Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),"

Transkript

1 Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden, damit die Hühner möglichst viel Platz haben? Falls wir z.b. x = m wählen, so ist durch die Nebenbedingung x+ = 0 schon eindeutig festgelegt ( = 6 m) und damit auch der Flächeninhalt (A = m ). Jeder Seitenlänge x ist der Flächeninhalt A zugeordnet, die Funktion lautet: A(x) = x (0 x). Mit der Differentialrechnung ermitteln wir den Extremwert: x = 5 und den maximalen Flächeninhalt A = 50 (Zwischenergebnis: A (x) = 0 x). Zur Lösung von Extremwertaufgaben sind im allgemeinen folgende Schritte durchzuführen:. Skizze mit Bezeichnungen der Variablen anfertigen,. Zusammenhang zwischen der Größe, die extrem werden soll, und den Variablen aufstellen (Zielfunktion),. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),. die Nebenbedingung nach einer Variablen umstellen und in die Zielfunktion einsetzen, so dass sie nur noch von einer Variablen abhängig ist, 5. den Extremwert der Zielfunktion mit der Differentialrechnung bestimmen.. Welche Maße besitzt ein Quader mit quadratischer Grundfläche und der Oberfläche m, wenn das Volumen maximal sein soll?. Ein Gewölbegang hat einen Querschnitt von der Form eines Rechtecks mit aufgesetztem Halbkreis. Der Umfang des Querschnitts ist durch U = 0 m fest vorgegeben. Wie muss das Gewölbe gestaltet werden, damit die Querschnittsfläche möglichst groß wird?. Von einer Kaffeesorte werden bei einem Preis von 0e für kg im Monat 0000 kg verkauft. Eine Marktforschung hat ergeben, dass eine Preissenkung von 0,0 e je kg jeweils zu einer Absatzsteigerung von 00 kg im Monat führen würde. Bei welchem Verkaufspreis wäre der Gewinn maximal, wenn für kg Kaffee der Selbstkostenpreis e beträgt? 5. Welche Form hat eine Konservendose von l Inhalt, deren Oberfläche minimal ist?

2 Extremwertaufgaben. Welche Maße besitzt ein Quader mit quadratischer Grundfläche und der Oberfläche m, wenn das Volumen maximal sein soll? V = a h (Zielfunktion) O = a +ah (Nebenbedingung) V(a) = 6a a ; a = h = (m) h a. Ein Gewölbegang hat einen Querschnitt von der Form eines Rechtecks mit aufgesetztem Halbkreis. Der Umfang des Querschnitts ist durch U = 0 m fest vorgegeben. Wie muss das Gewölbe gestaltet werden, damit die Querschnittsfläche möglichst groß wird? Q = ra+ πr (Zielfunktion) r +a+πr = 0 (Nebenbedingung) Q(r) = 0r (+ π)r r = 0 =,0 (m) +π a =,0 (m) } {{ } r a. Von einer Kaffeesorte werden bei einem Preis von 0e für kg im Monat 0000 kg verkauft. Eine Marktforschung hat ergeben, dass eine Preissenkung von 0,0 e je kg jeweils zu einer Absatzsteigerung von 00 kg im Monat führen würde. Bei welchem Verkaufspreis wäre der Gewinn maximal, wenn für kg Kaffee der Selbstkostenpreis e beträgt? f(x) = (0 0,0 x ) ( x) x = 00 8e

3 Hühnerhof-Aufgabe x Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden, damit die Hühner möglichst viel Platz haben? Es kann erhellend sein, die Nebenbedingung grafisch darzustellen Nebenbedingung = x x Zielfunktion A(x) = x ( x+0)

4 Randextrema 6 5 A(x) x In Extremwertaufgaben wird der größte bzw. kleinste Funktionswert auf einem Intervall gesucht. Mit der Differentialrechnung können die lokalen Extrema ermittelt werden. Es bleibt zu prüfen, ob am Rand des Definitionsbereichs D noch größere bzw. kleinere Funktionswerte vorliegen. Wie verhält es sich hiermit für die Funktion A(x), D = [0, 8]?

