Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen:"

Transkript

1 Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen: Peano-Zahlen, Listen, Bäume Rekursive Funktionen strukturelle Induktion Rekursionsschemata für Peano-Zahlen, Listen, Bäume Funktionen höherer Ordnung (mit Funktionen als Argumenten) λ-kalkül, β-reduktion fold auf rekursiven Datentypen (Peano-Zahlen, Listen, Bäume) map auf Listen und Bäumen, filter auf Listen Bedarfsauswertung (lazy evaluation): leftmost outermost reduction + sharing

2 Sortieren sortiert :: Ord a => [a] -> Bool sortiert xs = foldr (&&) True $ zipwith (<=) xs $ tail xs sort :: Ord a => [a] -> [a] z.b. durch Einfügen in (anfangs leeren) binären Suchbaum Inorder-Ausgabe

3 Klassische Sortier-Verfahren Sortieren durch Einfügen insert :: Ord a => a -> [ a ] -> [ a ] insert x [] = [x] insert x ( y : ys ) x <= y = x : y : ys x > y = y : (insert x ys) isort :: Ord a => [a] -> [a] isort [] = [] isort (x:xs) = insert x $ isort xs Quicksort qsort :: Ord a => [a] -> [a] qsort [] = [] qsort (x:xs) = qsort [ y y <- xs, y <= x] ++ [x] ++ qsort [ y y <- xs, y > x]

4 Mergesort merge :: Ord a => [a] -> [a] -> [a] merge xs [] = xs merge [] ys = ys merge (x : xs) (y : ys) x <= y = x : merge xs ( y : ys ) otherwise = y : merge ( x : xs ) ys msort :: Ord a => [a] -> [a] msort [] = [] msort [ x ] = [ x ] msort xs = merge ( msort l ) ( msort r ) where ( l, r ) = splitat halb xs halb = div (length xs) 2

5 Ver- und Entschlüsseln Verschiebe-Chiffre symmetrisches Verschlüsselungs-Verfahren: derselbe Schlüssel zum Ver- und Entschlüsseln Substitutionschiffre: Ersetzung jedes Klartextsymboles durch ein Chiffretextsymbol monoalphabetisch: Klartextsymbol überall durch dasselbe Chiffretextsymbol ersetzt Klartextmenge: M = {a, b,..., z} Chiffretextmenge: C = {a, b,..., z} Schlüsselmenge: K = {0,..., 25} Verschlüsselung: jeden Buchstaben durch Buchstaben k Positionen später im Alphabet ersetzen Entschlüsselung: jeden Buchstaben durch Buchstaben k Positionen früher im Alphabet ersetzen klassisches Beispiel: Caesar-Chiffre k = 3

6 Verschlüsseln für jeden (Klein-)Buchstaben im Klartext: Buchstabe durch Zahl {0,..., 25} ersetzen b2int :: Char -> Int b2int b = ord b - ord a Zahl durch entsprechenden Buchstaben ersetzen int2b :: Int -> Char int2b n = chr (ord a + n) Buchstabe mit Schlüssel k verschlüsseln: enc :: Int -> Char -> Char enc k b islower b = int2b ( mod (k + b2int b) 26) otherwise = b Klartext verschlüsseln: encode :: Int -> String -> String encode k = map ( enc k ) Chiffretext entschlüsseln:...

7 Angriffe auf Verschiebechiffren Ciphertext-Only-Angriffe auf Verschiebechiffren gegeben: verschlüsselter Text hinreichend lang, natürlichsprachig (deutsch), mit Verschiebechiffre verschlüsselt gesucht: Klartext ( und evtl. Schlüssel ) Ideen für Angriffe: Brute Force: Ausprobieren aller 26 Schlüssel typische Häufigkeiten von Buchstaben, Buchstabengruppen

8 Funktionen auf Listen / Strings Anzahl der Vorkommen eines Elementes in einer Liste: countel :: Eq a => a -> [ a ] -> Int countel b = ( foldr (\x y -> y + 1) 0 ). filter ( == b ) z.b. countel o "foo" = 2 Anzahl der Kleinbuchstaben in einer Zeichenkette: lowers :. String -> Int lowers = ( foldr (\x y -> y + 1) 0 ). filter ( islower ) z.b. lowers "Foo!" = 2

