CBLOCK: An Automatic Blocking Mechanism for Large-Scale De-duplication Tasks. Cathleen Ramson, Stefan Lehmann LSDD SS

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "CBLOCK: An Automatic Blocking Mechanism for Large-Scale De-duplication Tasks. Cathleen Ramson, Stefan Lehmann LSDD SS 2013 25.04."

Transkript

1 CBLOCK: An Automatic Blocking Mechanism for Large-Scale De-duplication Tasks Cathleen Ramson, Stefan Lehmann LSDD SS

2 Gliederung 2 Motivation Ziel Algorithmen Zusammenfassung Bewertung

3 Motivation 3 Blocking verringert Komplexität Blocking Functions automatisch erstellen Weniger manueller Aufwand Für optimales Load Balancing

4 Einordnung 4 Trainingsphase Ausführungsphase Map-Schritt Reduce-Schritt CBLOCK Blocking Algorithmus Paarweise Duplikaterkennung Duplikate Trainingsdaten Datenset

5 Ziel 5 Ein Map-Reduce Durchlauf genügt Trotz ungleichmäßiger Datenverteilung einheitliche Blockgröße A B C D E F G H I J K L M

6 Ziel 6 Ein Map-Reduce Durchlauf genügt Trotz ungleichmäßiger Datenverteilung einheitliche Blockgröße Kein Element in mehreren Blöcken

7 Blocking Tree 7 The Rolling Stones; Bridges To Babylon; 13 Artist name NULL <A A-G G-R R-Z >Z

8 Blocking Tree 8 The Rolling Stones; Bridges To Babylon; 13 Artist name NULL <A A-G G-R R-Z >Z Disk title #Tracks A-H H-S S-Z < >12

9 Erlernen optimaler Bäume 9 Voraussetzung Mögliche Hashfunktionen gegeben Trainingsdaten gegeben Artist name NULL <A A-G G-R R-Z >Z Disk title A-H H-S S-Z #Tracks < >12

10 Erlernen optimaler Bäume 10 Wähle Hashfunktion mit wenigsten getrennten Duplikaten Schätze Größe aller Kindknoten Wiederholung für alle großen Kindknoten Disk title #Tracks Watazumi Doso; Music Of Japan; 21 Watazumi Doso; The Art Of Japanese ; 21 Jennifer Lopez; J. Lo; 15 Jennifer Lopez; J. Lo; 16 Artist name

11 Erlernen optimaler Bäume 11 Wähle Hashfunktion mit wenigsten getrennten Duplikaten Schätze Größe aller Kindknoten Wiederholung für alle großen Kindknoten Artist name NULL <A A-G G-R R-Z >Z

12 Erlernen optimaler Bäume 12 Wähle Hashfunktion mit wenigsten getrennten Duplikaten Schätze Größe aller Kindknoten Wiederholung für alle großen Kindknoten Artist name NULL <A A-G G-R R-Z >Z

13 Erlernen optimaler Bäume 13 Wähle Hashfunktion mit wenigsten getrennten Duplikaten Schätze Größe aller Kindknoten Wiederholung für alle großen Kindknoten Artist name Maximale Größe: 100 NULL <A A-G G-R R-Z >Z

14 Rollup 14 Problem: es können viele kleine Blöcke entstehen Unnötig viele Duplikate getrennt Zusammenführen von Knoten kann Duplikate wieder zusammenbringen Artist name Disk title #Tracks

15 Rollup 15 Voraussetzung Kompletter Baum vorhanden Geschätzte Größe aller Blattknoten bekannt Artist name Disk title #Tracks Rolled up Rolled up

16 Rollup 16 Große Blöcke ignorieren Suche Blöcke zum Zusammenführen Maximale Größe: 5

17 Rollup 17 Große Blöcke ignorieren Suche Blöcke zum Zusammenführen Maximale Größe: 5

18 Rollup 18 Große Blöcke ignorieren Suche Blöcke zum Zusammenführen

19 Rollup 19 Große Blöcke ignorieren Suche Blöcke zum Zusammenführen

20 Rollup 20 Große Blöcke ignorieren Suche Blöcke zum Zusammenführen

21 Rollup 21 Große Blöcke ignorieren Suche Blöcke zum Zusammenführen

22 Rollup 22 Große Blöcke ignorieren Suche Blöcke zum Zusammenführen

23 Rollup 23 Große Blöcke ignorieren Suche Blöcke zum Zusammenführen Maximale Größe: 5

24 Rollup - Ergebnis 24 Artist name Disk title #Tracks Rolled up Rolled up

25 Drill-Down 25 Woher kommen die Hashfunktionen? Manuell überlegen Automatisch generieren Drill-Down Algorithmus generiert Hashfunktion basierend auf einem Attribut der Eingabedaten

26 Drill-Down 26 Attribut in Intervalle aufteilen Unterliegt Ordnungsrelation Wertebereich bekannt z.b. Jahreszahlen zwischen 1970 und Kostengrenze: 10 Jahre pro Intervall

27 Drill-Down 27 Möglichst keine Duplikate trennen Intervalle enden an einem Duplikat oder an Kostengrenze Errechne optimale Unterteilung durch rekursiven Ansatz Kostengrenze: 10 Jahre pro Intervall

28 Zusammenfassung 28 Blocking-Algorithmus zur Nutzung in parallelen Umgebungen Artist name Repräsentation der Hash- Funktion als Baumstruktur NULL <A A- G A- H Disk title H- S S-Z G- R R-Z >Z #Tracks < 4-11 >1 3 2 Artist name Vermeidung kleiner Blöcke durch Rollup Disk title #Tracks Rolled up Rolled up Automatisches Generieren von Hash-Funktionen Disk title #Tracks Artist name

29 Offene Probleme und Erweiterungen 29 Erfolg hängt von Qualität der Trainingsdaten ab Repräsentative Verteilung und Größe Möglichst alle Duplikatarten vorhanden, wie z.b. Schreibfehler komplett unterschiedliche Felder Watazumi Doso; Music Of Japan ; 21 Watazumi Doso; The Art Of Japanese Bamboo Flute ; 21

30 Offene Probleme und Erweiterungen 30 Erlernen optimaler Bäume: Größenschätzung der Knoten nicht trivial Drill-Down: Ordnungsrelation nicht immer trivial Hohe Komplexität durch viele konfigurierbare Parameter Maximale Knotengröße für Erstellung des Baumes Maximale Knotengröße für Rollup Kostengrenze für Drill Down Wahl der Hashfunktionen (wenn ohne Drill Down) Statt komplexer Optimierung des Baumes wäre auch Kombination mit Multi-pass Sorted Neighborhood Blocking -Paper denkbar

31 Referenzen 31 Sarma, Anish Das, et al. "CBLOCK: An Automatic Blocking Mechanism for Large-Scale De-duplication Tasks." arxiv preprint arxiv: (2011). Beispiele von

32 32 Cathleen Ramson, Stefan Lehmann

33 Übersichtsfolie zu Paper 33 Detaillierte Algorithmenbeschreibungen Baumgenerierung: Kapitel 4.4 Greedy Algorithm, Seite 7f. Rollup: Kapitel 5 Rolling up small canopies, Seite 8f. Drill-Down: Kapitel 6 Drill-Down Problem, Seite 9ff. Spezialfälle des Baumes Vorstellung: Kapitel Restricted languages, Seite 7 Vergleich der Baumarten: Kapitel 8, Seite 12 ff.

34 Umfang der Trainingsdaten 34 Beispiel im Paper Gesamtdatensatz: Tupel Trainingsdaten: 1054 Paare, also 2108 Tupel (ca. 1,5%) Unser Datensatz Gesamtdatensatz: Tupel Geeignete Trainingsdatengröße: ca Paare

35 Ausführliches Drill-Down Beispiel 35 Möglichst keine Duplikate auseinander reißen Blöcke enden nach einem Duplikat oder an Kostengrenze Bsp. Mit Wertebereich , maximale Kosten 10:

36 Rollup - Auslastung 36 Maximum der Rechenzeit durch größten Block gegeben: Node 1 Node 2 10k x 10k 2k x 2k 2k x 2k

37 Rollup - Auslastung 37 Maximum der Rechenzeit durch größten Block gegeben: Node 1 Node 2 10k x 10k 4k x 4k Zusammenführung erhöht Recall

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Einsatz Evolutionärer Algorithmen zur Optimierung der Tourenplanung eines Wachschutzunternehmens

Einsatz Evolutionärer Algorithmen zur Optimierung der Tourenplanung eines Wachschutzunternehmens Fachhochschule Brandenburg Fachbereich Informatik und Medien Kolloquium zur Diplomarbeit Einsatz Evolutionärer Algorithmen zur Optimierung der Tourenplanung eines Wachschutzunternehmens Übersicht Darstellung

Mehr

Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task Group "CFD Steam Property Formulation"

Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task Group CFD Steam Property Formulation M. Kunick, H. J. Kretzschmar Hochschule Zittau/Görlitz, Fachgebiet Technische Thermodynamik, Zittau Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Data Mining und Machine Learning

Data Mining und Machine Learning Data Mining und Machine Learning Teil 7: Verteiltes Rechnen mit Map Reduce Dr. Harald König, FHDW Hannover 30. November 2015 Inhalt 1 Verteiltes Rechnen 2 Map Reduce 3 Anwendungen 4 Map Reduce: Weiterführende

Mehr

XML Verarbeitung mit einer in Haskell eingebetteten DSL. Manuel Ohlendorf (xi2079)

XML Verarbeitung mit einer in Haskell eingebetteten DSL. Manuel Ohlendorf (xi2079) XML Verarbeitung mit einer in Haskell eingebetteten DSL Manuel Ohlendorf (xi2079) 2.0.200 Manuel Ohlendorf Übersicht 1 2 Einführung Datenstruktur Verarbeitung Vergleich mit anderen Verfahren Fazit 2 Übersicht

Mehr

Unterscheidung: Workflowsystem vs. Informationssystem

Unterscheidung: Workflowsystem vs. Informationssystem 1. Vorwort 1.1. Gemeinsamkeiten Unterscheidung: Workflowsystem vs. Die Überschneidungsfläche zwischen Workflowsystem und ist die Domäne, also dass es darum geht, Varianten eines Dokuments schrittweise

Mehr

Schulinternes Curriculum im Fach Informatik

Schulinternes Curriculum im Fach Informatik Schulinternes Curriculum im Fach Informatik Unterricht in EF : 1. Geschichte der elektronischen Datenverarbeitung (3 Stunden) 2. Einführung in die Nutzung von Informatiksystemen und in grundlegende Begriffe

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Additive Modelle Katharina Morik Informatik LS 8 Technische Universität Dortmund 7.1.2014 1 von 34 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 34 Ausgangspunkt:

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

WISSENSWERTES ÜBER WINDOWS SCALE-OUT FILE SERVER

WISSENSWERTES ÜBER WINDOWS SCALE-OUT FILE SERVER WISSENSWERTES ÜBER WINDOWS SCALE-OUT FILE SERVER AGENDA 01 File Server Lösungen mit Windows Server 2012 R2 02 Scale-out File Server 03 SMB 3.0 04 Neue File Server Features mit Windows Server 2016 05 Storage

Mehr

Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen

Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen Schätzung von Holzvorräten und Baumartenanteilen mittels Wahrscheinlichkeitsmodellen Haruth

Mehr

CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles. Stefan Fleischer, Adolf Hille

CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles. Stefan Fleischer, Adolf Hille CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles Stefan Fleischer, Adolf Hille Gliederung des Vortrags Motivation Physikalische Modellgrundlagen CPM im Einzelnen Resultate

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Maschinelles Lernen. Kapitel 5

Maschinelles Lernen. Kapitel 5 Kapitel 5 Maschinelles Lernen Im täglichen Leben begegnet uns das Lernen meist in einer Mischung aus den Aspekten der Vergrößerung von Wissen und der Verbesserung von Fähigkeiten. Beim Erlernen einer Fremdsprache

Mehr

> Parallele Systeme Übung: 4. Übungsblatt Philipp Kegel Wintersemester 2012/2013. Parallele und Verteilte Systeme, Institut für Informatik

> Parallele Systeme Übung: 4. Übungsblatt Philipp Kegel Wintersemester 2012/2013. Parallele und Verteilte Systeme, Institut für Informatik > Parallele Systeme Übung: 4. Übungsblatt Philipp Kegel Wintersemester 2012/2013 Parallele und Verteilte Systeme, Institut für Informatik Inhaltsverzeichnis 2 1 Besprechung des 4. Übungsblattes Aufgabe

Mehr

1 Einleitung. 1.1 Motivation und Zielsetzung der Untersuchung

1 Einleitung. 1.1 Motivation und Zielsetzung der Untersuchung 1 Einleitung 1.1 Motivation und Zielsetzung der Untersuchung Obgleich Tourenplanungsprobleme zu den am häufigsten untersuchten Problemstellungen des Operations Research zählen, konzentriert sich der Großteil

Mehr

Zeichenketten. Michael Fularczyk Michael Fularczyk Zeichenketten / 41

Zeichenketten. Michael Fularczyk Michael Fularczyk Zeichenketten / 41 Zeichenketten Michael Fularczyk 17.05.2011 Michael Fularczyk Zeichenketten 17.05.2011 1 / 41 Inhalt Zeichenketten Zeichensätze Darstellung Suchverfahren naive Stringsuche Knuth-Morris-Pratt Boyer-Moore

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

5.14 Generics. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

5.14 Generics. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Motivation für Generics: Containertypen speichern eine Anzahl von Elementen anderer Typen Wie definiert man die Containerklasse ArrayList? In der Definition könnte man als Elementtyp Object angeben maximale

Mehr

RFID Media Access. Roland Schneider. Betreuer: Christian Flörkemeier. SS 2003 RFID Media Access 1

RFID Media Access. Roland Schneider. Betreuer: Christian Flörkemeier. SS 2003 RFID Media Access 1 RFID Media Access Roland Schneider Betreuer: Christian Flörkemeier SS 2003 RFID Media Access 1 Überblick! RFID-Technologie! Mehrfachzugriffsverfahren (Media Access)! Bekannte Ansätze! Verfahren für RFID-Systeme!

Mehr

6. Benutzerdefinierte Zahlenformate

6. Benutzerdefinierte Zahlenformate 6. Benutzerdefinierte Zahlenformate Übungsbeispiel Neben den vordefinierten Zahlenformaten stehen Ihnen auch benutzerdefinierte Zahlenformate zur Verfügung. Diese sind wesentlich flexibler und leistungsfähiger,

Mehr

Universität Leipzig Institut für Informatik Auffinden von Dubletten in ECommerce Datenbeständen

Universität Leipzig Institut für Informatik Auffinden von Dubletten in ECommerce Datenbeständen Universität Leipzig Institut für Informatik Auffinden von Dubletten in ECommerce Datenbeständen Hanna Köpcke AG 3: Objekt Matching Agenda Problemstellung FEVER-System - Manuell definierte Match-Strategien

Mehr

Intel Threading Building Blocks (TBB)

Intel Threading Building Blocks (TBB) Intel Threading Building Blocks (TBB) Julius Adorf 26.10.2009 Seminar: Semantics of C++ TU München Tejas und Jayhawk? Intel Threading Building Blocks (TBB) Parallelisierung für C++ eine Bibliothek mittlerweile

Mehr

Erzeugung zufälliger Graphen und Bayes-Netze

Erzeugung zufälliger Graphen und Bayes-Netze Erzeugung zufälliger Graphen und Bayes-Netze Proseminar Algorithmen auf Graphen Georg Lukas, IF2000 2002-07-09 E-Mail: georg@op-co.de Folien: http://op-co.de/bayes/ Gliederung 1. Einleitung 2. einfache

Mehr

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014 Lernen von Entscheidungsbäumen Volker Tresp Summer 2014 1 Anforderungen an Methoden zum Datamining Schnelle Verarbeitung großer Datenmengen Leichter Umgang mit hochdimensionalen Daten Das Lernergebnis

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Kürzeste Wege, Heaps, Hashing Heute: Kürzeste Wege: Dijkstra Heaps: Binäre Min-Heaps Hashing:

Mehr

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt.

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt. Zeit Pivotieren Themenblock: Anfragen auf dem Cube Praktikum: Data Warehousing und Data Mining Zeit Zeit 2 Roll-up und Drill-down Slicing und Dicing Drill-down Januar 2 3 33 1. Quartal 11 36 107 Februar

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Heaps Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 469 Prioritätswarteschlange Problem Häufig ist das Prinzip einer einfachen Warteschlangen-Datenstruktur

Mehr

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele.

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele. 1. Einführung in die Informatik Inhalt 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele Peter Sobe 1 Darstellung von Algorithmen Aus den Einführungsbeispielen und

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik

Mehr

... MathML XHTML RDF

... MathML XHTML RDF RDF in wissenschaftlichen Bibliotheken (LQI KUXQJLQ;0/ Die extensible Markup Language [XML] ist eine Metasprache für die Definition von Markup Sprachen. Sie unterscheidet sich durch ihre Fähigkeit, Markup

Mehr

Dokumenten-Clustering. Norbert Fuhr

Dokumenten-Clustering. Norbert Fuhr Dokumenten-Clustering Norbert Fuhr Dokumenten-Clustering (Dokumenten-)Cluster: Menge von ähnlichen Dokumenten Ausgangspunkt Cluster-Hypothese : die Ähnlichkeit der relevanten Dokumente untereinander und

Mehr

Entscheidungsbäume. Minh-Khanh Do Erlangen,

Entscheidungsbäume. Minh-Khanh Do Erlangen, Entscheidungsbäume Minh-Khanh Do Erlangen, 11.07.2013 Übersicht Allgemeines Konzept Konstruktion Attributwahl Probleme Random forest E-Mail Filter Erlangen, 11.07.2013 Minh-Khanh Do Entscheidungsbäume

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Version* Datum Änderung Verfasser Review Freigabe 0.1 06.11.2013 Erstellung AP AP AP

Version* Datum Änderung Verfasser Review Freigabe 0.1 06.11.2013 Erstellung AP AP AP Service de l informatique et des télécommunications SITel Amt für Informatik und Telekommunikation ITA Impasse de la Colline 1 Givisiez Case postale, 1701 Fribourg T +41 26 305 31 61, F +41 26 305 32 16

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Methoden für den Entwurf von Algorithmen

Methoden für den Entwurf von Algorithmen Methoden für den Entwurf von Algorithmen Greedy Algorithmen: - Löse ein einfaches Optimierungsproblem durch eine Folge vernünftiger Entscheidungen. - Eine getroffene Entscheidung wird nie zurückgenommen.

Mehr

Überblick. Motivation. Motivation. Erzeugung eines virtuellen Baums beim Systemstart

Überblick. Motivation. Motivation. Erzeugung eines virtuellen Baums beim Systemstart Überblick Motivation Wahlalgorithmen Motivation Grundlagen Wellenverfahren Adoptionsverfahren Problem: Wahl eines Anführerknotens szenarien Koordinierung verteilter Aktionen Erzeugung systemweit eindeutiger

Mehr

Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten

Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten Referent: Arndt Ebert 1 2 Ziel des Vortrags Einordnung der point based representation (PBR) und Grundlagen Effiziente

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Beyond Music File Sharing: A Technical Introduction to P2P Networks

Beyond Music File Sharing: A Technical Introduction to P2P Networks Beispielbild Beyond Music File Sharing: A Technical Introduction to P2P Networks Christian Cikryt Fachbereich Informatik, Freie Universität Berlin 29. Januar 2010 Gliederung 1. Motivation 2. Überblick

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Entscheidungsbäume Darstellung durch Regeln ID3 / C4.5 Bevorzugung kleiner Hypothesen Overfitting Entscheidungsbäume

Mehr

Kapitel MK:IV. IV. Modellieren mit Constraints

Kapitel MK:IV. IV. Modellieren mit Constraints Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren

Mehr

Die Gebäudesimulationsplattform NANDRAD

Die Gebäudesimulationsplattform NANDRAD Fakultät Architektur Institut für Bauklimatik, Professur für Bauphysik Die Gebäudesimulationsplattform NANDRAD Andreas Nicolai & Anne Paepcke TU Dresden, Germany Motivation & Ansatz Der Anspruch: energetische

Mehr

COPPPS Software und Services seit 1972 Software und Services aus einer Hand

COPPPS Software und Services seit 1972 Software und Services aus einer Hand Voraussetzung Sie benutzen die Programmerweiterung UST-Voranmeldung und tragen in den Konten die zugehörigen Zeilennummern (KZ) laut UST-Voranmeldungsformular ein. Dazu gehört dann die Bearbeitung der

Mehr

Datenbanksysteme SS 2013

Datenbanksysteme SS 2013 Datenbanksysteme SS 2013 Kapitel 4: Physikalische Datenorganisation Vorlesung vom 16.04.2013 Oliver Vornberger Institut für Informatik Universität Osnabrück Speicherhierarchie GB 10 GHertz TB 100 10 ms

Mehr

Breiten- und Tiefensuche in Graphen

Breiten- und Tiefensuche in Graphen Breiten- und Tiefensuche in Graphen Inhalt Theorie. Graphen. Die Breitensuche in der Theorie am Beispiel eines ungerichteten Graphen. Die Tiefensuche in der Theorie am Beispiel eines gerichteten Graphen

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Klasse räumlicher Indexstrukturen, die den Datenraum rekursiv in 4 gleich große Zellen unterteilen (Quadranten NW, NE, SW, SE)

Klasse räumlicher Indexstrukturen, die den Datenraum rekursiv in 4 gleich große Zellen unterteilen (Quadranten NW, NE, SW, SE) 4.4 Quadtrees Überblick Klasse räumlicher Indexstrukturen, die den Datenraum rekursiv in 4 gleich große Zellen unterteilen (Quadranten NW, NE, SW, SE) Verwaltung von Punkten, Kurven, Flächen usw., häufig

Mehr

Inhaltsverzeichnis. Teil 1 Grundlagen 21. Teil 2 Datenstrukturen 85

Inhaltsverzeichnis. Teil 1 Grundlagen 21. Teil 2 Datenstrukturen 85 Inhaltsverzeichnis Vorwort 13 Umfang 14 Einsatz als Unterrichtsmittel 14 Algorithmen mit Praxisbezug 15 Programmiersprache 16 Danksagung 17 Vorwort des Java-Beraters 18 Hinweise zu den Übungen 19 Teil

Mehr

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen. Algorithmik II SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.de Homepage der Vorlesung Vorbemerkungen I http://www8.informatik.uni-erlangen.de/immd8

Mehr

4.4 Quadtrees. Literatur

4.4 Quadtrees. Literatur 4.4 Quadtrees Überblick Klasse räumlicher Indexstrukturen, die den Datenraum rekursiv in 4 gleich große Zellen unterteilen (Quadranten NW, NE, SW, SE) Verwaltung von Punkten, Kurven, Flächen usw., häufig

Mehr

Visualisierung paralleler bzw. verteilter Programme

Visualisierung paralleler bzw. verteilter Programme Seminar Visualisierung in Informatik und Naturwissenschaften im SS 1999 Visualisierung paralleler bzw. verteilter Programme Holger Dewes Gliederung Zum Begriff Motivation PARADE Beispiel 1: Thread basierte

Mehr

Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen

Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Optimierungsprobleme

Mehr

Wasserfall-Ansätze zur Bildsegmentierung

Wasserfall-Ansätze zur Bildsegmentierung Wasserfall-Ansätze zur Bildsegmentierung von Philipp Jester Seminar: Bildsegmentierung und Computer Vision 16.01.2006 Überblick 1. Problemstellung 2. Wiederholung: Wasserscheiden-Ansätze 3. Der Wasserfall-Ansatz

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 6. Klassische Suche: Datenstrukturen für Suchalgorithmen Malte Helmert Universität Basel 7. März 2014 Klassische Suche: Überblick Kapitelüberblick klassische Suche:

Mehr

Maßhaltigkeitsoptimierung bei der Blechumformung für hochfeste Stähle mit LS-DYNA und HyperWorks

Maßhaltigkeitsoptimierung bei der Blechumformung für hochfeste Stähle mit LS-DYNA und HyperWorks 4. LS-DYNA Anwenderforum, Bamberg 2005 Umformen II Maßhaltigkeitsoptimierung bei der Blechumformung für hochfeste Stähle mit LS-DYNA und HyperWorks Christof Bäuerle (Altair Engineering GmbH) Dr.-Ing. Steffen

Mehr

DduP - Towards a Deduplication Framework utilising Apache Spark

DduP - Towards a Deduplication Framework utilising Apache Spark - Towards a Deduplication Framework utilising Apache Spark utilising Apache Spark Universität Hamburg, Fachbereich Informatik Gliederung 1 Duplikaterkennung 2 Apache Spark 3 - Interactive Big Data Deduplication

Mehr

Clustering (hierarchische Algorithmen)

Clustering (hierarchische Algorithmen) Clustering (hierarchische Algorithmen) Hauptseminar Kommunikation in drahtlosen Sensornetzen WS 2006/07 Benjamin Mies 1 Übersicht Clustering Allgemein Clustering in Sensornetzen Clusterheads Cluster basiertes

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 22. Constraint-Satisfaction-Probleme: Kantenkonsistenz Malte Helmert Universität Basel 14. April 2014 Constraint-Satisfaction-Probleme: Überblick Kapitelüberblick

Mehr

Prof. Dr. Uwe Schmidt. 21.August Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (BInf 211, BTInf 211, BMInf 211, BWInf 211)

Prof. Dr. Uwe Schmidt. 21.August Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (BInf 211, BTInf 211, BMInf 211, BWInf 211) Prof. Dr. Uwe Schmidt 21.August 2007 Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (BInf 211, BTInf 211, BMInf 211, BWInf 211) Zeit: 75 Minuten erlaubte Hilfsmittel: keine Bitte tragen

Mehr

Kapitel 8: Physischer Datenbankentwurf

Kapitel 8: Physischer Datenbankentwurf 8. Physischer Datenbankentwurf Seite 1 Kapitel 8: Physischer Datenbankentwurf Speicherung und Verwaltung der Relationen einer relationalen Datenbank so, dass eine möglichst große Effizienz der einzelnen

Mehr

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen 4.4 MX-Quadtrees (I) MatriX Quadtree Verwaltung 2-dimensionaler Punkte Punkte als 1-Elemente in einer quadratischen Matrix mit Wertebereich {0,1} rekursive Aufteilung des Datenraums in die Quadranten NW,

Mehr

Teil VII. Hashverfahren

Teil VII. Hashverfahren Teil VII Hashverfahren Überblick 1 Hashverfahren: Prinzip 2 Hashfunktionen 3 Kollisionsstrategien 4 Aufwand 5 Hashen in Java Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 7 1 Hashverfahren:

Mehr

Grundlagen der Programmierung (Vorlesung 14)

Grundlagen der Programmierung (Vorlesung 14) Grundlagen der Programmierung (Vorlesung 14) Ralf Möller, FH-Wedel Vorige Vorlesung Verifikation von Anweisungen und Anweisungsfolgen Schleifen Inhalt dieser Vorlesung Funktionen und Prozeduren Lernziele

