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung Mnnhrd Bech Mlte Gertenbch Athletiktrining nch der FIT-Methode Mehr Stbilität Speziell für den Hndbllsport entwickelt Für bessere Körperbeherrschung, Leistungssteigerung und Verletzungsprävention Ab der

Mehr

Personalpronomen und das Verb to be

Personalpronomen und das Verb to be Personalpronomen und das Verb to be Das kann ich hier üben! Das kann ich jetzt! Was Personalpronomen sind und wie man sie verwendet Wie das Verb to be gebildet wird Die Lang- und Kurzformen von to be Verneinung

Mehr

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1 Busteine er Digitltehnik - Binäre Shlter un Gtter Kpitel 7. Dr.-Ing. Stefn Wilermnn ehrstuhl für rwre-softwre-co-design Entwurfsrum - Astrktionseenen SYSTEM-Eene + MODU-/RT-Eene (Register-Trnsfer) ogik-/gatter-eene

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Limit Texas Hold em. Meine persönlichen Erfahrungen

Limit Texas Hold em. Meine persönlichen Erfahrungen Limit Texs Hold em Meine persönlichen Erfhrungen Dominic Dietiker c Drft dte 21. September 2010 Inhltsverzeichnis 1. Spielnleitung...................................... 1 1.1 Der Spielverluf....................................

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

Zum Satz des Pythagoras 1

Zum Satz des Pythagoras 1 Jörg MEYER, Hmeln Zum Stz es Pythgors 1 Astrct: Zwei ungewöhnliche Beweise zum Stz es Pythgors weren vorgestellt. Der eine ergit sich orgnisch us en ülichen in Klsse 9 ngestellten Irrtionlitätsetrchtungen,

Mehr

Stabile Hochzeiten wie und warum?

Stabile Hochzeiten wie und warum? Stile Hohzeiten wie un wrum? Tg er Mthemtik HU erlin 25. pril 2009 Stefn elsner TU erlin, Mthemtik felsner@mth.tu-erlin.e Ws sin stile Hohzeiten? Gegeen: Menge von ruen, M Menge von Männern, = M. Jee Person

Mehr

German Section 33 - Online activitites

German Section 33 - Online activitites No. 01 Was kostet das? How much does that cost? sharer case No. 02 Drei gewinnt! Tic Tac Toe sharer case No. 03 der, die oder das? Which definite article? Das Heft ist grün. The is green. Der Radiergummi

Mehr

Bei den meisten englischen Substantiven wird der Plural durch Anhängen eines s gebildet, z.b.

Bei den meisten englischen Substantiven wird der Plural durch Anhängen eines s gebildet, z.b. Die Bildung des Plurals - Regelmässiger Plural Bei den meisten englischen Substantiven wird der Plural durch Anhängen eines s gebildet, z.b. Pub pubs / Kneipe - Kneipen Week wekks / Woche Wochen Die Aussprache

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Flächenberechnung - Umfang und Fläche von Rechteck und Quadrat

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Flächenberechnung - Umfang und Fläche von Rechteck und Quadrat Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Flächenberechnung - Umfng und Fläche von Rechteck und Qudrt Ds komplette Mteril finden Sie hier: Downlod bei School-Scout.de Inhltsverzeichnis

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Platonische Körper Eine Übersicht mit Bauanleitungen für den Einsatz in der Lehre Februar 2016 Julia Bienert

Platonische Körper Eine Übersicht mit Bauanleitungen für den Einsatz in der Lehre Februar 2016 Julia Bienert Eine Übersicht mit Bunleitungen für den Einstz in der Lehre Februr 016 Juli Bienert Inhltsverzeichnis 1 Bunleitungen... 1 1.1 Aufbu der Anleitungen... 1 1. Anleitungen... Weiterführende Litertur... 9 Anhng

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

Darstellung von Ebenen

Darstellung von Ebenen Drstellung von Ebenen. Ebenengleichung in Prmeterform: Sei E eine Ebene. Dnn lässt sich die Ebene drstellen durch eine Gleichung der Form p u x = p + r v u + s v (r, s R). p u v Der Vektor p heißt Stützvektor

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Eigene Farbskala erstellen

Eigene Farbskala erstellen Farben er Präsentation bestimmen 210 Eigene Farbskala erstellen Im vorigen Kapitel haben Sie gesehen, wie Sie einer gesamten Präsentation oer einzelnen Folien einer Präsentation eine anere Farbskala zuweisen.