9 Funktionen auf Listen / Strings alle Positionen eines Elementes in einer Liste: positions :: Eq a => a -> [ a ] -> [ Int ] positions x xs = ( map fst ) $ filter (\ ( _, y) -> y == x ) $ zip [ 0.. ] xs z.b. positions o "foo" = [1,2] Rotieren von Listen rotate :: Int -> [ a ] -> [ a ] rotate n xs = drop n xs ++ take n xs

10 Buchstaben-Häufigkeiten Häufigkeiten (in deutschen Texten): haeufigkeitstabelle :: [ Float ] haeufigkeitstabelle = [6.51, 1.89, 3.06, 5.08, 17.4, 1.66, 3.01, 4.76, 7.55, 0.27, 1.21, 3.44, 2.53, 9.78, 2.51, 0.79, 0.02, 7.00, 7.27, 6.15, 4.35, 0.67, 1.89, 0.03, 0.04, 1.13] zip [ a.. z ] häufigkeitstabelle proz :: Int -> Int -> Float proz m n = (fromintegral m / fromintegral n) * 100 Prozentuale Häufigkeit im (verschlüsselten) Text: häufigkeiten :: String -> [ Float ] häufigkeiten t = [ proz ( countel x t ) n x <- [ a.. z ] ] where n = lowers t

11 Statistik Test auf (annähernd) gleiche Verteilung durch Chi-Quadrat-Test für Buchstabenhäufigkeiten erwartet: e R {0,...,25} 0 (häufigkeitstabelle) im Text t aufgetreten: a R {0,...,25} 0 (häufigkeiten t) e, a R {0,...,25} n 1 0 : χ 2 (a, e) = i=0 (a i e i ) 2 e i chiquad :: [ Float ] -> [ Float ] -> Float chiquad a e = foldr (\x y -> x + y) 0 $ zipwith (\ x y -> (x - y)^2 / y) a e chiquad (häufigkeiten "ipiqirx") häufigkeitstabelle

12 Knacken der Verschiebechiffre Chi-Test für alle möglichen Schlüssel k {0,..., 25} für Chiffretext c: chitab = [ chiquad ( rotate k ( häufigkeiten c ) ) häufigkeitstabelle k <- [ ] ] Index (Verschiebung) des kleinsten χ 2 -Wertes: k = head ( positions (minimum chitab ) chitab ) where chitab = [ chiquad (rotate n (häufigkeiten c)) häufigkeitstabelle n <- [ ] ] ist (wahrscheinlich) der Schlüssel crack :: String -> String crack c = decode k c where k = head ( positions (minimum chitab ) chitab ) chitab = [ chiquad (rotate n (häufigkeiten c)) häufigkeitstabelle n <- [0.. 25]]

Funktionale Programmierung mit Haskell

Funktionale Programmierung mit Haskell Funktionale Programmierung mit Haskell Dr. Michael Savorić Hohenstaufen-Gymnasium (HSG) Kaiserslautern Version 20120622 Überblick Wichtige Eigenschaften Einführungsbeispiele Listenerzeugung und Beispiel

Mehr

ALP I. Funktionale Programmierung

ALP I. Funktionale Programmierung ALP I Funktionale Programmierung Sortieren und Suchen (Teil 1) WS 2012/2013 Suchen 8 False unsortiert 21 4 16 7 19 11 12 7 1 5 27 3 8 False sortiert 2 4 6 7 9 11 12 18 21 24 27 36 Suchen in unsortierten

Mehr

WS 2011/2012. RobertGiegerich. November 12, 2013

WS 2011/2012. RobertGiegerich. November 12, 2013 WS 2011/2012 Robert AG Praktische Informatik November 12, 2013 Haskell-Syntax: Ergänzungen Es gibt noch etwas bequeme Notation für Fallunterscheidungen, die wir bisher nicht benutzt haben. Bisher kennen

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

Funktionale Programmierung mit Haskell. Jan Hermanns

Funktionale Programmierung mit Haskell. Jan Hermanns Funktionale Programmierung mit Haskell Jan Hermanns 1 Programmiersprachen imperativ deklarativ konventionell OO logisch funktional Fortran Smalltalk Prolog Lisp C Eiffel ML Pascal Java Haskell 2 von Neumann

Mehr

Programmieren in Haskell Einstieg in Haskell

Programmieren in Haskell Einstieg in Haskell Programmieren in Haskell Einstieg in Haskell Peter Steffen Universität Bielefeld Technische Fakultät 24.10.2008 1 Programmieren in Haskell Was wir heute machen Umfrage: Wer hat den Hugs ausprobiert? Ausdrücke

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Wir steigen ein... Programmieren in Haskell 1 Was wir heute machen Umfrage: Wer hat den Hugs ausprobiert? Ausdrücke und Werte Datentypen Funktionen Aufgabe für diese Woche Programmieren

Mehr

Tutorium - Haskell in der Schule. Ralf Dorn - Dennis Buchmann - Felix Last - Carl Ambroselli

Tutorium - Haskell in der Schule. Ralf Dorn - Dennis Buchmann - Felix Last - Carl Ambroselli Tutorium - Haskell in der Schule Wer sind wir? Otto-Nagel-Gymnasium in Berlin-Biesdorf Hochbegabtenförderung und MacBook-Schule Leistungskurse seit 2005 Einführung Was ist funktionale Programmierung? Einführung

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Felder (Arrays) Programmieren in Haskell 1 Was wir heute machen Motivationsbeispiel Die Typklasse Ix Felder in Haskell Funktionstabellierung Binäre Suche Pascalsches Dreieck Ein

Mehr

Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr.

Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr. ALP I Funktionen höherer Ordnung Teil 2 SS 2013 Funktionen höherer Ordnung Nehmen wir an, wir möchten alle Zahlen innerhalb einer Liste miteinander addieren addall:: (Num a) => [a -> a addall [ = 0 addall

Mehr

Definieren Sie eine Funktion circlearea zur Berechnung der Fläche eines Kreises mit gegebenen Radius (Float).

Definieren Sie eine Funktion circlearea zur Berechnung der Fläche eines Kreises mit gegebenen Radius (Float). Haskell Funktionen Definieren Sie eine Funktion circlearea zur Berechnung der Fläche eines Kreises mit gegebenen Radius (Float). circlearea :: Float -> Float circlearea radius = 2 * pi * radius^2 Definieren

Mehr

Funktionale Programmierung mit C++

Funktionale Programmierung mit C++ Funktionale Programmierung mit C++ Überblick Programmierung in funktionaler Art Warum funktionale Programmierung? Was ist funktionale Programmierung? Charakteristiken funktionaler Programmierung Was fehlt

Mehr

Funktionale Programmierung

Funktionale Programmierung Funktionale Programmierung Jörg Kreiker Uni Kassel und SMA Solar Technology AG Wintersemester 2011/2012 2 Teil II Typen mit Werten und Ausdruck, sogar listenweise 3 Haskell Programme Programm Module ein

Mehr

Funktionen höherer Ordnung

Funktionen höherer Ordnung Eine Funktion wird als Funktion höherer Ordnung bezeichnet, wenn Funktionen als Argumente verwendet werden, oder wenn eine Funktion als Ergebnis zurück gegeben wird. Beispiel: twotimes :: ( a -> a ) ->

Mehr

WS 2011/2012. Georg Sauthoff 1. October 18, 2011

WS 2011/2012. Georg Sauthoff 1. October 18, 2011 in in WS 2011/2012 Georg 1 AG Praktische Informatik October 18, 2011 1 gsauthof@techfak.uni-bielefeld.de Neue Übungsgruppen in neue Übungsgruppen neue Tutoren Sprechstunden in GZI-Arbeitsraum (V2-240)

Mehr

Informatik-Seminar Thema 6: Bäume

Informatik-Seminar Thema 6: Bäume Informatik-Seminar 2003 - Thema 6: Bäume Robin Brandt 14. November 2003 1 Robin Brandt Informatik-Seminar 2003 - Thema 6: Bäume Übersicht Definition Eigenschaften Operationen Idee Beispiel Datendefinition

Mehr

Frage, Fragen und nochmals Fragen

Frage, Fragen und nochmals Fragen Frage, Fragen und nochmals Fragen Berthold Hoffmann Universität Bremen and DFKI Bremen hof@informatik.uni-bremen.de In diesem Text stehen einige Fragen, die man sich zu den Folien der Veranstaltung Funktionales

Mehr

Grundprinzipien der funktionalen Programmierung

Grundprinzipien der funktionalen Programmierung Grundprinzipien der funktionalen Programmierung Funktionen haben keine Seiteneffekte Eine Funktion berechnet einen Ausgabewert der nur von den Eingabewerten abhängt: 12 inputs + output 46 34 2 Nicht nur

Mehr

Listen. 3.1 Vordefinierte Listenfunktionen

Listen. 3.1 Vordefinierte Listenfunktionen 3 Listen In diesem Kapitel geht es um Listen, den zusammengesetzten Datentyp funktionaler Sprachen schlechthin. Schon in Kapitel 1 hatten wir gelernt, dass Listen ein vordefinierter Typ sind. In diesem

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Wir steigen ein... Programmieren in Haskell 1 Was wir heute machen Umfrage: Wer hat den Hugs ausprobiert? Ausdrücke und Werte Datentypen Funktionen Aufgabe für s Wochenende Programmieren

Mehr

Kapitel 3: Eine einfache Programmiersprache. Programmieren in Haskell 1

Kapitel 3: Eine einfache Programmiersprache. Programmieren in Haskell 1 Kapitel 3: Eine einfache Programmiersprache Programmieren in Haskell 1 Datentypen, Datentypdefinitionen data Instrument = Oboe HonkyTonkPiano Cello VoiceAahs data Musik = Note Ton Dauer Pause Dauer Musik

Mehr

Typdeklarationen. Es gibt in Haskell bereits primitive Typen:

Typdeklarationen. Es gibt in Haskell bereits primitive Typen: Typdeklarationen Es gibt in bereits primitive Typen: Integer: ganze Zahlen, z.b. 1289736781236 Int: ganze Zahlen mit Computerarithmetik, z.b. 123 Double: Fließkommazahlen, z.b. 3.14159 String: Zeichenketten,

Mehr

Programmieren in Haskell Programmiermethodik

Programmieren in Haskell Programmiermethodik Programmieren in Haskell Programmiermethodik Peter Steffen Universität Bielefeld Technische Fakultät 12.01.2011 1 Programmieren in Haskell Bisherige Themen Was soll wiederholt werden? Bedienung von hugs

Mehr

Unendliche Listen und Bäume

Unendliche Listen und Bäume Funktionale Programmierung Unendliche Listen und Bäume Helga Karafiat, Steffen Rüther Übersicht Grundlage: Lazy Evaluation Konstruktion von unendlichen Strukturen Verwendung von unendlichen Listen Unendliche

Mehr

Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom : Funktionen Höherer Ordnung I

Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom : Funktionen Höherer Ordnung I Rev. 2766 1 [33] Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom 11.11.2014: Funktionen Höherer Ordnung I Christoph Lüth Universität Bremen Wintersemester 2014/15 2 [33] Fahrplan Teil

Mehr

Programmierkurs II. Typsynonyme & algebraische Datentypen

Programmierkurs II. Typsynonyme & algebraische Datentypen Programmierkurs II Typsynonyme & algebraische Datentypen Um Dinge der realen Welt abzubilden, ist es nur in den seltensten Fällen komfortabel alles als Zahlen, Strings oder Listen zu kodieren. Wir benötigen

Mehr

Programmieren in Haskell Einführung

Programmieren in Haskell Einführung Programmieren in Haskell Einführung Peter Steffen Universität Bielefeld Technische Fakultät 16.10.2009 1 Programmieren in Haskell Veranstalter Dr. Peter Steffen Raum: M3-124 Tel.: 0521/106-2906 Email:

Mehr

Agenda. 1 Einleitung. 2 Binäre Bäume. 3 Binäre Suchbäume. 4 Rose Trees. 5 Zusammenfassung & Ausblick. Haskell Bäume. Einleitung.

Agenda. 1 Einleitung. 2 Binäre Bäume. 3 Binäre Suchbäume. 4 Rose Trees. 5 Zusammenfassung & Ausblick. Haskell Bäume. Einleitung. Vortrag: Bäume in Haskell Bäume in Haskell Vortrag Christoph Forster Thomas Kresalek Fachhochschule Wedel University of Applied Sciences 27. November 2009 Christoph Forster, Thomas Kresalek 1/53 Vortrag

Mehr

Praktische Informatik 3: Funktionale Programmierung Vorlesung 4 vom : Typvariablen und Polymorphie

Praktische Informatik 3: Funktionale Programmierung Vorlesung 4 vom : Typvariablen und Polymorphie Rev. 2749 1 [28] Praktische Informatik 3: Funktionale Programmierung Vorlesung 4 vom 04.11.2014: Typvariablen und Polymorphie Christoph Lüth Universität Bremen Wintersemester 2014/15 2 [28] Fahrplan Teil

Mehr

Funktionale Programmierung

Funktionale Programmierung Grundlagen der funktionalen Programmierung I LFE Theoretische Informatik, Institut für Informatik, Ludwig-Maximilians Universität, München April 23, 2009 Administratives Vorlesung: Do 12-14 Uhr, Oettingenstr.

