In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert."

Transkript

1 Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht also dem in T (heute) geschätzten Wert. Fließt in die Schätzung die gesamte verfügbare Vergangenheit gleichstark mit ein, so erhält man die folgende Schätzfunktion: Seite 1

2 Konstante Modelle - Gleitender Durchschnitt Da bei der einfachen Mittelwertbildung die gesamte Vergangenheit gleichermaßen berücksichtigt wird, entsteht nach einer Niveauänderung der Nachfrage ein Fehler in der Schätzung, der für immer das Ergebnis beeinflussen wird. Deshalb geht man bei gleitenden Durchschnitten dazu über nur die letzten n Beobachtungen in der Schätzung zu berücksichtigen. Somit hat eine eventuelle Niveauänderung maximal auf die nächsten n Perioden Einfluss. Dies hat allerdings den Nachteil, dass nicht alle verfügbaren Daten genutzt werden, um eine möglichst gute Prognose zu erhalten. Bei der Wahl von n muss also ein Trade-Off zwischen dem Risiko einer Niveauveränderung und dem Stichprobenumfang gefunden werden. Seite 2

3 Konstante Modelle Gewichteter gleitender Durchschnitt Da man den jüngeren Daten i.a. ein größeres Vertrauen entgegenbringen kann als den älteren evtl. auf einem anderen Niveau angesiedelten Daten, ist es unter umständen nützlich jüngere Informationen in der Schätzung stärker zu Gewichten: Dies hat allerdings den Nachteil, dass die n Gewichte vorab geschätzt werden müssen ( großer Stichprobenumfang nötig) Seite 3

4 Konstante Modelle Exponentielle Glättung (erster Ordnung): Um die Zahl der zu berechnenden Gewichte gering zu halten und nicht immer alle Vergangenheitswerte speichern zu müssen, werden alle Realisationen in einer gewichteten Summe berücksichtigt und mit dem gleichen Faktor abgezinst : Dadurch reduziert sich die Zahl der Freiheitsgrad von n+1 ( einen einzigen ( ). ) auf Seite 4

5 (Lineare) Trendmodelle: (Lineare) Trendmodelle sind Modelle, in denen sich die Zufallsgröße linear in der Zeit verändert: bzw. Seite 5

6 (Lineare) Trendmodelle - Einfache lineare Regression: Bei der einfachen linearen Regression werden die beiden Parameter und so bestimmt, dass die Summe der quadratischen Abweichungen zwischen den beobachteten Werten und den zugehörigen Funktionswerten ( Residuen) minimal wird. Bemerkung: Diese Schätzmethode heißt Methode der kleinsten Quadrate. Seite 6

7 (Lineare) Trendmodelle Exponentielle Glättung (zweiter Ordnung): Beinhalten die Daten unter Umständen einen Trend oder saisonale Schwankungen, können diese bei der exponentiellen Glättung zweiter Ordnung (nach Holt) mit berücksichtigt werden. Dazu wird zunächst, wie bei der Glättung erster Ordnung, das Grundniveau der Realisationen bestimmt: Und dann in einer zweiten Glättung die Steigung der Werte mit eingerechnet: Seite 7

8 Saisonale Zeitreihen: Um neben einer Trendentwicklung auch saisonale Schwankungen in einer Zeitreihe zu berücksichtigen, bietet sich unter anderem wieder die exponentielle Glättung an. Da ein einziger Glättungsparameter hier allerdings meist zu unflexibel ist, wird bei der Glättung i.a. auf zwei bis drei Parametern zurückgegriffen. Das Holt-Winters-Verfahren ist eines der bekanntesten Verfahren, das sich mit diesem Ansatz beschäftigt. Seite 8

9 Saisonale Zeitreihen - Holt-Winters-Verfahren: Allgemeiner Ansatz: Der zu prognostizierende Wert besteht aus drei Komponenten: Trendkomponente Saisonkomponente Restkomponente bzw. Störgröße Seite 9