Mehr

Großübung Balkenbiegung Biegelinie

Großübung Balkenbiegung Biegelinie Großüung Bkeniegung Biegeinie Es geen die in der Voresung geroffenen Annhmen: - Der Bken is unese gerde. - Ds eri sei üer den Querschni homogen und iner esisch. - Die Besung erfog durch Biegemomene und

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

Hilfsrelais HR 116. Bilfinger Mauell GmbH

Hilfsrelais HR 116. Bilfinger Mauell GmbH Bilfinger Muell GmH Hilfsrelis HR 11 Die Hilfsrelis ienen zur glvnishen Trennung, Kontktvervielfhung un Trennung zwishen Hilfs- un Steuerstromkreisen. Bilfinger Muell GmH Inhltsverzeihnis Inhlt Seite Anwenung

Mehr

BÜrO HYPER aufgebautes BÜrOsYsteM

BÜrO HYPER aufgebautes BÜrOsYsteM 5 JAHRE NACHKAUFGARANTIE BÜrO HYPER UFGeBUtes BÜrOsYsteM Gerundete ecken und Knten nch din-fchbericht 147 schreibtisch und ergonomische Mße nch din En 527-1 sthl-orgzrge mit verdeckter Führung, Präzisionsuszüge

Mehr

My Box - Englischladen

My Box - Englischladen Werbung_2011:Layout 1 25.07.2011 07:54 Seite 1 Christina Cech-Melicher My Box - Englischladen Die Englischladen bieten einen spielerischen Zugang zu Rechtschreib- und Grammatikbereichen, die besonders

Mehr

3 Wiederholung des Bruchrechnens

3 Wiederholung des Bruchrechnens 3 Wiederholung des Bruchrechnens Ein Bruch entsteht, wenn ein Gnzes in mehrere gleiche Teile zerlegt wird. Jeder Bruch besteht us dem Zähler, der Zhl über dem Bruchstrich, und dem Nenner, der Zhl unter

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Vertretungsstunde Englisch 5. Klasse: Grammatik

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Vertretungsstunde Englisch 5. Klasse: Grammatik Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Vertretungsstunde Englisch 5. Klasse: Grammatik Das komplette Material finden Sie hier: School-Scout.de Pronouns I Let s talk about

Mehr

FDT-VERLEGESCHULUNGEN

FDT-VERLEGESCHULUNGEN 25 % RABATT SICHERN. BIS 15.11.2015 online buchbr FDT-VERLEGESCHULUNGEN KURSSTAFFEL 2016 WEITERBILDEN. OPTIMIEREN. WISSEN! 02 03 WEITERBILDEN. OPTIMIEREN. WISSEN! FDT-Verlegeschulungen Schulungen für Verleger

Mehr

Phonologische Bewusstheit. Silben 4

Phonologische Bewusstheit. Silben 4 Inklusionskiste für Kinder mit besonderem Förderbedrf Deutsch / Anfngsunterricht 7 6 Phonologische Bewusstheit Silben 4 Ds systemtische Bsistrining zum Schreiben lutgetreuer Wörter mithilfe von Silbenbögen

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Lektion 9: Konjugation von Verben im Präsens (conjugation of verbs in present tense)

Lektion 9: Konjugation von Verben im Präsens (conjugation of verbs in present tense) Lektion 9: Konjugation von Verben im Präsens (conjugation of verbs in present tense) Verben werden durch das Anhängen bestimmter Endungen konjugiert. Entscheidend sind hierbei die Person und der Numerus

Mehr

16.5 Lösungen zu den Unterrichtsmaterialien

16.5 Lösungen zu den Unterrichtsmaterialien Mteril 1: Alignieren von Nukleotidsequenzen für die Verwndtschftsnlyse Aufgbe 1 Erstelle mit frbigen Büroklmmern Modelle für die in Tbelle 16.6 (in Unterrichtsmterilien) gezeigten DNA-Teilstränge des Hämoglobins

Mehr

79,90. www.gaga L amp.de 449,90 1999,- 89,90 49,90 129,90 139,90. Design Flaschenlicht LED Flaschenlichthalter mit rote. Nr.