Mehr

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren:

Mehr

Funktionale Programmierung Grundlegende Datentypen

Funktionale Programmierung Grundlegende Datentypen Grundlegende Datentypen Prof. Dr. Oliver Braun Fakultät für Informatik und Mathematik Hochschule München Letzte Änderung: 06.11.2017 16:45 Inhaltsverzeichnis Typen........................................

Mehr

Funktionale Programmierung mit Haskell

Funktionale Programmierung mit Haskell Funktionale Programmierung mit Haskell Prof. Dr. Hans J. Schneider Lehrstuhl für Programmiersprachen und Programmiermethodik Friedrich-Alexander-Universität Erlangen-Nürnberg Sommersemester 2011 I. Die

Mehr

WS 2013/2014. Robert Giegerich. 11. Dezember 2013

WS 2013/2014. Robert Giegerich. 11. Dezember 2013 WS 2013/2014 Robert AG Praktische Informatik 11. Dezember 2013 höherer Ordnung Worum geht es heute? In Haskell gibt es, die als Argument haben oder als Ergebnis liefern. Diese nennt man höherer Ordnung.

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Programmiermethodik Programmieren in Haskell 1 Was wir heute machen Spezifikation Strukturelle Rekursion Strukturelle Induktion Programmieren in Haskell 2 Spezifikation sort [8,

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Was bisher geschah Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Syntax: Signatur Semantik: Axiome (FOL-Formeln, meist

Mehr

VL06: Haskell (Funktionen höherer Ordnung, Currying)

VL06: Haskell (Funktionen höherer Ordnung, Currying) VL06: Haskell (Funktionen höherer Ordnung, Currying) IFM 5.3 Spezielle Methoden der Programmierung Carsten Gips, FH Bielefeld 18.05.2015 Wiederholung Wiederholung Wie können Sie die ersten n Elemente einer

Mehr

Gliederung. Algorithmen und Datenstrukturen I. Listen in Haskell: Listen in Haskell: Listen in Haskell. Datentyp Liste Strings Listenkomprehension

Gliederung. Algorithmen und Datenstrukturen I. Listen in Haskell: Listen in Haskell: Listen in Haskell. Datentyp Liste Strings Listenkomprehension Gliederung Algorithmen und Datenstrukturen I D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg 1 Winter 2009/10, 16. Oktober 2009, c

Mehr

Haskell. A Wild Ride. Sven M. Hallberg. sm@khjk.org. 21C3 Berlin / Bildungswerk Hamburg 20.6.2007 p. 1/36

Haskell. A Wild Ride. Sven M. Hallberg. sm@khjk.org. 21C3 Berlin / Bildungswerk Hamburg 20.6.2007 p. 1/36 21C3 Berlin / Bildungswerk Hamburg 20.6.2007 p. 1/36 Haskell A Wild Ride Sven M. Hallberg sm@khjk.org 21C3 Berlin / Bildungswerk Hamburg 20.6.2007 p. 2/36 Überblick Vorsichtsmaßnahmen Einführung und Sprachgrundlagen

Mehr

Funktionale Programmierung. Das Funktionale Quiz. Das Funktionale Quiz. Das Funktionale Quiz

Funktionale Programmierung. Das Funktionale Quiz. Das Funktionale Quiz. Das Funktionale Quiz Funktionale Programmierung Das Funktionale Quiz 31.5.2005 Nenne eine Gemeinsamkeit zwischen Typklassen und OO-Klassen Das Funktionale Quiz Das Funktionale Quiz Nenne einen Unterschied zwischen Typklassen

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Syntax und Semantik von Haskell Programmieren in Haskell 1 Was wir heute (und nächstes mal) machen Datentypdefinitionen Wertdefinitionen, Variablenbindungen Musterbindungen Funktionsbindungen