10 Saisonale Zeitreihen - Holt-Winters-Verfahren: Diese Komponenten können additiv, aber auch multiplikativ miteinander verknüpft sein: Bemerkung: Die multiplikative Verknüpfung im zweiten Fall kann durch Logarithmieren in die additive Form überführt werden. Seite 10

11 Saisonale Zeitreihen - Holt-Winters-Verfahren: Mit Hilfe dieser Komponenten lässt sich ein zukünftiger Wert wie folgt prognostizieren: wobei den Prognoseschritt angibt. Die Schätzung der Parameter a, b und c erfolgt hier rekursiv mit Hilfe geometrisch geglätteter Werte. Für jeden Parameter wird ein eigener Glättungsparameter verwendet. Seite 11

12 Modellauswahl: Auswahlkriterien: Akaike's Informationskriterium: Schwarz Kriterium: Hannan-Quinn Kriterium: Bemerkung: K entspricht jeweils der Anzahl der Freiheitsgrade und der Varianz der Residuen, bzw. dem Mittleren Quadratischen Fehler (MSE). Seite 12

5. Zeitreihenanalyse und Prognoseverfahren

5. Zeitreihenanalyse und Prognoseverfahren 5. Zeitreihenanalyse und Prognoseverfahren Stichwörter: Trend, Saisonalität, Noise, additives Modell, multiplikatives Modell, Trendfunktion, Autokorrelationsfunktion, Korrelogramm, Prognosehorizont, Prognoseintervall,

Mehr

[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an.

[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an. 13 Zeitreihenanalyse 1 Kapitel 13: Zeitreihenanalyse A: Übungsaufgaben: [ 1 ] 1 a a) Nach der Formel x t+i berechnet man einen ein f achen gleitenden Durchschnitt. 2a + 1 i= a b) Die Residuale berechnet

Mehr

Zeitreihenanalyse Das Holt-Winters-Verfahren

Zeitreihenanalyse Das Holt-Winters-Verfahren Zeitreihenanalyse Das Holt-Winters-Verfahren Worum geht es in diesem Lernmodul? Einleitung Modellannahmen Die Prognoseformel des Holt-Winters-Verfahren Die Glättungskoeffizienten Die Startwerte Weiterführende

Mehr

11. Zeitreihen mit Trend und Saisonalität

11. Zeitreihen mit Trend und Saisonalität In diesem Abschnitt geht es um ZR, die in eine Trend-, eine Saisonund eine Restkomponente zerlegt werden können. (Das Niveau sei in der Trendkomponente enthalten.) Beispiele für solche ZR sind in Abb.

Mehr

Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren

Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren Institut für Arbeitsmarkt- und Berufsforschung Folie 1 Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren Katharina Hampel Marcus Kunz Norbert Schanne Antje Weyh Dr.

Mehr

Überschrift. Titel Prognosemethoden

Überschrift. Titel Prognosemethoden Überschrift Prognosemethoden Überschrift Inhalt 1. Einleitung 2. Subjektive Planzahlenbestimmung 3. Extrapolierende Verfahren 3.1 Trendanalyse 3.2 Berücksichtigung von Zyklus und Saison 4. Kausale Prognosen

Mehr

Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signalklassen

Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signalklassen Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signallassen Diplomverteidigung Yongrui Qiao 25. 06. 2009 1/33 Gliederung Motivation und Problemstellung Testverfahren

Mehr

Beispiele in R: Einfacher gleitender Durchschnitt und Exponentielles Glätten

Beispiele in R: Einfacher gleitender Durchschnitt und Exponentielles Glätten Beispiele in R: Einfacher gleitender Durchschnitt und Exponentielles Glätten Regina Tüchler & Thomas Rusch November 2, 2009 Beispiel: Einfacher Gleitender Durchschnitt der Nil-Daten: Wir haben Daten über