Mehr

Algorithmen und Datenstrukturen Bereichsbäume

Algorithmen und Datenstrukturen Bereichsbäume Algorithmen und Datenstrukturen Bereichsbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung k-d Baum BSP Baum R Baum Motivation

Mehr

Neue Ansätze der Softwarequalitätssicherung

Neue Ansätze der Softwarequalitätssicherung Neue Ansätze der Softwarequalitätssicherung Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik

Mehr

Vortrag zum Fortsetzungantrag

Vortrag zum Fortsetzungantrag 1 / 18 Vortrag zum Fortsetzungantrag Universität Rostock Fakultät für Informatik und Elektrotechnik Institut für Informatik Lehrstuhl für Informations- und Kommunikationsdienste 24.06.2008 2 / 18 Inhalt

Mehr

Last- und Performancetest mit freien Werkzeugen. Stefan Siegl, 17.04.2012

Last- und Performancetest mit freien Werkzeugen. Stefan Siegl, 17.04.2012 Last- und Performancetest mit freien Werkzeugen Stefan Siegl, 17.04.2012 Über mich Consultant der NovaTec GmbH Performance Engineer Leitung CA Application Performance Management Verantwortlich für Produkte

Mehr

Spieltheorie. Sebastian Wankerl. 16. Juli 2010

Spieltheorie. Sebastian Wankerl. 16. Juli 2010 Spieltheorie Sebastian Wankerl 16. Juli 2010 Inhalt 1 Einleitung 2 Grundlagen Extensive Form choice functions Strategien Nash-Gleichgewicht Beispiel: Gefangenendillema 3 Algorithmen Minimax Theorem Minimax

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

ServiceGlobe: Flexible and Reliable Web Service Execution

ServiceGlobe: Flexible and Reliable Web Service Execution ServiceGlobe: Flexible and Reliable Web Service Execution Markus Keidl, Stefan Seltzsam und Alfons Kemper Universität Passau Fakultät für Mathematik und Informatik 94030 Passau @db.fmi.uni-passau.de

Mehr

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti 6 Baumstrukturen Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Beispiel: Hierarchisches File System 2

Mehr

Logische Modelle für OLAP. Burkhard Schäfer

Logische Modelle für OLAP. Burkhard Schäfer Logische Modelle für OLAP Burkhard Schäfer Übersicht Einführung in OLAP Multidimensionale Daten: Hypercubes Operationen Formale Grundlagen Zusammenfassung Einführung in OLAP Verfahren zur Analyse großer

Mehr

XML-Verarbeitung. XPath XSL die extensible Stylesheet Language. Torsten Schaßan SCRIPTO Modul 4: EDV Wolfenbüttel 25.-29.6.2012.

XML-Verarbeitung. XPath XSL die extensible Stylesheet Language. Torsten Schaßan SCRIPTO Modul 4: EDV Wolfenbüttel 25.-29.6.2012. XML-Verarbeitung XPath XSL die extensible Stylesheet Language Folie 1 Was ist XSL? - Mehrere Komponenten: - XSLT Transformations - XSL-FO Formatting Objects - XPath - (XML-Schema) - Ausgabeformate: - XML,

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

THREAD ARCS: An Email Thread Visualization

THREAD ARCS: An Email Thread Visualization THREAD ARCS: An Email Thread Visualization Eine Technik zur Visualisierung der Email Threads Wladimir Emdin Seminar Visualisierung verteilter Systeme Gliederung 1. Einführung: Email Threads und Ziele deren

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Sortieralgorithmen Einleitung Heapsort Quicksort 2 Motivation Sortieren ist Voraussetzung für viele Anwendungen Nach

Mehr

Ein Algorithmus für die

Ein Algorithmus für die VGG 1 Ein Algorithmus für die Visualisierung gerichteter Graphen in der Ebene (2D) Seminar Graph Drawing SS 2004 bei Prof. Bischof (Lehrstuhl für Hochleistungsrechnen) Gliederung VGG 2 Einleitung Motivation

Mehr

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Steinerbäume

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Steinerbäume Paper Computer Science Experiment Great Principles of Computing Computation (NP-Vollständigkeit) Thema Steinerbäume Unterrichtsform Entdeckendes Lernen, Einzelarbeit, Lernen am Modell Voraussetzung Bäume

Mehr

Muster. Informatik 3 (Februar 2004) Name: Matrikelnummer: Betrachten Sie den folgenden Suchbaum. A G H J K M N