79,90. www.gaga L amp.de 449,90 1999,- 89,90 49,90 129,90 139,90. Design Flaschenlicht LED Flaschenlichthalter mit rote. Nr. Nr. 3-08/2015-1! p M -L, N h S w P o s 79, Dsn Fsc hn sbrns K ch LED 49, Dsn Fschnch LED Fschnchhr m ro m K CrdnLh Europ und LMP snd nrn Mrknzchn dr HLOENKUF LIHECH MBH. Es n unsr mnn schäfs- und Lfrbdnunn.

Mehr

Liquiditätsrisikomanagement unter LCR und NSFR

Liquiditätsrisikomanagement unter LCR und NSFR Anmelung un Informtion 5 s c hr if t lic h: Euroforum Deutschln SE, Postfch 11 12 34, 40512 Düsselorf p er E - Mil: nmelung@euroforum.com p er F x : +49 (0)2 11/96 86 40 40 t elef onis c h: +49 (0)2 11/96

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Kürzeste Wege. möglich ist 6. Füge v zu S hinzu und setze d[v] d [v] (u,v) E. Datenstrukturen und Algorithmen 14. Elementare Graphalgorithmen

Kürzeste Wege. möglich ist 6. Füge v zu S hinzu und setze d[v] d [v] (u,v) E. Datenstrukturen und Algorithmen 14. Elementare Graphalgorithmen Algorithmus von Dijkstr: 1. Es sei S ie Menge er enteckten Knoten. Invrinte: Merke optimle Lösung für S: Für lle v S sei [v] = δ(s,v) ie Länge es kürzesten Weges von s nch v 3. Zu Beginn: S={s} un [s]=

Mehr

DOWNLOAD. Grundrechenarten 5./6. Klasse: Multiplikation. Mathetraining in 3 Kompetenzstufen

DOWNLOAD. Grundrechenarten 5./6. Klasse: Multiplikation. Mathetraining in 3 Kompetenzstufen DOWNLOD rigitte Penzenstler 5./6. Klsse: Multipliktion Mthetrining in 3 Kompetenzstufen rigitte Penzenstler ergeorfer Unterrihtsieen Downlouszug us em Originltitel: Mthetrining in 3 Kompetenzstufen n 1:

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

1 Kopiervorlagen. KV 2 a: Hello. KV 2 b: What s the number? Greenwich. mouse. school. name. one. how. . My. Hello. I m a. . Thomas Tallis is my new

1 Kopiervorlagen. KV 2 a: Hello. KV 2 b: What s the number? Greenwich. mouse. school. name. one. how. . My. Hello. I m a. . Thomas Tallis is my new KV 2 a: Hello. Write in English. Hello. I m a mouse. My name is Tom. I m from Greenwich. Thomas Tallis is my new school. I m one and how old are you? My mobile number is 0 77 40 91 54 62. KV 2 b: What

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

STUDIUM. Mathematische Grundlagen für Betriebswirte

STUDIUM. Mathematische Grundlagen für Betriebswirte STUDIUM Mthetische Grudlge für Betrieswirte Mit de folgede Aufge köe Sie i eie Selsttest üerprüfe, o Sie och eiigerße die Grudlge der Alger eherrsche. Diese hdwerkliche Fertigkeite sid wesetlich, we es

Mehr

Eine interessante Eigenschaft unseres Schreibpapiers

Eine interessante Eigenschaft unseres Schreibpapiers www.mthegmi.de September 2011 Eine interessnte Eigenschft unseres Schreibppiers ichel Schmitz Zusmmenfssung ällt mn von einer Ecke eines I 4 lttes ds Lot uf die igonle durch die benchbrten Eckpunkte, so

Mehr

5.3 Dynamisches Sitzen und Stehen

5.3 Dynamisches Sitzen und Stehen Dynmisches Sitzen und Stehen 5.3 Dynmisches Sitzen und Stehen Test Bewegen Sie sich eim Sitzen und Stehen kontinuierlich um den Mittelpunkt der senkrechten Oerkörperhltung (S. 39) mit neutrler Wirelsäulenschwingung

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ).