5 Kürzeste Wege 6. Gesucht ist der Punkt C auf der x-achse, so dass der Weg ACB minimal wird. 8 B(0 9) 6 A(0 6) 5 C(a 0) x Sei A der Spiegelpunkt von A bezüglich der x-achse. Berechne den Schnittpunkt der Geraden A B mit der x-achse. Was fällt dir auf? Erläutere dies. 7. Variation der 6. Aufgabe A(0 ), B(8 8) Ergebnisse 6. C(8 0) 7. C(6 0) 5

6 Dachrinne 8. Aus gleichbreiten Zinkstreifen mit a = 5cm soll eine Dachrinne mit maximalem Fassungsvermögen hergestellt werden, wobei Zinkstreifen senkrecht anzuordnen sind. Welche Querschnittsfläche hat die Dachrinne? a a 6

7 Dachrinne 8. Aus gleichbreiten Zinkstreifen mit a = 5cm soll eine Dachrinne mit maximalem Fassungsvermögen hergestellt werden, wobei Zinkstreifen senkrecht anzuordnen sind. Welche Querschnittsfläche hat die Dachrinne? a a x { }} { Q(x) = ax+x a x x max = a Q max = 55,06 cm Das optimale Profil ist rechts zu sehen. 7

8 Minimale Entfernung 9. Gegeben ist die Funktion f(x) = x. Ermitteln Sie den Punkt auf dem Graphen von f, der von A( ) minimale Entfernung hat. Lösung: d(x) = (( x) +( f(x)) x min =,85 = 0, d(x min ) =,88 d(x) x Bemerkenswert: Min(0,900,5), Max(,6) 8

9 Maximale Entfernung 0. Gegeben sind die Funktionen f(x) = x und g(x) = x(x ). An welcher Stelle zwischen den beiden Schnittpunkten ist die Differenz der Funktionswerte maximal? - - x - Lösung: x max = 0,9 d(x max ) =,05 9

10 Zlinder-Aufgabe. Welches maximale Volumen hat ein Zlinder, dessen Höhe durch die positiven Werte der Funktion f(x) = x + begrenzt wird? - - x 0

11 Zlinder-Aufgabe. Welches maximale Volumen hat ein Zlinder, dessen Höhe durch die positiven Werte der Funktion f(x) = x + begrenzt wird? - - x Ergebnis:,57 VE

12 Minimale Entfernung. Gegeben ist die Funktion f(x) = (x ) +. Ermitteln Sie den Punkt P auf dem Graphen von f, der vom Ursprung minimale Entfernung hat. Überprüfen Sie, ob die Verbindungsstrecke minimaler Länge senkrecht zur Tangente in P verläuft. x Ergebnis: d(x) = x +(f(x)) P(,6,89) d(x min ) =,6 f(x min ) x min = 0,90 f (x min ) = -,076

13 Minimales Dreieck P x Welche Gerade durch P( ) schließt mit den positiven Koordinatenachsen ein Dreieck mit minimalem Flächeninhalt ein? Die Begründung kann auch ohne Differentialrechnung erfolgen.

14 Minimales Rechteck x Gegeben ist die Funktion f(x) = 9 x x+6. Welches Rechteck (diagonale Eckpunkte im Ursprung und auf dem Graphen, siehe Grafik) hat minimalen Flächeninhalt?

15 Minimales Rechteck 7 A(x) x Gegeben ist die Funktion f(x) = 9 x x+6. Welches Rechteck (diagonale Eckpunkte im Ursprung und auf dem Graphen, siehe Grafik) hat minimalen Flächeninhalt? A(x) = x f(x) A (x) = 0 = x = Es gibt jedoch kein Extremum an der Stelle x = (Sattelstelle). 5

16 Verkaufspreis. Das Produkt T des Herstellers A konkurriert mit anderen Produkten von nahezu gleicher Qualität und Beschaffenheit. Der tägliche Absatz (Stückzahl) von T wird durch f a (x) = 0 x+8a, 0 x 0, 0 a 0, erfasst, x ist der Stückpreis von T, a ist der durchschnittliche Marktpreis der ähnlichen Produkte. a) Wie wirken sich Preiserhöhungen von x und a auf den Absatz aus? b) Die Stückkosten von T betragen 5e. Sei a = 8e(6e). Wie wird A seinen Verkaufspreis festlegen? 6

17 5,50e (,9e) 7

18 Gleiche Abschnitte A B C x. Der Graph von f(x) = 0 x + x wird von einer Parallele zur x-achse im. Quadranten in B und C geschnitten. Für welchen Punkt A auf der -Achse halbiert B die Strecke AC? f(x) = f(x), = f( 0 7 ) = 5,8 8

19 Maximaler Flächeninhalt (. Jg) x 5. Gegeben ist die Funktion: f(x) = x e x In die schraffierte Fläche soll ein Rechteck mit maximalem Flächeninhalt gelegt werden. Ermittle diesen Flächeninhalt. 9

20 Gegeben ist die Funktion: f(x) = x e x In die schraffierte Fläche soll ein Rechteck mit maximalem Flächeninhalt gelegt werden. Ermittle diesen Flächeninhalt. x A(x) = ( x) f(x), 0 x x max = 0,57 A max = 0,0 FE x max stimmt nicht mit der Wendestelle x w = 0,68 überein. 0

21 Stütze mit maximaler Länge (. Jg) x 6. Gegeben ist die Funktion: f(x) = x e x, 0 x Das Kurvenstück soll durch eine senkrecht verlaufende Strecke maximaler Länge unterstützt werden. Ermittle diese Länge.

22 Stütze mit maximaler Länge (. Jg) x Gegeben ist die Funktion: f(x) = x e x, 0 x Das Kurvenstück soll durch eine senkrecht verlaufende Strecke maximaler Länge unterstützt werden. Ermittle diese Länge. L(x) = f(x) +(f (x)), 0 x Zwischenschritte: allgemein Normalengleichung aufstellen, Nullstelle der Normalen berechnen x N = f(x 0 ) f (x 0 )+x 0, Länge (Pthagoras) ermitteln, umformen x max = 0,66 L max =,8 LE L Für x max wird die Nullstelle der Normalen maximal. Die Gleichungen (L (x)) = 0 und (f(x) f (x)+x) = 0 sind für 0 < x < äquivalent. x

23 Maximales Parabelsegment (. Jg) Gegeben ist die Normalparabel f(x) = x. Ein zur -Achse paralleler Streifen der Breite b = wandert auf der x-achse entlang und legt damit ein Parabelsegment fest. Für welchen Streifen ist die Fläche des Segments maximal? - - x

24 Maximales Parabelsegment Gegeben ist die Normalparabel f(x) = x. Ein zur -Achse paralleler Streifen der Breite b = wandert auf der x-achse entlang und legt damit ein Parabelsegment fest. Für welchen Streifen ist die Fläche des Segments maximal? B A - - x Lösung: A ( u u ), B ( u+b (u+b) ) Sekante = (u+b)x u(u+b) Die Betrachtung eines Trapezes reicht. A = 6 b Alle Segmente sind gleich groß.

25 Maximales Rechteck x Gegeben ist die Funktion f(x) = 6 6 x. Welches einbeschriebene Rechteck (Seiten parallel zu den Koordinatenachsen, siehe Grafik) hat maximalen Flächeninhalt? 5

26 Maximales Rechteck x Gegeben ist die Funktion f(x) = 6 6 x. Welches einbeschriebene Rechteck (Seiten parallel zu den Koordinatenachsen, siehe Grafik) hat maximalen Flächeninhalt? a = = 6,98, b = A max = 7,7 FE 6