Mehr

Haskell Seminar Abstrakte Datentypen. Nils Bardenhagen ms2725

Haskell Seminar Abstrakte Datentypen. Nils Bardenhagen ms2725 Haskell Seminar Abstrakte Datentypen Nils Bardenhagen ms2725 Gliederung Konzept Queue Module Sets Bags Flexible Arrays Fazit Abstrakte Datentypen (ADT) Definition: Eine Zusammenfassung von Operationen,

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Programmieren mit Listen Programmieren in Haskell 1 Was wir heute machen Eigener Listen-Datentyp Eine Sortierfunktion Nützliche Listenfunktionen Programmieren in Haskell 2 Ein

Mehr

Programmieren in Haskell Programmieren mit Listen

Programmieren in Haskell Programmieren mit Listen Programmieren in Haskell Programmieren mit Listen Peter Steffen Universität Bielefeld Technische Fakultät 14.11.2008 1 Programmieren in Haskell Ein eigener Listen-Datentyp data List a = Nil Cons a (List

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Programmieren mit Listen Programmieren in Haskell 1 Was wir heute machen Eigener Listen-Datentyp Eine Sortierfunktion Nützliche Listenfunktionen Programmieren in Haskell 2 Ein

Mehr

Musterlösung zur 2. Aufgabe der 4. Übung

Musterlösung zur 2. Aufgabe der 4. Übung Musterlösung zur 2. Aufgabe der 4. Übung Da viele von Euch anscheinend noch Probleme mit dem Entfalten haben, gibt es für diese Aufgabe eine Beispiellösung von uns. Als erstes wollen wir uns noch einmal

Mehr

Grundlagen der Programmierung 2 (1.C)

Grundlagen der Programmierung 2 (1.C) Grundlagen der Programmierung 2 (1.C) Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 3. Mai 2006 Funktionen auf Listen: map map :: (a -> b) -> [a] -> [b] map f [] = []

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

[10] Software Transactional Memory in Haskell, Tortenwurf und Aufgabenblatt 7

[10] Software Transactional Memory in Haskell, Tortenwurf und Aufgabenblatt 7 Haskell Live [10 Software Transactional Memory in Haskell, Tortenwurf und Aufgabenblatt 7 Bong Min Kim e0327177@student.tuwien.ac.at Christoph Spörk christoph.spoerk@inode.at Bernhard Urban lewurm@gmail.com

Mehr

Funktionale Programmierung mit C++

Funktionale Programmierung mit C++ Funktionale Programmierung mit C++ Rainer Grimm Softwarearchitekt Partner: Überblick Programmierung in funktionaler Art Warum funktionale Programmierung? Was ist funktionale Programmierung? Charakteristiken

Mehr

Softwaretechnik. Funktionale Programmierung. Christian Lindig. 23. Januar 2006. Lehrstuhl für Softwaretechnik Universität des Saarlandes

Softwaretechnik. Funktionale Programmierung. Christian Lindig. 23. Januar 2006. Lehrstuhl für Softwaretechnik Universität des Saarlandes Softwaretechnik Funktionale Programmierung Christian Lindig Lehrstuhl für Softwaretechnik Universität des Saarlandes 23. Januar 2006 Quicksort in Java static void sort(int a[], int lo0, int hi0) { int

Mehr

Beispiele: (Funktionen auf Listen) (3) Bemerkungen: Die Datenstrukturen der Paare (2) Die Datenstrukturen der Paare

Beispiele: (Funktionen auf Listen) (3) Bemerkungen: Die Datenstrukturen der Paare (2) Die Datenstrukturen der Paare Beispiele: (Funktionen auf Listen) (3) Bemerkungen: 5. Zusammenhängen der Elemente einer Liste von Listen: concat :: [[a]] -> [a] concat xl = if null xl then [] else append (head xl) ( concat (tail xl))

Mehr

Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Funktionale Programmierung Mehr funktionale Muster

Funktionale Programmierung Mehr funktionale Muster Mehr funktionale Muster Prof. Dr. Oliver Braun Fakultät für Informatik und Mathematik Hochschule München Letzte Änderung: 07.12.2017 06:56 Inhaltsverzeichnis Pattern Matching..................................