Mehr

Lehrbrief 1 Technik Seite 1 von 7

Lehrbrief 1 Technik Seite 1 von 7 Lehrbrief 1 Technik Seite 1 von 7 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Es ist nunmal ein technisches Hobby, einige grunlegene mathematische Kenntnisse sin

Mehr

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin Dokument Dtum (Version) Gültig für 200 / 0 Seite von 7 Unterrichts- und Prüfungsplnung M306 Modulverntwortlicher: Bet Kündig Modulprtner: R. Rubin Lernschritt-Nr. Hndlungsziele Zielsetzung unter Berücksichtigung

Mehr

1 9 5 2-2 0 1 2. 6 0 J a h r e E r f a h r u n g

1 9 5 2-2 0 1 2. 6 0 J a h r e E r f a h r u n g 1 9 5 2-2 0 1 2 6 0 J h r E r f h r u n g 60 Jhr innoviv Tchnik... und wir gbn wir Gs! 60 Jhr Dibod Firmngründr Hmu & Id Dibod 195 2 Fir Firmngr M m H ündu sä chni mu ng sch WDibo rk d - 1965 Di dmig Frigung

Mehr

Illustrierende Aufgaben zum LehrplanPLUS

Illustrierende Aufgaben zum LehrplanPLUS Jahrgangsstufen 3/4 Fach Zeitrahmen Benötigtes Material Themengebiet Illustrierende Aufgaben zum LehrplanPLUS Englisch E 3/4 4.3 Freizeit und Feste Kompetenzerwartungen My snowman 1 Unterrichtseinheit

Mehr

Der Tabelle kann entnommen werden, welche Einschränkungen sich aufgrund der bestehenden Doppelbesteuerungsabkommen

Der Tabelle kann entnommen werden, welche Einschränkungen sich aufgrund der bestehenden Doppelbesteuerungsabkommen DEPARTEMENT FINANZEN UND RESSOURCEN Kntonles Steuermt Aru, 6. Ferur 2013 MERKBLATT Quellenesteuerung von Hypothekrzinsen n Personen ohne Wohnsitz oer Aufenthlt in er Schweiz ( 124 As. 1 StG un Art. 94

Mehr

Ü b u n g s b l a t t 13. Organisatorisches:

Ü b u n g s b l a t t 13. Organisatorisches: MATHEMATIK FÜ INFOMATIKE I WINTESEMESTE 7/8 POF. D. FIEDICH EISENBAND D. KAI GEHS Ü b u n g s b l t t 13 Orgnistorisches: Dieses Übungsbltt wir nicht mehr korrigiert. D ie Aufgben ennoch klusurrelevnt

Mehr

(innere Totlage), 30, 90, 210

(innere Totlage), 30, 90, 210 ufge 4 Gegeen ist eine Kurelschwinge it folgenen Mßen: = 40, = 00, c = 70, = 90. In Welchen Grenzen knn ie Gestelllänge unter echtung er Grshofschen eingung veränert weren? 2. Die eschleunigung Schwingenzpfen

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ. x Σ.x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ). F3

Mehr

8. Uninformierte Suche

8. Uninformierte Suche 8. Uninformierte Suche Prof. Dr. Ruolf Kruse University of Mageurg Faculty of Computer Science Mageurg, Germany ruolf.kruse@cs.uni-mageurg.e S otationen () otationen: Graph Vorgänger (ancestor) von Knoten

Mehr

Unit 4: Informationsblatt für Mini-Teachers (schwierige Laute sind unterstrichen)

Unit 4: Informationsblatt für Mini-Teachers (schwierige Laute sind unterstrichen) Unit 4: Informationsblatt für Mini-Teachers (schwierige Laute sind unterstrichen) Was ist euer Ziel? Das Ziel eurer Stunde ist es, die Zahlen zu wiederholen. Dafür habt ihr 20 Minuten Zeit. Wie könnt ihr

Mehr

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w Clsscl Gs Mson Wlls rr: Cleens Huber / "Clsscl Gs" von Mson Wlls urde 9 zu Weltht I Ornl rd de Gtrre von ene Orchester t breten läsersound unterstützt uch ls Soloverson st ds Stück beknnt eorden und ehört

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr