In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert."

Transkript

1 Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht also dem in T (heute) geschätzten Wert. Fließt in die Schätzung die gesamte verfügbare Vergangenheit gleichstark mit ein, so erhält man die folgende Schätzfunktion: Seite 1

2 Konstante Modelle - Gleitender Durchschnitt Da bei der einfachen Mittelwertbildung die gesamte Vergangenheit gleichermaßen berücksichtigt wird, entsteht nach einer Niveauänderung der Nachfrage ein Fehler in der Schätzung, der für immer das Ergebnis beeinflussen wird. Deshalb geht man bei gleitenden Durchschnitten dazu über nur die letzten n Beobachtungen in der Schätzung zu berücksichtigen. Somit hat eine eventuelle Niveauänderung maximal auf die nächsten n Perioden Einfluss. Dies hat allerdings den Nachteil, dass nicht alle verfügbaren Daten genutzt werden, um eine möglichst gute Prognose zu erhalten. Bei der Wahl von n muss also ein Trade-Off zwischen dem Risiko einer Niveauveränderung und dem Stichprobenumfang gefunden werden. Seite 2

3 Konstante Modelle Gewichteter gleitender Durchschnitt Da man den jüngeren Daten i.a. ein größeres Vertrauen entgegenbringen kann als den älteren evtl. auf einem anderen Niveau angesiedelten Daten, ist es unter umständen nützlich jüngere Informationen in der Schätzung stärker zu Gewichten: Dies hat allerdings den Nachteil, dass die n Gewichte vorab geschätzt werden müssen ( großer Stichprobenumfang nötig) Seite 3

4 Konstante Modelle Exponentielle Glättung (erster Ordnung): Um die Zahl der zu berechnenden Gewichte gering zu halten und nicht immer alle Vergangenheitswerte speichern zu müssen, werden alle Realisationen in einer gewichteten Summe berücksichtigt und mit dem gleichen Faktor abgezinst : Dadurch reduziert sich die Zahl der Freiheitsgrad von n+1 ( einen einzigen ( ). ) auf Seite 4

5 (Lineare) Trendmodelle: (Lineare) Trendmodelle sind Modelle, in denen sich die Zufallsgröße linear in der Zeit verändert: bzw. Seite 5

6 (Lineare) Trendmodelle - Einfache lineare Regression: Bei der einfachen linearen Regression werden die beiden Parameter und so bestimmt, dass die Summe der quadratischen Abweichungen zwischen den beobachteten Werten und den zugehörigen Funktionswerten ( Residuen) minimal wird. Bemerkung: Diese Schätzmethode heißt Methode der kleinsten Quadrate. Seite 6

7 (Lineare) Trendmodelle Exponentielle Glättung (zweiter Ordnung): Beinhalten die Daten unter Umständen einen Trend oder saisonale Schwankungen, können diese bei der exponentiellen Glättung zweiter Ordnung (nach Holt) mit berücksichtigt werden. Dazu wird zunächst, wie bei der Glättung erster Ordnung, das Grundniveau der Realisationen bestimmt: Und dann in einer zweiten Glättung die Steigung der Werte mit eingerechnet: Seite 7

8 Saisonale Zeitreihen: Um neben einer Trendentwicklung auch saisonale Schwankungen in einer Zeitreihe zu berücksichtigen, bietet sich unter anderem wieder die exponentielle Glättung an. Da ein einziger Glättungsparameter hier allerdings meist zu unflexibel ist, wird bei der Glättung i.a. auf zwei bis drei Parametern zurückgegriffen. Das Holt-Winters-Verfahren ist eines der bekanntesten Verfahren, das sich mit diesem Ansatz beschäftigt. Seite 8

9 Saisonale Zeitreihen - Holt-Winters-Verfahren: Allgemeiner Ansatz: Der zu prognostizierende Wert besteht aus drei Komponenten: Trendkomponente Saisonkomponente Restkomponente bzw. Störgröße Seite 9

10 Saisonale Zeitreihen - Holt-Winters-Verfahren: Diese Komponenten können additiv, aber auch multiplikativ miteinander verknüpft sein: Bemerkung: Die multiplikative Verknüpfung im zweiten Fall kann durch Logarithmieren in die additive Form überführt werden. Seite 10

11 Saisonale Zeitreihen - Holt-Winters-Verfahren: Mit Hilfe dieser Komponenten lässt sich ein zukünftiger Wert wie folgt prognostizieren: wobei den Prognoseschritt angibt. Die Schätzung der Parameter a, b und c erfolgt hier rekursiv mit Hilfe geometrisch geglätteter Werte. Für jeden Parameter wird ein eigener Glättungsparameter verwendet. Seite 11

12 Modellauswahl: Auswahlkriterien: Akaike's Informationskriterium: Schwarz Kriterium: Hannan-Quinn Kriterium: Bemerkung: K entspricht jeweils der Anzahl der Freiheitsgrade und der Varianz der Residuen, bzw. dem Mittleren Quadratischen Fehler (MSE). Seite 12

Dynamische Systeme und Zeitreihenanalyse // Saisonbereinigung und Glättung 10 p.2/??

Dynamische Systeme und Zeitreihenanalyse // Saisonbereinigung und Glättung 10 p.2/?? Dynamische Systeme und Zeitreihenanalyse Saisonbereinigung und Glättung Kapitel 10 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Saisonbereinigung und Glättung

Mehr

Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren

Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren Institut für Arbeitsmarkt- und Berufsforschung Folie 1 Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren Katharina Hampel Marcus Kunz Norbert Schanne Antje Weyh Dr.

Mehr

Zerlegung von Zeitreihen

Zerlegung von Zeitreihen Kapitel 7 Zerlegung von Zeitreihen Josef Leydold c 2006 Mathematische Methoden VII Zerlegung von Zeitreihen 1 / 39 Lernziele Klassische Zerlegung von Zeitreihen Saisonbereinigungsverfahren: Gleitende Durchschnitte

Mehr

6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell

6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell 6. Das klassische Komponentenmodell Gegeben sei eine ZR x t für die Zeitpunkte t = 1,..., T. Im additiven klassischen Komponentenmodell wird sie folgendermaßen zerlegt: x t = ˆm t + ŝ t + ε t ˆm t ist

Mehr

5. Zeitreihenanalyse und Prognoseverfahren

5. Zeitreihenanalyse und Prognoseverfahren 5. Zeitreihenanalyse und Prognoseverfahren Stichwörter: Trend, Saisonalität, Noise, additives Modell, multiplikatives Modell, Trendfunktion, Autokorrelationsfunktion, Korrelogramm, Prognosehorizont, Prognoseintervall,

Mehr

[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an.

[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an. 13 Zeitreihenanalyse 1 Kapitel 13: Zeitreihenanalyse A: Übungsaufgaben: [ 1 ] 1 a a) Nach der Formel x t+i berechnet man einen ein f achen gleitenden Durchschnitt. 2a + 1 i= a b) Die Residuale berechnet

Mehr

Zeitreihenanalyse Das Holt-Winters-Verfahren

Zeitreihenanalyse Das Holt-Winters-Verfahren Zeitreihenanalyse Das Holt-Winters-Verfahren Worum geht es in diesem Lernmodul? Einleitung Modellannahmen Die Prognoseformel des Holt-Winters-Verfahren Die Glättungskoeffizienten Die Startwerte Weiterführende

Mehr

11. Zeitreihen mit Trend und Saisonalität

11. Zeitreihen mit Trend und Saisonalität In diesem Abschnitt geht es um ZR, die in eine Trend-, eine Saisonund eine Restkomponente zerlegt werden können. (Das Niveau sei in der Trendkomponente enthalten.) Beispiele für solche ZR sind in Abb.

Mehr

1 Prognoseverfahren F H

1 Prognoseverfahren F H 1 Prognoseverfahren 1.1 Zielsetzung 1.2 Bedarfsverlauf von Verbrauchsfaktoren 1.3 Prognose bei regelmäßigen Bedarf 1.4 Prognosemodelle in Standard-ERP-Software 1.5 Ausblick Herrmann, Frank: Operative Planung

Mehr

Überschrift. Titel Prognosemethoden

Überschrift. Titel Prognosemethoden Überschrift Prognosemethoden Überschrift Inhalt 1. Einleitung 2. Subjektive Planzahlenbestimmung 3. Extrapolierende Verfahren 3.1 Trendanalyse 3.2 Berücksichtigung von Zyklus und Saison 4. Kausale Prognosen

Mehr

Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signalklassen

Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signalklassen Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signallassen Diplomverteidigung Yongrui Qiao 25. 06. 2009 1/33 Gliederung Motivation und Problemstellung Testverfahren

Mehr

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Regression: 4 eindimensionale Beispiele Berühmte

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung).

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). a) Die Anzahl der voneinander verschiedenen Beobachtungswerte eines statistischen Merkmals

Mehr

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Zeitreihenanalyse Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Beispiel für Zeitreihe Andere Anwendungen Inventarmanagment Produktionsplanung

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Tageserträge am Aktienmarkt. und die. 200-Tage-Linie. von. Dr. rer. nat. Hans Uhlig. Copyright 2009 - Dr. Hans Uhlig

Tageserträge am Aktienmarkt. und die. 200-Tage-Linie. von. Dr. rer. nat. Hans Uhlig. Copyright 2009 - Dr. Hans Uhlig Tageserträge am Aktienmarkt und die 200-Tage-Linie von Dr. rer. nat. Hans Uhlig Copyright 2009 - Dr. Hans Uhlig Copyright Hinweis Der Text und die Abildungen dieses Beitrages unterliegen dem Urheberrechtsschutz.

Mehr

Prognoseverfahren von Michaela Simon 7.Semester Spezialisierung Finanzwirtschaft

Prognoseverfahren von Michaela Simon 7.Semester Spezialisierung Finanzwirtschaft Prognoseverfahren von Michaela Simon 7.Semester Spezialisierung Finanzwirtschaft Inhaltsverzeichnis I. Allgemeine Aussagen II. Subjektive Planzahlenbestimmung III. Extrapolierende Verfahren 1. Trendanalyse:

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter Leseprobe Wilhelm Kleppmann Versuchsplanung Produkte und Prozesse optimieren ISBN: -3-44-4033-5 Weitere Informationen oder Bestellungen unter http://www.hanser.de/-3-44-4033-5 sowie im Buchhandel. Carl

Mehr

Beispiele in R: Einfacher gleitender Durchschnitt und Exponentielles Glätten

Beispiele in R: Einfacher gleitender Durchschnitt und Exponentielles Glätten Beispiele in R: Einfacher gleitender Durchschnitt und Exponentielles Glätten Regina Tüchler & Thomas Rusch November 2, 2009 Beispiel: Einfacher Gleitender Durchschnitt der Nil-Daten: Wir haben Daten über

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Das Wachstum der deutschen Volkswirtschaft

Das Wachstum der deutschen Volkswirtschaft Institut für Wachstumsstudien www.wachstumsstudien.de IWS-Papier Nr. 1 Das Wachstum der deutschen Volkswirtschaft der Bundesrepublik Deutschland 1950 2002.............Seite 2 Relatives Wachstum in der

Mehr

AUTOMATISIERTE HANDELSSYSTEME

AUTOMATISIERTE HANDELSSYSTEME UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie

Mehr

Bestandsmanagement. Prognoseverfahren und Lagerhaltungspolitiken

Bestandsmanagement. Prognoseverfahren und Lagerhaltungspolitiken Bestandsmanagement Prognoseverfahren und Lagerhaltungspolitiken Inhalt Bestandsmanagement in Supply Chains Prognoseverfahren Prognose bei regelmäßigem Bedarf Konstantes Bedarfsniveau Trendförmiges Bedarfsniveau

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik Name, Vorname:... verteilung Teil 1: Beschreibende Statistik Aufgaben

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

Wirtschaftliche Trendbetrachtung und Prognosemodelle im Rahmen des kommunalen Objektmanagements

Wirtschaftliche Trendbetrachtung und Prognosemodelle im Rahmen des kommunalen Objektmanagements Wirtschaftliche Trendbetrachtung und Prognosemodelle im Rahmen des kommunalen Objektmanagements Alexander Haß, Denny Megallis, Maik Moser Gliederung 1. Theoretische Einführung in Trendanalysen 2. Beispielhafte

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Zeit Umsatz. t U=U(t) BS - 13 BS Modul : Analyse zeitabhängiger Daten z.b. Prof. Dr. W. Laufner Beschreibende Statistik

Zeit Umsatz. t U=U(t) BS - 13 BS Modul : Analyse zeitabhängiger Daten z.b. Prof. Dr. W. Laufner Beschreibende Statistik BS - 1 1 Modul 1 : Analyse zeitabhängiger Daten z.b. Zeit Umsatz t UU(t) BS - 1 2 Modul 1: Zeitreihenanalyse 0 70 60 Zeitreihenanalyse Umsatz (Mio ) 0 40 0 0 Q1 Q2 Q Q4 Q1 Q2 Q Q4 Q1 Q2 Q Q4 Q1 Q2 Q Q4

Mehr

Statische Versuchsplanung (DoE - Design of Experiments)

Statische Versuchsplanung (DoE - Design of Experiments) Statische Versuchsplanung (DoE - Design of Experiments) Übersicht Bei der statistischen Versuchsplanung wird die Wirkung von Steuerparametern unter dem Einfluss von Störparametern untersucht. Mit Hilfe

Mehr

Kapitel 5. Prognose. Zeitreihenanalyse wird aus drei Gründen betrieben: Beschreibung des Verlaufs von Zeitreihen.

Kapitel 5. Prognose. Zeitreihenanalyse wird aus drei Gründen betrieben: Beschreibung des Verlaufs von Zeitreihen. Kapitel 5 Prognose Josef Leydold c 2006 Mathematische Methoden V Prognose 1 / 14 Lernziele Aufgabe der Prognose Problemtypen Ablauf einer Prognoseaufgabe Zeitreihe Josef Leydold c 2006 Mathematische Methoden

Mehr

Senkung des technischen Zinssatzes und des Umwandlungssatzes

Senkung des technischen Zinssatzes und des Umwandlungssatzes Senkung des technischen Zinssatzes und des Umwandlungssatzes Was ist ein Umwandlungssatz? Die PKE führt für jede versicherte Person ein individuelles Konto. Diesem werden die Beiträge, allfällige Einlagen

Mehr

ChangePoint-Analysen - ein Überblick

ChangePoint-Analysen - ein Überblick ChangePoint-Analysen - ein Überblick Gliederung Motivation Anwendungsgebiete Chow Test Quandt-Andrews Test Fluktuations-Tests Binary Segmentation Recursive circular and binary segmentation algorithm Bayesscher

Mehr

Beispiel in R: Verfahren zur Modellierung von ZR mit Saison und Trend

Beispiel in R: Verfahren zur Modellierung von ZR mit Saison und Trend Beispiel in R: Verfahren zur Modellierung von ZR mit Saison und Trend Regina Tüchler November 2, 2009 Beispiel: Zeitreihenanalyse der Übernachtungs-Daten: Wir haben Daten mit monatlichen Übernachtungszahlen

Mehr

3 Trend- und Saisonkomponenten

3 Trend- und Saisonkomponenten 3 Trend- und Saisonkomponenten Schritte bei der Analyse von Zeitreihendaten : Plot ; Identifikation von Strukturbrüchen, Ausreißern etc. ; Modellansatz, z.b. klassisches Komponentenmodell X t = m t + s

Mehr

Business Forecasting im Dienst der Neutralen Benchmarkprognose

Business Forecasting im Dienst der Neutralen Benchmarkprognose Business Forecasting im Dienst der Neutralen Benchmarkprognose Dr. Oscar A. G. Treyer Senior Lecturer in Accounting, Universität St. Gallen 2 Agenda Ausgangssituation Neutrale Benchmarkprognose Saisonalisierung

Mehr

Primus Marktbericht vom 09. Dezember 2010

Primus Marktbericht vom 09. Dezember 2010 Primus Marktbericht vom 09. Dezember 2010 CERTUS update die sicherheitsorientierte Vermögensanlage Mit dem CERTUS startet vor Weihnachten der zweite Publikumsfonds der Primus Invest. Wieder steht die Oberbank

Mehr

3 Trend- und Saisonkomponenten

3 Trend- und Saisonkomponenten 3 Trend- und Saisonkomponenten Schritte bei der Analyse von Zeitreihendaten : Plot ; Identifikation von Strukturbrüchen, Ausreißern etc. ; Modellansatz, z.b. klassisches Komponentenmodell X t = m t + s

Mehr

Dokumentation. estat Version 2.0

Dokumentation. estat Version 2.0 Dokumentation estat Version 2.0 Installation Die Datei estat.xla in beliebiges Verzeichnis speichern. Im Menü Extras AddIns... Durchsuchen die Datei estat.xla auswählen. Danach das Auswahlhäkchen beim

Mehr

Weiterbildungskurs Stochastik

Weiterbildungskurs Stochastik Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

13. Übungswoche - Lösungen

13. Übungswoche - Lösungen 1 13. Übungswoche - Lösungen Kapitel 12: Varianzanalyse (Fortsetzung) [ 3 ] a) Es gibt deutliche Unterschiede, die Gruppen 2, 3, 7 und 9 liegen deutlich tiefer. b) F = DQ(gruppe)/DQ(Residuals) = 25.13/6.19

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Klausur in Statistik VWA Essen

Klausur in Statistik VWA Essen Prof. Dr. Peter von der Lippe Klausur in Statistik VWA Essen neue Regelung (verkürzter Stoff) Bitte schreiben Sie hier Ihren Namen auf das Deckblatt. Bitte neben dieser Aufgabenstellung keine weitere Blätter

Mehr

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung Kernel, Perceptron, Regression Erich Schubert, Arthur Zimek Ludwig-Maximilians-Universität München 2014-07-20 KDD Übung Kernel-Fukctionen Kernel kann mehrdeutig sein! Unterscheidet zwischen: Kernel function

Mehr

Kapitel XII - Einführung in die Zeitreihenanalyse

Kapitel XII - Einführung in die Zeitreihenanalyse Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Einführung in die Zeitreihenanalyse Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

DOE am Beispiel Laserpointer

DOE am Beispiel Laserpointer DOE am Beispiel Laserpointer Swen Günther Ein wesentliches Ziel im Rahmen der Neuproduktentwicklung ist die aus Kundesicht bestmögliche, d.h. nutzenmaximale Konzeption des Produktes zu bestimmen (vgl.

Mehr

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch 1 2 - Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch Badewannenkurve. -mit der Badewannenkurve lässt

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de 1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de Man sollte eine Excel-Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte

Mehr

Prognosen. Prognosen sind schwierig, besonders wenn sie die Zukunft betreffen. Auch ein Weiser hat nicht immer recht Prognosefehler sind hoch

Prognosen. Prognosen sind schwierig, besonders wenn sie die Zukunft betreffen. Auch ein Weiser hat nicht immer recht Prognosefehler sind hoch Universität Ulm 8969 Ulm Germany Dipl.-WiWi Sabrina Böck Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Wintersemester 8/9 Prognosen

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Technische Universität München. Prognoseverfahren. Mit PC-Unterstützung Tendenzen und Prognose in der Forstwirtschaft erkennen

Technische Universität München. Prognoseverfahren. Mit PC-Unterstützung Tendenzen und Prognose in der Forstwirtschaft erkennen Prognoseverfahren Mit PC-Unterstützung Tendenzen und Prognose in der Forstwirtschaft erkennen Definition und Fragen Was ist eine Prognose, was ein Trend Wo werden sie angewandt und zu welchem Zweck Relevanz

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Deutscher Spendenmonitor

Deutscher Spendenmonitor 2015 20 Jahre Methodischer Steckbrief Grundgesamtheit: Stichprobenumfang Deutschsprachige Bevölkerung in der Bundesrepublik Deutschland im Alter ab 14 Jahren n = 4.024 Befragte Ø Befragungslänge Erhebungsmethode

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Physiklabor 4 Michel Kaltenrieder 10. Februar

Mehr

Technische Universität München. Marktforschung in der Forstwissenschaft und Holzwirtschaft

Technische Universität München. Marktforschung in der Forstwissenschaft und Holzwirtschaft Marktforschung in der Forstwissenschaft und Holzwirtschaft Literatur C. Fantapié Altobelli; S. Hoffmann (2011): Grundlagen der Marktforschung. UVK Verlag, Konstanz. G. Grunwald; B. Hempelmann (2013): Übungen

Mehr

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003 F 23 Beta-Zähler Wolfgang Unger, Robert Wagner 25. Juni 2003 Inhaltsverzeichnis 1 Auswertung 2 1.1 Eichung des Proportionalzählers mit 55 F e............. 2 1.2 Energieverlust von 40K im Zählrohr................

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

GERECHT IT-GESTÜTZTES ARBEITEN IN DER FACHABTEILUNG ABTEILUNGS. Entscheidungsgrundlagen für Auswahl, Installation und Betrieb von SAP*-Lösungen

GERECHT IT-GESTÜTZTES ARBEITEN IN DER FACHABTEILUNG ABTEILUNGS. Entscheidungsgrundlagen für Auswahl, Installation und Betrieb von SAP*-Lösungen Entscheidungsgrundlagen für Auswahl, Installation und Betrieb von SAP*-Lösungen Sonderdruck aus Heft 11/2010 vom 09.11.2010 www.sap-port.de IT-GESTÜTZTES ARBEITEN IN DER FACHABTEILUNG ABTEILUNGS GERECHT

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013

QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013 QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013 ZEITREIHEN 1 Viele Beobachtungen in den Wirtschaftswissenschaften

Mehr

Diese Unterlage bezieht sich auf Excel 2010 (auf Deutsch). Die Benutzeroberfläche kann in anderen Versionen der Software erheblich anders aussehen.

Diese Unterlage bezieht sich auf Excel 2010 (auf Deutsch). Die Benutzeroberfläche kann in anderen Versionen der Software erheblich anders aussehen. Vorbemerkung Diese Unterlage bezieht sich auf Excel 2010 (auf Deutsch). Die Benutzeroberfläche kann in anderen Versionen der Software erheblich anders aussehen. Einiges, das bei der Bearbeitung der Übung

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Excel-Anleitung zur Übung 1. Formeln in Excel (Auszug aus der MS Excel Hilfe)

Excel-Anleitung zur Übung 1. Formeln in Excel (Auszug aus der MS Excel Hilfe) Excel-Anleitung zur Übung 1 Diese Unterlage bezieht sich auf Excel 2003 (auf Deutsch), die Version, die auch im PC-Labor des WWZ zur Verfügung steht. Die Benutzeroberfläche kann in anderen Versionen der

Mehr

Grundlagen der Videotechnik. Redundanz

Grundlagen der Videotechnik. Redundanz Grundlagen der Videotechnik Redundanz Redundanz beruht auf: - statistischen Abhängigkeiten im Signal, - Information, die vorher schon gesendet wurde - generell eine Art Gedächtnis im Signal Beispiel: Ein

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Aufgabe 1: IS-Kurve Leiten Sie graphisch mit Hilfe

Mehr

sondern alle Werte gleich behandelt. Wir dürfen aber nicht vergessen, dass Ergebnisse, je länger sie in der Vergangenheit

sondern alle Werte gleich behandelt. Wir dürfen aber nicht vergessen, dass Ergebnisse, je länger sie in der Vergangenheit sondern alle Werte gleich behandelt. Wir dürfen aber nicht vergessen, dass Ergebnisse, je länger sie in der Vergangenheit liegen, an Bedeutung verlieren. Die Mannschaften haben sich verändert. Spieler

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit

Mehr

Abbildung 1: Meldepflichtige Arbeitsunfälle

Abbildung 1: Meldepflichtige Arbeitsunfälle Steigende Ausgaben für Prävention Sinkende Arbeitsunfallzahlen: Eine empirische Studie * Dr. P. Kemény, K. Scherer * In Zusammenarbeit mit der Ludwig-Maximilians-Universität München (Lehrstuhl für Ökonometrie,

Mehr

Lebensdauer eines x-jährigen

Lebensdauer eines x-jährigen Lebensdauer eines x-jährigen Sabrina Scheriau 20. November 2007, Graz 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Einleitung 3 2 Sterbewahrscheinlichkeiten 4 2.1 Definition und Ermittlung....................

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

a) Nennen Sie die verschiedenen Ebenen der amtlichen Statistik in Deutschland und die dafür zuständigen Behörden.

a) Nennen Sie die verschiedenen Ebenen der amtlichen Statistik in Deutschland und die dafür zuständigen Behörden. Statistik I, SS 2005, Seite 1 von 9 Statistik I Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - selbst erstellte Formelsammlung für

Mehr

Merkblatt. Der Ausgleichsanspruch des Handelsvertreters

Merkblatt. Der Ausgleichsanspruch des Handelsvertreters Merkblatt Der Ausgleichsanspruch des Handelsvertreters Allgemeines Nach Beendigung des Vertragsverhältnisses kann der Handelsvertreter vom vertretenen Unternehmen einen angemessenen Ausgleich verlangen.

Mehr

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl FAKTORIELLE VERSUCHSPLÄNE Andreas Handl 1 Inhaltsverzeichnis 1 Versuchsplanung 4 2 Einfaktorielle Varianzanalyse 6 2.1 DieAnnahmen... 6 2.2 Die ANOVA-Tabelle und der F -Test... 6 2.3 Versuche mit zwei

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

13. Übungswoche. Kapitel 12: Varianzanalyse (Fortsetzung)

13. Übungswoche. Kapitel 12: Varianzanalyse (Fortsetzung) 1 13. Übungswoche Kapitel 12: Varianzanalyse (Fortsetzung) [ 3 ] Im Vorkurs Mathematik für Wirtschafstwissenschaftler vor Beginn des Sommersemesters 2009 wurde am Anfang und am Ende ein Test geschrieben,

Mehr

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Tag der Mathematik 2009 Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Thomas Kneib Fakultät für Mathematik und Naturwissenschaften Carl von Ossietzky Universität Oldenburg

Mehr

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands Auswertung zum Versuch Widerstandskennlinien und ihre Temperaturabhängigkeit Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 2. Juni 2008 1 Temperaturabhängigkeit eines Halbleiterwiderstands

Mehr

Der Einfluss monovalenter Strom- Wärmepumpen auf den Bedarf an gesicherter Kraftwerksleistung. Michael Bräuninger. Nr. 5

Der Einfluss monovalenter Strom- Wärmepumpen auf den Bedarf an gesicherter Kraftwerksleistung. Michael Bräuninger. Nr. 5 RESULTS ERGEBNISSE Der Einfluss monovalenter Strom- Wärmepumpen auf den Bedarf an gesicherter Kraftwerksleistung Michael Bräuninger Nr. 5 Hamburg, August 2015 Der Einfluss monovalenter Strom- Wärmepumpen

Mehr

BPL II Ü bung. Aufgabe 1. Aufgabe 2. Andreas Schwab

BPL II Ü bung. Aufgabe 1. Aufgabe 2. Andreas Schwab BPL II Ü bung Andreas Schwab Andreas.schwab1@uni-wuerzburg.de 24.4.213 Aufgabe 1 a) Einfacher gleitender Durchschnitt Prognosewert der Periode t+1 in t gleitender Durchschnitt in Periode t unter Berücksichtigung

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2 U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage

Mehr