27 Dosen-Aufgabe Welcher Zlinder (Radius r, Höhe h) mit dem Volumen V = 000cm hat minimale Oberfläche? r 7

28 Dosen-Aufgabe Welcher Zlinder (Radius r, Höhe h) mit dem Volumen V = 000cm hat minimale Oberfläche? r Die Zlinderhöhen werden durch die Funktion h(r) = 000 πr bestimmt. Es ist das Minimum der Funktion Oberfläche(r) = πr h+πr = 000 r +πr zu ermitteln. Ergebnis: r = 5, (= h ) 8

29 In das durch Parabelbögen begrenzte Flächenstück wird ein achsenparalleles Rechteck mit maximalem Flächeninhalt A einbeschrieben. Ermittle A x - - 9

30 In das durch Parabelbögen begrenzte Flächenstück wird ein achsenparalleles Rechteck mit maximalem Flächeninhalt A einbeschrieben. Ermittle A. 5 f(x) = x x - g(x) = 9 x - A(x) = (f(x) g(x)) x = 9 x +x, 0 < x < x max = =,7 A max = 6,7 0

31 Für eine Kosmetikfirma soll ein Werbebanner entworfen werden. Die Modellierung soll mit möglichst einfachen Funktionen und ganzzahligen Koordinatenwerten erfolgen, siehe Zeichnung. In das Flächenstück soll für einen Werbetext ein achsenparalleles Rechteck mit maximalem Flächeninhalt A einbeschrieben werden. Ermittle A x - -

32 Für eine Kosmetikfirma soll ein Werbebanner entworfen werden. Die Modellierung soll mit möglichst einfachen Funktionen und ganzzahligen Koordinatenwerten erfolgen, siehe Zeichnung. In das Flächenstück soll für einen Werbetext ein achsenparalleles Rechteck mit maximalem Flächeninhalt A einbeschrieben werden. Ermittle A. f(x) = 6 x + 8 x x - g(x) = 8 x x - - A(x) = (f(x) g(x)) x = x5 +8x,,88 x <, beachte: f(,88) = x E =,675 / D A x max =,88 A max = 6,97 Randextremum

33 f(x) = 6 x + 8 x x - - oberer Rand Ansatz f(x) = ax +bx +c Bedingungen:. f(0) =. f() = 0. f () = 0. c =. 56a+6b+c = 0. a+b = 0 Die Funktion lautet: f(x) = 6 x + 8 x +

34 In das hellgraue Flächenstück wird ein Rechteck mit maximalem Flächeninhalt A einbeschrieben. Im Bereich x 0 ist die obere Begrenzungslinie geradlinig, im Bereich 0 x parabelförmig. An der Stelle x = 0 liegt kein Knick vor. Ermittle A. Es darf angenommen werden, dass die rechte untere Ecke des Rechtecks auf der x-achse zwischen und liegt x

35 In das hellgraue Flächenstück wird ein Rechteck mit maximalem Flächeninhalt A einbeschrieben. Im Bereich x 0 ist die obere Begrenzungslinie geradlinig, im Bereich 0 x parabelförmig. An der Stelle x = 0 liegt kein Knick vor. Ermittle A. Es darf angenommen werden, dass die rechte untere Ecke des Rechtecks auf der x-achse zwischen und liegt x f(x) = x +x+ = x+ x = A(x) = (x (f(x) )) f(x) x =,886 A =, 5

36 Maximales Dreieck (auch ohne GTR) x Gegeben ist die Funktion f(x) = 7 x +x. Für welches c, 0 c 7, hat das Dreieck mit den Eckpunkten A(c 0), B(c f(c)) und C(7 0) maximalen Flächeninhalt? 6

37 Maximales Dreieck (auch ohne GTR) 0 9 A(x) x Gegeben ist die Funktion f(x) = 7 x +x. Für welches c, 0 c 7, hat das Dreieck mit den Eckpunkten A(c 0), B(c f(c)) und C(7 0) maximalen Flächeninhalt? A(c) = f(c)(7 c) = ( 7 c +c )(7 c) = c (c 7) A (c) = 7 x(x 7)(x 7) = 7 c c +7c A (c) = 0 Zusätzliches f (c) = f(c) 7 c f (c)(c 7)+f(c) = 0, d.h.? c = 0, c = 7, c = 7 Da A(c) 0 für 0 c 7 ist und A(0) = A(7) = 0, wird das Maximum an der Stelle c angenommen. alternativ: A (c) = 6 7 c 6c+7 A ( 7 ) = 7 < 0 7

Analysis 5.

Analysis 5. Analysis 5 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch f(x) = 2 e 2 x 2 (x D f ) a) Geben Sie den größtmöglichen Definitionsbereich der Funktion f an und führen Sie für die Funktion

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (B) Prüfungstag 5. April Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 205 (ohne CAS) Baden-Württemberg Wahlteil Analysis Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 205 Aufgabe A

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

Extremwertaufgaben.

Extremwertaufgaben. Extremwertaufgaben www.schulmathe.npage.de Aufgaben 1. Von einem rechteckigen Stück Blech mit einer Länge von a = 16 cm und einer Breite von b = 10 cm werden an den Ecken kongruente Quadrate ausgeschnitten

Mehr

5.5. Abituraufgaben zu ganzrationalen Funktionen

5.5. Abituraufgaben zu ganzrationalen Funktionen .. Abituraufgaben zu ganzrationalen Funktionen Aufgabe : Kurvendiskussion, Fläche zwischen zwei Schaubildern () Untersuchen Sie f(x) x x und g(x) x auf Symmetrie, Achsenschnittpunkte, Extrempunkts sowie

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

FH- Kurs Mathematik. Übungsaufgaben zur Vorbereitung der 1. Klausur

FH- Kurs Mathematik. Übungsaufgaben zur Vorbereitung der 1. Klausur . Leiten Sie die folgenden Funktionen f jeweils dreimal ab:. a) b) f ( x) = x x + 5x f ( x) = x ( x + 5) Berechnen Sie die Nullstellen der Funktion f mit f ( x) = x x 5x + 6 mittels Polynomdivision. Die

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Extrempunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen, Extremwertaufgaben (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com

Mehr

= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung

= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung Abschlussprüfung Fachoberschule () Aufgabenvorschlag B / 4 Gegeben ist die Funktion f mit der Funktionsgleichung 4 f ( x) x x x = + +. Dazu ist ein Rechteck gegeben, dessen Seiten parallel zu den Koordinatenachsen

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Nichttechnik - A I - Lösung

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Nichttechnik - A I - Lösung Abschlussprüfung Berufliche Oberschule Mathematik Nichttechnik - A I - Lösung Teilaufgabe. Gegeben ist die ganzrationale Funktion g dritten Grades mit D g IR, deren Graph G g in untenstehender Abbildung

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 7 / 8 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Parabeln. x y Um die Beziehung von x und y aufzudecken, teilen wir die y-werte durch 5.

Parabeln. x y Um die Beziehung von x und y aufzudecken, teilen wir die y-werte durch 5. c) = (x a) Parabeln Wir stellen uns vor, einen Stein von einem hohen Gebäude fallen zu lassen und interessieren uns für den Zusammenhang von verstrichener Zeit x (in Sekunden) und zurückgelegter Fallstrecke

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

Analysis: Extremwertaufgaben Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J1

Analysis: Extremwertaufgaben Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J1 Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com Dezember 05 Teil A: Ganzrationale Funktionen Aufgabe : Gegeben ist die Funktion

Mehr

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 007 / 008 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Übungsbeispiele Differential- und Integralrechnung

Übungsbeispiele Differential- und Integralrechnung Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,

Mehr

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 000 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - GM1. INFINITESIMALRECHNUNG I. 10

Mehr

1 /40. dargestellt werden.

1 /40. dargestellt werden. Abschlussprüfung Fachoberschule 0 () Aufgabenvorschlag B /40 Auf der Berliner Stadtautobahn A00 / Autobahndreieck Charlottenburg wurde über einen bestimmten Zeitraum die Staulänge l in Abhängigkeit von

Mehr

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 004 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 4. Juni 004 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Beispielseite (Band 1) 2. Ganzrationale Funktionen 2.4 Nullstellen bei Funktionen 3. Grades

Beispielseite (Band 1) 2. Ganzrationale Funktionen 2.4 Nullstellen bei Funktionen 3. Grades Beispielseite (Band ). Ganzrationale Funktionen.4 Nullstellen bei Funktionen. Grades Funktionen. Grades ohne Absolutglied Bei ganzrationalen Funktionen. Grades ohne Absolutglied beginnt die Nullstellenberechnung

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Klasse ST13a HeSe 13/14 ungr. Serie 14 (Kurvendiskussion, Extremalprobleme)

Klasse ST13a HeSe 13/14 ungr. Serie 14 (Kurvendiskussion, Extremalprobleme) Klasse ST1a HeSe 1/1 ungr MAE1 Serie 1 (Kurvendiskussion, Extremalprobleme) Aufgabe 1 Bestimmen Sie alle Extremal- und Wendepunkte sowie die Steigung der Wendetangenten für y = f(x) = x 5 65 x + 180x.

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

Die Anzahl der Keime in 1 cm 3 Milch wird im zeitlichen Abstand von 1 h bestimmt.

Die Anzahl der Keime in 1 cm 3 Milch wird im zeitlichen Abstand von 1 h bestimmt. 7. Anwendungen ================================================================== 7.1 Exponentielles Wachstum ------------------------------------------------------------------------------------------------------------------

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Gymnasium / Realschule. Extremwertaufgaben. Klassen 8 bis 10

Gymnasium / Realschule. Extremwertaufgaben. Klassen 8 bis 10 Überblick Die vorliegenden sind Textaufgaben, meist mit Zeichnungen versehen, bei denen die Frage gestellt wird, unter welchen Bedingungen ein Wert (z.b. Abstand, Länge, Fläche, Volumen) am größten oder

Mehr

Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab.

Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab. Aufgaben e-funktion 7 6 5 4 3-3 - - 3 u 4 - Gegeben sind die Funktionen f k () = +k e. a) Leite g() = k e ab. b) Die Graphen von f und f 3, die -Achse und die Gerade = u (u > 0) begrenzen die Fläche A(u).

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

Aufgabe Rechenweg Lösung 1.Eine Funktion f mit f(x) = ( x² + 10x 24) e 0.5x beschreibt den Querschnitt eines Tunnels.

Aufgabe Rechenweg Lösung 1.Eine Funktion f mit f(x) = ( x² + 10x 24) e 0.5x beschreibt den Querschnitt eines Tunnels. Lösungen zu den Textaufgaben zur e-funktion Aufgabe Rechenweg Lösung 1.Eine Funktion f mit f(x) = ( x² + 1x 24) e.5x beschreibt den Querschnitt eines Tunnels. a) ( x² + 1x 24) e.5x = ( x² + 1x 24)= v e.5x

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

3. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

3. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. Christian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 3. Übung zum G8-Vorkurs Mathematik (WiSe 0/) Aufgabe 3.: Gehen Sie die Inhalte der

Mehr

Mathematik 2 SS 2016

Mathematik 2 SS 2016 Mathematik 2 SS 2016 2. Übungsblatt Gruppe 1 18. Man zeige, dass die Gleichung f(x, y) = y 5 e y (2x 2 + 3) sin y + x 2 y 2 x cos x = 0 in einer Umgebung des Punktes P (0, 0) nach y aufgelöst werden kann,

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2016 Kurs auf erhöhtem Anforderungsniveau mit CAS Aufgabenvorschlag Teil

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion

Mehr

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen .. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen Aufgabe : Kurvendiskussion Untersuche die folgenden Funktionen auf Symmetrie, Achsenschnittpunkte, Extrem- und Wendepunkte und zeichne ein Schaubild

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/04 Fach (A) Prüfungstag 9. Mai 04 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Hauptprüfung Abiturprüfung 2017 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2017 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 217 (ohne CAS) Baden-Württemberg Wahlteil Analysis A2 Hilfsmittel: GTR und Merkhilfe allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Mai 217 1 Aufgabe A

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Passerelle Mathematik Frühling 2005 bis Herbst 2006

Passerelle Mathematik Frühling 2005 bis Herbst 2006 Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch info@mathenachhilfe.ch 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3

Mehr

Untersuchungen von Funktionen 1

Untersuchungen von Funktionen 1 Untersuchungen von Funktionen 1 Führen Sie für die Funktionen diese Untersuchungen durch : Untersuchen Sie den Graphen auf Symmetrie. Untersuchen Sie das Verhalten der Funktionswerte im Unendlichen. Bestimmen

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Bestimmung ganzrationaler Funktionen

Bestimmung ganzrationaler Funktionen Bestimmung ganzrationaler Funktionen 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens? Wir führen

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe 1.0 Lineare Funktionen: 1.1 Die Gerade g 1 hat die Steigung m 1 = - 0,5 und verläuft durch den Punkt P 1 (-1/-1,5). Bestimme die Gleichung der Geraden g 1. 1.2 Die Gerade g 2 steht auf der Geraden g 1

Mehr

1 Kurvenuntersuchung /40

1 Kurvenuntersuchung /40 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 008 / 009 Fach (A) Name, Vorname Klasse Prüfungstag 9. April 009 Prüfungszeit Zugelassene Hilfsmittel

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur 2001 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt nach Empfehlung durch die Lehrkraft je eine Aufgabe aus den Gebieten G 1, G 2

Mehr

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 016 (ohne CAS) Baden-Württemberg Wahlteil Analysis 1 Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com April 016 1 Aufgabe

Mehr

Ergänzungen zum Fundamentum

Ergänzungen zum Fundamentum Matura 2014 - Mathematik - Gymnasium Immensee 2 Ergänzungen zum Fundamentum Abstand eines Punktes zu einer Geraden d = AP v v Substitution ohne Grenzen Mit u = g(x) gilt: f(g(x))dx = 1 u f(u)du Matura

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Name, Jahr Schwierigkeit Mathematisches Thema Carola Schöttler, 2009 X Extremwertaufgaben. Zimmer im Dach

Name, Jahr Schwierigkeit Mathematisches Thema Carola Schöttler, 2009 X Extremwertaufgaben. Zimmer im Dach Carola Schöttler, 009 X Extremwertaufgaben Zimmer im Dach In der Skizze ist ein Querschnitt eines Dachgeschosses der Höhe 4,8m und Breite 8m dargestellt. In diesem Dachgeschoss soll ein möglichst großes

Mehr

Arbeitsblätter Förderplan EF

Arbeitsblätter Förderplan EF Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen

Mehr

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg Baden-Württemberg: Fachhochschulreie 2015 www.mathe-augaben.com Hauptprüung Fachhochschulreie 2015 Baden-Württemberg Augabe 1 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz

Mehr

Liechtensteinisches Gymnasium

Liechtensteinisches Gymnasium Schriftliche Matura 2015 Liechtensteinisches Gymnasium Prüfer: Huber Sven Klasse 7Wa Zeit: 240 Minuten Name: Klasse: Instruktionen: 1) Gib die zur Rechnung nötigen Einzelschritte an. 2) Skizzen müssen

Mehr

T Nach- bzw. Wiederholungsprüfung:

T Nach- bzw. Wiederholungsprüfung: Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:

Mehr

Differentialquotient. Aufgabe 1. o Gegeben: Das Bild zeigt den Graphen der Funktion f mit f(x) = 0,5x 3 1,5x²

Differentialquotient. Aufgabe 1. o Gegeben: Das Bild zeigt den Graphen der Funktion f mit f(x) = 0,5x 3 1,5x² Differentialquotient Aufgabe 1 Das Bild zeigt den Graphen der Funktion f mit f(x) = 0,5x 3 1,5x² a) Bestimmen Sie die Nullstellen der Funktion. Berechnen Sie in diesen Nullstellen die Steigung des Graphen