Muster. Informatik 3 (Februar 2004) Name: Matrikelnummer: Betrachten Sie den folgenden Suchbaum. A G H J K M N 2 von 15 Aufgabe 1: Suchbäume (14 ) Betrachten Sie den folgenden Suchbaum. A B C D E F G H I J K L M N O P R (a) (1 Punkt ) Geben Sie die Höhe des Knotens F an. (b) (1 Punkt ) Geben Sie die Tiefe des Knotens

Mehr

AutoSPARQL. Let Users Query Your Knowledge Base

AutoSPARQL. Let Users Query Your Knowledge Base AutoSPARQL Let Users Query Your Knowledge Base Christian Olczak Seminar aus maschinellem Lernen WS 11/12 Fachgebiet Knowledge Engineering Dr. Heiko Paulheim / Frederik Janssen 07.02.2012 Fachbereich Informatik

Mehr

Timed Automata (Zeitbeschriftete Automaten) [R. Alur: Timed Automata]

Timed Automata (Zeitbeschriftete Automaten) [R. Alur: Timed Automata] Timed Automata (Zeitbeschriftete Automaten) [R. Alur: Timed Automata] Formalismus zur Behandlung von Dense Time unterstützt durch Verifikationstools, z.b. UPPAAL Transitionssysteme (Automaten) mit Zeitbeschriftungen

Mehr

Access [basics] Gruppierungen in Abfragen. Beispieldatenbank. Abfragen gruppieren. Artikel pro Kategorie zählen

Access [basics] Gruppierungen in Abfragen. Beispieldatenbank. Abfragen gruppieren. Artikel pro Kategorie zählen Abfragen lassen sich längst nicht nur dazu benutzen, die gewünschten Felder oder Datensätze einer oder mehrerer Tabellen darzustellen. Sie können Daten auch nach bestimmten Kriterien zu Gruppen zusammenfassen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Mathias Krüger / Seminar Datamining

Mathias Krüger / Seminar Datamining Entscheidungsbäume mit SLIQ und SPRINT Mathias Krüger Institut für Informatik FernUniversität Hagen 4.7.2008 / Seminar Datamining Gliederung Einleitung Klassifikationsproblem Entscheidungsbäume SLIQ (

Mehr

ZAHLUNGSAVIS. Im Zahlungsprogrammteil automatisch erstellen

ZAHLUNGSAVIS. Im Zahlungsprogrammteil automatisch erstellen DIBU GS/XP Finanzbuchhaltung Erweiterung ZAHLUNGSAVIS Im Zahlungsprogrammteil automatisch erstellen Seite - 1 - von 8 Seite(n) Stand März 2005-03-28 Technische Hinweise: Geänderte Programme FIZAHL1, FIZAHL2,

Mehr

Datenbanken: Indexe. Motivation und Konzepte

Datenbanken: Indexe. Motivation und Konzepte Datenbanken: Indexe Motivation und Konzepte Motivation Warum sind Indexstrukturen überhaupt wünschenswert? Bei Anfrageverarbeitung werden Tupel aller beteiligter Relationen nacheinander in den Hauptspeicher

Mehr

Fehlertolerante Uhrensynchronisation

Fehlertolerante Uhrensynchronisation Fehlertolerante Uhrensynchronisation Jens Chr. Lisner lisner@informatik.uni-essen.de Institut für Informatik / Universität Essen Institut für Informatik / Universität Essen p.1/23 Übersicht Algorithmus

Mehr

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi Motivation Themenblock: Data Preprocessing We are drowning in information, but starving for knowledge! (John Naisbett) Was genau ist Datenanalyse? Praktikum: Data Warehousing und Data Mining Was ist Data

Mehr

Dr.-Ing. Klaus von Sengbusch. Wide Area Monitoring Systeme - aktuelle Erfahrungen und zukünftige Anwendungsbereiche. ABB Group - 1-14-May-07

Dr.-Ing. Klaus von Sengbusch. Wide Area Monitoring Systeme - aktuelle Erfahrungen und zukünftige Anwendungsbereiche. ABB Group - 1-14-May-07 Dr.-Ing. Klaus von Sengbusch Wide Area Monitoring Systeme - aktuelle Erfahrungen und zukünftige Anwendungsbereiche ABB Group - 1 - Gliederung Veränderungen im Netzbetrieb Aufbau von Weitbereichsüberwachungssystemen

Mehr

MATCHING VON PRODUKTDATEN IN DER CLOUD

MATCHING VON PRODUKTDATEN IN DER CLOUD MATCHING VON PRODUKTDATEN IN DER CLOUD Dr. Andreas Thor Universität Leipzig 15.12.2011 Web Data Integration Workshop 2011 Cloud Computing 2 Cloud computing is using the internet to access someone else's

Mehr