Mehr

Bestandsmanagement. Prognoseverfahren und Lagerhaltungspolitiken

Bestandsmanagement. Prognoseverfahren und Lagerhaltungspolitiken Bestandsmanagement Prognoseverfahren und Lagerhaltungspolitiken Inhalt Bestandsmanagement in Supply Chains Prognoseverfahren Prognose bei regelmäßigem Bedarf Konstantes Bedarfsniveau Trendförmiges Bedarfsniveau

Mehr

Zeit Umsatz. t U=U(t) BS - 13 BS Modul : Analyse zeitabhängiger Daten z.b. Prof. Dr. W. Laufner Beschreibende Statistik

Zeit Umsatz. t U=U(t) BS - 13 BS Modul : Analyse zeitabhängiger Daten z.b. Prof. Dr. W. Laufner Beschreibende Statistik BS - 1 1 Modul 1 : Analyse zeitabhängiger Daten z.b. Zeit Umsatz t UU(t) BS - 1 2 Modul 1: Zeitreihenanalyse 0 70 60 Zeitreihenanalyse Umsatz (Mio ) 0 40 0 0 Q1 Q2 Q Q4 Q1 Q2 Q Q4 Q1 Q2 Q Q4 Q1 Q2 Q Q4

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

Kapitel XII - Einführung in die Zeitreihenanalyse

Kapitel XII - Einführung in die Zeitreihenanalyse Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Einführung in die Zeitreihenanalyse Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Technische Universität München. Marktforschung in der Forstwissenschaft und Holzwirtschaft

Technische Universität München. Marktforschung in der Forstwissenschaft und Holzwirtschaft Marktforschung in der Forstwissenschaft und Holzwirtschaft Literatur C. Fantapié Altobelli; S. Hoffmann (2011): Grundlagen der Marktforschung. UVK Verlag, Konstanz. G. Grunwald; B. Hempelmann (2013): Übungen

Mehr

Wirtschaftliche Trendbetrachtung und Prognosemodelle im Rahmen des kommunalen Objektmanagements

Wirtschaftliche Trendbetrachtung und Prognosemodelle im Rahmen des kommunalen Objektmanagements Wirtschaftliche Trendbetrachtung und Prognosemodelle im Rahmen des kommunalen Objektmanagements Alexander Haß, Denny Megallis, Maik Moser Gliederung 1. Theoretische Einführung in Trendanalysen 2. Beispielhafte

Mehr

ChangePoint-Analysen - ein Überblick

ChangePoint-Analysen - ein Überblick ChangePoint-Analysen - ein Überblick Gliederung Motivation Anwendungsgebiete Chow Test Quandt-Andrews Test Fluktuations-Tests Binary Segmentation Recursive circular and binary segmentation algorithm Bayesscher

Mehr

Technische Universität München. Prognoseverfahren. Mit PC-Unterstützung Tendenzen und Prognose in der Forstwirtschaft erkennen

Technische Universität München. Prognoseverfahren. Mit PC-Unterstützung Tendenzen und Prognose in der Forstwirtschaft erkennen Prognoseverfahren Mit PC-Unterstützung Tendenzen und Prognose in der Forstwirtschaft erkennen Definition und Fragen Was ist eine Prognose, was ein Trend Wo werden sie angewandt und zu welchem Zweck Relevanz

Mehr

Weiterbildungskurs Stochastik

Weiterbildungskurs Stochastik Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen

Mehr

13. Übungswoche. Kapitel 12: Varianzanalyse (Fortsetzung)

13. Übungswoche. Kapitel 12: Varianzanalyse (Fortsetzung) 1 13. Übungswoche Kapitel 12: Varianzanalyse (Fortsetzung) [ 3 ] Im Vorkurs Mathematik für Wirtschafstwissenschaftler vor Beginn des Sommersemesters 2009 wurde am Anfang und am Ende ein Test geschrieben,

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik Name, Vorname:... verteilung Teil 1: Beschreibende Statistik Aufgaben

Mehr

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage i Günther Bourier Beschreibende Statistik Praxisorientierte Einführung - Mit Aufgaben und Lösungen 12., überarbeitete und aktualisierte Auflage 4^ Springer Gabler Inhaltsverzeichnis Vorwort V 1 Einführung

Mehr

Prognosen. Prognosen sind schwierig, besonders wenn sie die Zukunft betreffen. Auch ein Weiser hat nicht immer recht Prognosefehler sind hoch

Prognosen. Prognosen sind schwierig, besonders wenn sie die Zukunft betreffen. Auch ein Weiser hat nicht immer recht Prognosefehler sind hoch Universität Ulm 8969 Ulm Germany Dipl.-WiWi Sabrina Böck Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Wintersemester 8/9 Prognosen

Mehr

Einführung in die computergestützte Datenanalyse

Einführung in die computergestützte Datenanalyse Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung).

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). a) Die Anzahl der voneinander verschiedenen Beobachtungswerte eines statistischen Merkmals

Mehr

Inhaltsverzeichnis. Vorwort 13. Teil I Beschreibende Statistik 17. Kapitel 1 Statistische Merkmale und Variablen 19

Inhaltsverzeichnis. Vorwort 13. Teil I Beschreibende Statistik 17. Kapitel 1 Statistische Merkmale und Variablen 19 Inhaltsverzeichnis Vorwort 13 Teil I Beschreibende Statistik 17 Kapitel 1 Statistische Merkmale und Variablen 19 1.1 Statistische Einheiten und Grundgesamtheiten 19 1.2 Merkmale und Merkmalsausprägungen

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013

QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013 QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013 ZEITREIHEN 1 Viele Beobachtungen in den Wirtschaftswissenschaften

Mehr

GERECHT IT-GESTÜTZTES ARBEITEN IN DER FACHABTEILUNG ABTEILUNGS. Entscheidungsgrundlagen für Auswahl, Installation und Betrieb von SAP*-Lösungen

GERECHT IT-GESTÜTZTES ARBEITEN IN DER FACHABTEILUNG ABTEILUNGS. Entscheidungsgrundlagen für Auswahl, Installation und Betrieb von SAP*-Lösungen Entscheidungsgrundlagen für Auswahl, Installation und Betrieb von SAP*-Lösungen Sonderdruck aus Heft 11/2010 vom 09.11.2010 www.sap-port.de IT-GESTÜTZTES ARBEITEN IN DER FACHABTEILUNG ABTEILUNGS GERECHT

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Zeitreihenanalyse Das klassische Komponentenmodell

Zeitreihenanalyse Das klassische Komponentenmodell Zeitreihenanalyse Das klassische Komponentenmodell Worum geht es in diesem Lernmodul? Zeitreihen mit unterschiedlichen Charakteristika Zeitreihen mit regelmäßigen Schwankungen Mittel und Niveau einer Zeitreihe

Mehr

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013)

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013) Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 203) Aufgabe (9 Punkte) Ein metrisches Merkmal X sei in einer Grundgesamtheit vom Umfang n = 200 diskret klassiert.

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Statistische Methoden der VWL und BWL Theorie und Praxis ST?

Statistische Methoden der VWL und BWL Theorie und Praxis ST? Statistische Methoden der VWL und BWL Theorie und Praxis ST? Vorwort 13 Teil I Beschreibende Statistik 17 Kapitel 1 Statistische Merkmale und Variablen 19 1.1 Statistische Einheiten und Grundgesamtheiten

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

Zeitreihenanalyse Der einfache gleitende Durchschnitt

Zeitreihenanalyse Der einfache gleitende Durchschnitt Zeitreihenanalyse Der einfache gleitende Durchschnitt Worum geht es in diesem Lernmodul? Einleitung Erläuterung der Methode Berechnung des einfachen gleitenden Durchschnitts Der einfache gleitende Durchschnitt

Mehr

Statistik Einführung // Lineare Regression 9 p.2/72

Statistik Einführung // Lineare Regression 9 p.2/72 Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression

Mehr

Statistik am PC. Lösungen mit Excel. Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck

Statistik am PC. Lösungen mit Excel. Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck Statistik am PC Lösungen mit Excel Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck 5., aktualisierte und erweiterte Auflage 2008. Buch. XVI, 528 S. Hardcover ISBN 978 3 446 41555 3 Format

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

Controlling mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013C

Controlling mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013C Controlling mit Excel 2013 Peter Wies Themen-Special 1. Ausgabe, Februar 2014 W-EX2013C 3 Controlling mit Excel 2013 - Themen-Special 3 Trendberechnungen durchführen In diesem Kapitel erfahren Sie was

Mehr

1. Lineare Regression (Ausgleichsgerade)

1. Lineare Regression (Ausgleichsgerade) Carl-Engler-Schule Karlsruhe Lineare Regression 1 (6) 1. Lineare Regression (Ausgleichsgerade) 1.1 Was ist eine Ausgleichsgerade? Die Ausgleichsgerade ist ein Ausgleichs-Verfahren zur Kurvenanpassung (Approximation).

Mehr

Prognosemethoden angewandt auf Besucherzahlen ausgewählter Ausflugsziele in Niederösterreich: Stift Geras und Kunsthalle Krems

Prognosemethoden angewandt auf Besucherzahlen ausgewählter Ausflugsziele in Niederösterreich: Stift Geras und Kunsthalle Krems Wirtschaftsuniversität Wien Institut für Tourismus und Freizeitwirtschaft Course 2 WS 2002/03 Andreas Zins Prognosemethoden angewandt auf Besucherzahlen ausgewählter Ausflugsziele in Niederösterreich:

Mehr

Supply Chain Management

Supply Chain Management 1 3 7 9 11 13 1 17 19 21 23 2 27 29 1 3 7 9 11 13 1 17 19 21 23 2 27 1 3 7 9 11 13 1 17 19 21 23 2 27 29 1 Supply Chain Management Demand Planning Collaboration Reading: M. Fisher et al.: Den Absatz planen

Mehr

2. Eindimensionale (univariate) Datenanalyse

2. Eindimensionale (univariate) Datenanalyse 2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten

Mehr

Nächste-Nachbarn-Verfahren zur Reservierung für Einzelschäden

Nächste-Nachbarn-Verfahren zur Reservierung für Einzelschäden Nächste-Nachbarn-Verfahren zur Reservierung für Einzelschäden Universität Hamburg, Department Mathematik Hamburg, 16. November 2006 ASTIN-Herbsttagung Motivation Vorgehen Problemstellung Situation: Ziel:

Mehr

Tageserträge am Aktienmarkt. und die. 200-Tage-Linie. von. Dr. rer. nat. Hans Uhlig. Copyright 2009 - Dr. Hans Uhlig

Tageserträge am Aktienmarkt. und die. 200-Tage-Linie. von. Dr. rer. nat. Hans Uhlig. Copyright 2009 - Dr. Hans Uhlig Tageserträge am Aktienmarkt und die 200-Tage-Linie von Dr. rer. nat. Hans Uhlig Copyright 2009 - Dr. Hans Uhlig Copyright Hinweis Der Text und die Abildungen dieses Beitrages unterliegen dem Urheberrechtsschutz.

Mehr

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.

Mehr

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung Kernel, Perceptron, Regression Erich Schubert, Arthur Zimek Ludwig-Maximilians-Universität München 2014-07-20 KDD Übung Kernel-Fukctionen Kernel kann mehrdeutig sein! Unterscheidet zwischen: Kernel function

Mehr

Übung 1 - Konjunkturprognosen

Übung 1 - Konjunkturprognosen Universität Ulm 89069 Ulm Germany Dipl.-Math. oec. Daniel Siepe Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Wintersemester 2010/2011

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

Modelle und Methoden der Zeitreihenanalyse

Modelle und Methoden der Zeitreihenanalyse Modelle und Methoden der Zeitreihenanalyse Mike Hüftle 31. Juli 2006 Inhaltsverzeichnis 1 Einleitung 2 1.1 Einordnung der Zeitreihenanalyse.................. 2 1.2 Darstellung von Zeitreihen......................

Mehr

Statistik II für Betriebswirte Vorlesung 12

Statistik II für Betriebswirte Vorlesung 12 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die

Mehr

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2.

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2. Seminar Finanzmathematik - Begrüßung - Motivation - Inhaltsangabe 3. Zusammen - fassung Zeitreihenanalyse Andreas Dienst SS 2006 Zeitreihen: Definition und Motivation - Begrüßung - Motivation - Inhaltsangabe

Mehr

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Prof. Dr. Günter Hellmig Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Erstes Kapitel Die Feingliederung des ersten Kapitels, welches sich mit einigen

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

5 Kontinuierliches Wachstum

5 Kontinuierliches Wachstum 5 Kontinuierliches Wachstum Kontinuierlich meßbare Größe Wir betrachten nun eine Größe a, die man kontinuierlich messen kann. Den Wert von a zum Zeitpunkt t schreiben wir nun als a(t). Wir können jedem

Mehr

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge)

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 Methoden der Modellbildung statischer Systeme Teil 2 (für ausgewählte Masterstudiengänge) FACHGEBIET Systemanalyse PRAKTIKUM Experimentelle Prozeßanalyse 2 VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge) Verantw. Hochschullehrer: Prof.

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Business Forecasting im Dienst der Neutralen Benchmarkprognose

Business Forecasting im Dienst der Neutralen Benchmarkprognose Business Forecasting im Dienst der Neutralen Benchmarkprognose Dr. Oscar A. G. Treyer Senior Lecturer in Accounting, Universität St. Gallen 2 Agenda Ausgangssituation Neutrale Benchmarkprognose Saisonalisierung

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Stochastische Prozesse und Zeitreihenmodelle

Stochastische Prozesse und Zeitreihenmodelle Kapitel 12 Stochastische Prozesse und Zeitreihenmodelle Department of Statistics and Mathematics WU Wien c 2008 Statistik 12 Stochastische Prozesse und Zeitreihenmodelle 0 / 53 Inhalt Notation Zusammenhang

Mehr

5.6 Empirische Wirtschaftsforschung

5.6 Empirische Wirtschaftsforschung 5.6.0 Vorbemerkungen Literatur Winker, P. (2010): Empirische Wirtschaftsforschung und Ökonometrie. 3. Auflage. Springer. Insbesondere Kapitel 1, 4 und 10. Volltext-Download im Rahmen des LRZ-Netzes. Rinne,

Mehr

Primus Marktbericht vom 09. Dezember 2010

Primus Marktbericht vom 09. Dezember 2010 Primus Marktbericht vom 09. Dezember 2010 CERTUS update die sicherheitsorientierte Vermögensanlage Mit dem CERTUS startet vor Weihnachten der zweite Publikumsfonds der Primus Invest. Wieder steht die Oberbank

Mehr

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Tag der Mathematik 2009 Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Thomas Kneib Fakultät für Mathematik und Naturwissenschaften Carl von Ossietzky Universität Oldenburg

Mehr

b) falsch. Das arithmetische Mittel kann bei nominal skalierten Merkmalen überhaupt nicht berechnet werden.

b) falsch. Das arithmetische Mittel kann bei nominal skalierten Merkmalen überhaupt nicht berechnet werden. Aufgabe 1: Nehmen Sie Stellung zu den nachfolgenden Behauptungen (richtig/falsch mit kurzer Begründung): a) Die normierte Entropie ist gleich Eins, wenn alle Beobachtungen gleich häufig sind. b) Bei einem

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Statistik - Übungsaufgaben

Statistik - Übungsaufgaben Statistik - Übungsaufgaben 1) Eine vor mehreren Jahren durchgeführte Befragung von 30 Arbeitern eines Großbetriebes ergab für die Stundenlöhne folgende Liste: 16,35 16,80 15,75 16,95 16,20 17,10 16,64

Mehr

Bestandsplanung und -steuerung: Die Bedarfsermittlung

Bestandsplanung und -steuerung: Die Bedarfsermittlung Bestandsplanung und -steuerung: Die Bedarfsermittlung Dortmund, Oktober 1998 Prof. Dr. Heinz-Michael Winkels, Fachbereich Wirtschaft FH Dortmund Emil-Figge-Str. 44, D44227-Dortmund, TEL.: (0231)755-4966,

Mehr

Einführung in die kurzfristige Zeitreihenprognose und Vergleich der einzelnen Verfahren

Einführung in die kurzfristige Zeitreihenprognose und Vergleich der einzelnen Verfahren Einführung in die kurzfristige Zeitreihenprognose und Vergleich der einzelnen Verfahren 2 Michael Schröder 2.1 Allgemeine Überlegungen 2.1.1 Anforderungen an Verfahren für kurzfristige Prognoserechnungssysteme

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Aufgabe 1 (Exponentielles Wachstum, wird teilweise auch in Vorlesung besprochen, Teile a) bis c) sind exakt die Aufgaben von Blatt 2, Aufgabe 3))

Aufgabe 1 (Exponentielles Wachstum, wird teilweise auch in Vorlesung besprochen, Teile a) bis c) sind exakt die Aufgaben von Blatt 2, Aufgabe 3)) Formalisierungspropädeutikum Übungsblatt 3 Prof. Dr. Th. Augustin, Dr. R. Poellinger, C. Jansen, J. Plaß, G. Schollmeyer WiSe 2015/16 Aufgabe 1 (Exponentielles Wachstum, wird teilweise auch in Vorlesung

Mehr

Abbildung 1: Meldepflichtige Arbeitsunfälle

Abbildung 1: Meldepflichtige Arbeitsunfälle Steigende Ausgaben für Prävention Sinkende Arbeitsunfallzahlen: Eine empirische Studie * Dr. P. Kemény, K. Scherer * In Zusammenarbeit mit der Ludwig-Maximilians-Universität München (Lehrstuhl für Ökonometrie,

Mehr

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch 1 2 - Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch Badewannenkurve. -mit der Badewannenkurve lässt

Mehr

12.6 Prognosen erstellen

12.6 Prognosen erstellen Mit der entstandenen Gruppierung gelingt es Ihnen nun, im Bedarfsfall die Umsatzdaten des Vorjahres auszublenden. Die Prognosen des Folgejahres und die Sparklines bleiben hingegen erhalten. Voraussetzung

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Preismesszahl: Misst Preisveränderung eines einzelnen Gutes: Preis zum Zeitpunkt

Mehr

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet.

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. 11.01.2012 Prof. Dr. Ingo Klein Klausur zur VWA-Statistik Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. Aufgabe 1:

Mehr

Lebensdauer eines x-jährigen

Lebensdauer eines x-jährigen Lebensdauer eines x-jährigen Sabrina Scheriau 20. November 2007, Graz 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Einleitung 3 2 Sterbewahrscheinlichkeiten 4 2.1 Definition und Ermittlung....................

Mehr

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Von Professor Dr. Gert Heinrich 3., durchgesehene Auflage R.Oldenbourg Verlag München Wien T Inhaltsverzeichnis

Mehr

Statistik für Business Administration

Statistik für Business Administration Fachhochschule Jena University of Applied Sciences Jena Aufgaben zur Wiederholung Deskriptive Statistik Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiß Sommersemester 2010 Statistik für Business

Mehr

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 Inhalt 4. Empirische Momente von Zeitreihendaten 4.1. Autokorrelation, Autokorrelogramm 4.2. Stationarität 5. Empirische Momente in R SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 1. Teil:

Mehr

Grundlagen der digitalen Bildverarbeitung / Fortsetzung

Grundlagen der digitalen Bildverarbeitung / Fortsetzung Grundlagen der digitalen Bildverarbeitung / Fortsetzung Wir haben bereits zwei Beispiele digitaler Bildfilter gesehen. Es gibt eine große Menge von Filtern mit ganz unterschiedlicher Auswirkung auf das

Mehr

6.2 Regressionsanalyse

6.2 Regressionsanalyse c-kennzahlensystem (ROCI) 6. Regressionsanalyse Die Regressionsanalyse zählt zu den wichtigsten Analysemethoden des Kommunikationscontrollings und hat ihre tiefen Wurzeln in der Statistik. Im Rahmen des

Mehr

Statistik für Wirtschaftswissenschaftler

Statistik für Wirtschaftswissenschaftler Peter R Eckstein Statistik für Wirtschaftswissenschaftler Eine realdatenbasierte Einführung mit SPSS 2., aktualisierte und erweiterte Auflage GABLER HOCHSCHULE LIECHTENSTEIN Bibliothek Inhaltsverzeichnis

Mehr

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter Leseprobe Wilhelm Kleppmann Versuchsplanung Produkte und Prozesse optimieren ISBN: -3-44-4033-5 Weitere Informationen oder Bestellungen unter http://www.hanser.de/-3-44-4033-5 sowie im Buchhandel. Carl

Mehr

die täglichen Schlusskurse eines börsengehandelten Wertpapiers,

die täglichen Schlusskurse eines börsengehandelten Wertpapiers, Wirtschaftswissenschaftliches Zentrum 5 Universität Basel Statistik Dr. Thomas Zehrt Zeitreihen Motivation Typische Beispiele für Zeitreihen sind die täglichen Schlusskurse des SMI Nummer 1 2 3 4 5 Datum

Mehr

MÖGLICHKEITEN UND GRENZEN DER VORHERSAGBARKEIT VON EPIDEMIEN IN FRÜHEN STADIEN

MÖGLICHKEITEN UND GRENZEN DER VORHERSAGBARKEIT VON EPIDEMIEN IN FRÜHEN STADIEN MÖGLICHKEITEN UND GRENZEN DER VORHERSAGBARKEIT VON EPIDEMIEN IN FRÜHEN STADIEN Mario Ziller Friedrich-Loeffler-Institut Bundesforschungsinstitut für Tiergesundheit Institut für Epidemiologie Seestr. 55,

Mehr

2.3 Nichtlineare Regressionsfunktion

2.3 Nichtlineare Regressionsfunktion Nichtlineare Regressionsfunktion Bisher: lineares Regressionsmodell o Steigung d. Regressionsgerade ist konstant o Effekt einer Änderung von X auf Y hängt nicht vom Niveau von X oder von anderen Regressoren

Mehr

AUTOMATISIERTE HANDELSSYSTEME

AUTOMATISIERTE HANDELSSYSTEME UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie

Mehr

5 DIFFERENZIALRECHNUNG EINFÜHRUNG

5 DIFFERENZIALRECHNUNG EINFÜHRUNG M /, Kap V Einführung in die Differenzialrechnung S 5 DIFFERENZIALRECHNUNG EINFÜHRUNG Zielvorgabe für die Kapitel 5 bis 55: Wir wollen folgende Begriffe definieren und deren Bedeutung verstehen: Differenzenquotient,

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Echtzeitanomalieerkennung für Internetdienste (Abschlussvortrag)

Echtzeitanomalieerkennung für Internetdienste (Abschlussvortrag) Lehrstuhl für Netzarchitekturen und Netzdienste Institut für Informatik Technische Universität München Echtzeitanomalieerkennung für Internetdienste (Abschlussvortrag) Markus Sieber Betreuer: Ali Fessi,

Mehr

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell:

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell: Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen LV-Leiterin: Univ.Prof.Dr. Sylvia Frühwirth-Schnatter 1 Wahr oder falsch? 1. Das folgende Modell ist ein GARCH(1,1)-Modell: Y

Mehr

Klausur in Statistik VWA Essen

Klausur in Statistik VWA Essen Prof. Dr. Peter von der Lippe Klausur in Statistik VWA Essen neue Regelung (verkürzter Stoff) Bitte schreiben Sie hier Ihren Namen auf das Deckblatt. Bitte neben dieser Aufgabenstellung keine weitere Blätter

Mehr