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Lösungen zu Differentialrechnung IV-Extremalprobleme

Lösungen zu Differentialrechnung IV-Extremalprobleme Diff rechnung IV 12.12.2006 Lösungen 1 Lösungen zu Differentialrechnung IV-Extremalprobleme 1. Ein Kugelstösser stösst eine Kugel. Die Flugbahn der Kugel lässt sich mit dem folgenden Gesetz beschreiben:

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Bestimmung einer ganzrationalen Funktionenschar

Bestimmung einer ganzrationalen Funktionenschar Bestimmung einer ganzrationalen Funktionenschar x Gesucht ist eine Schar f a ganzrationaler Funktionen. Grades, deren Graphen durch A(0 ) und B( ) verlaufen und in A die Steigung a haben. Funktionenschar

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Bestimmung ganzrationaler Funktionen, Steckbriefaufgaben

Bestimmung ganzrationaler Funktionen, Steckbriefaufgaben Bestimmung ganzrationaler Funktionen, Steckbriefaufgaben 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens?

Mehr

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 06 Aufgabenvorschlag Teil Hilfsmittel: Nachschlagewerk zur Rechtschreibung

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f

Mehr

Mathematik EF. Bernhard Scheideler

Mathematik EF. Bernhard Scheideler Mathematik EF Bernhard Scheideler Stand: 7. September 20 Inhaltsverzeichnis Die Kurvendiskussion. Stetigkeit und Differenzierbarkeit:....................2 Standardsymmetrie:............................

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

Förderaufgaben EF Arbeitsblatt 1 Abgabe Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung.

Förderaufgaben EF Arbeitsblatt 1 Abgabe Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung. Förderaufgaben EF Arbeitsblatt 1 Abgabe 20.1.15 1. Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung. 2. Bestimme f (x): a) f(x) = x 3 + 4x 2 x + 1 b) f(x) =

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

Analysis II. Abitur Mathematik Bayern 2012 Musterlösung. Bayern Teil 1. Aufgabe 1. Aufgabe 2. Abitur Mathematik: Musterlösung.

Analysis II. Abitur Mathematik Bayern 2012 Musterlösung. Bayern Teil 1. Aufgabe 1. Aufgabe 2. Abitur Mathematik: Musterlösung. Abitur Mathematik: Musterlösung Bayern 2012 Teil 1 Aufgabe 1 2x + 3 f(x) = x² + 4x + 3 DEFINITIONSMGE Nullstellen des Nenners:! x² + 4x + 3=0 Lösungen x 1,2 = 4 ± 16 12 2 = 2 ± 1, d.h. x 1 = 3 und x 2

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

/46. Abschlussprüfung Fachoberschule 2013 Mathematik

/46. Abschlussprüfung Fachoberschule 2013 Mathematik Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag B /46 Am. Februar 0 wird um 4:00 Uhr ein Erdbeben mit der Anfangsstärke auf der sogenannten Richter-Skala gemessen. Das Beben dauert etwas länger als

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

Pflichtteilaufgaben zur Integralrechnung

Pflichtteilaufgaben zur Integralrechnung Testklausur K Integralrechnung# Pflichtteilaufgaben zur Integralrechnung Aufgabe : Gib jeweils eine Stammfunktion an: a) f () = ² + f () = Aufgabe : Ermittle eine Stammfunktion für a) f() = n Für welche

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

ABITURPRÜFUNG 2005 LEISTUNGSFACH MATHEMATIK

ABITURPRÜFUNG 2005 LEISTUNGSFACH MATHEMATIK ABITURPRÜFUNG 2005 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 270 Minuten Computeralgebrasystem Tafelwerk Wörterbuch zur deutschen Rechtschreibung Wählen Sie von den Aufgaben A1 und

Mehr