Mehr

Felder. November 5, 2014

Felder. November 5, 2014 Felder Universität Bielefeld AG Praktische Informatik November 5, 2014 Felder: Datenstrukturen mit konstantem Zugriff Felder nennt man auch, Vektoren, Matrizen,... Konstanter Zugriff heisst: Zugriff auf

Mehr

Programmierparadigmen

Programmierparadigmen in Haskell Programmierparadigmen in Haskell D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Sommer 2011, 4. April 2011, c 2011 D.Rösner

Mehr

Programmieren I. Kapitel 7. Sortieren und Suchen

Programmieren I. Kapitel 7. Sortieren und Suchen Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren

Mehr

Ströme als unendliche Listen in Haskell

Ströme als unendliche Listen in Haskell Kapitel 3 Ströme als unendliche Listen in Haskell Ein Strom ist eine Folge oder Liste von Daten, die man in Haskell als Liste bzw. auch als potentiell unendliche Liste darstellen kann. Die Modellvorstellung

Mehr

WS 2011/2012. Georg Sauthoff 1. November 11, 2011

WS 2011/2012. Georg Sauthoff 1. November 11, 2011 WS 2011/2012 Georg 1 AG Praktische Informatik November 11, 2011 1 gsauthof@techfak.uni-bielefeld.de Skripte sind nun fertig und gibt es in den Tutorien Sprechstunden Zusammenfassung -Kapitel Signatur zuerst

Mehr

Übergang von funktionaler zu OOP. Algorithmen und Datenstrukturen II 1

Übergang von funktionaler zu OOP. Algorithmen und Datenstrukturen II 1 Übergang von funktionaler zu OOP Algorithmen und Datenstrukturen II 1 Imperative vs. funktionale Programmierung Plakativ lassen sich folgende Aussagen treffen: funktional: imperativ: Berechnung von Werten

Mehr

Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen

Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen Rev. 1152 1 [23] Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen Christoph Lüth & Dennis Walter Universität Bremen Wintersemester 2010/11

Mehr

expr :: Expr expr = Mul (Add (Const 3) (Const 4)) (Div (Sub (Const 73) (Const 37)) (Const 6))

expr :: Expr expr = Mul (Add (Const 3) (Const 4)) (Div (Sub (Const 73) (Const 37)) (Const 6)) 1 - Korrektur 2 - Abstrakte Datentypen für arithmetische Ausdrücke Der Datentyp Wir beginnen zunächst mit dem algebraischen Datentyp für Ausdrücke. Hierfür definieren wir einen Konstruktor Number für Zahlen,

Mehr

Typ-Polymorphismus. November 12, 2014

Typ-Polymorphismus. November 12, 2014 Typ-Polymorphismus Universität Bielefeld AG Praktische Informatik November 12, 2014 Das Haskell Typ-System Wir beginnen mit einer Wiederholung des Bekannten: In allen Programmiersprachen sind Typ-Konzepte

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Felder (Arrays) Programmieren in Haskell 1 Was wir heute machen Motivationsbeispiel Die Typklasse Ix Felder in Haskell Funktionstabellierung Binäre Suche Pascalsches Dreieck Hashing

Mehr

Einführung in die funktionale Programmierung

Einführung in die funktionale Programmierung Einführung in die funktionale Programmierung Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 20. November 2006 Monaden und I/O Monade ist ein Datentyp für (sequentielle)

Mehr

ROGER GILLIAR / MCS GMBH HASKELL FÜR JAVA PROGRAMMIERER

ROGER GILLIAR / MCS GMBH HASKELL FÜR JAVA PROGRAMMIERER ROGER GILLIAR / MCS GMBH HASKELL FÜR JAVA PROGRAMMIERER interface ImportantService { Double getmoney(); } ... sollte stets ein so genannter Kontrakt definiert werden, über den die Bedeutung der verschiedenen

Mehr

Funktionen höherer Ordnung. 3. Dezember 2014

Funktionen höherer Ordnung. 3. Dezember 2014 höherer Ordnung Universität Bielefeld AG Praktische Informatik 3. Dezember 2014 höherer Ordnung Worum geht es heute? In Haskell gibt es, die als Argument haben oder als Ergebnis liefern. Diese nennt man

Mehr

Theorembeweiserpraktikum SS 2016

Theorembeweiserpraktikum SS 2016 Institut für Programmstrukturen und Datenorganisation Lehrstuhl Programmierparadigmen Am Fasanengarten 5 76131 Karlsruhe http://pp.ipd.kit.edu/ Theorembeweiserpraktikum SS 2016 http://pp.ipd.kit.edu/lehre/ss2016/tba

Mehr

Kapitel 3: Programmierung mit Kombinatoren

Kapitel 3: Programmierung mit Kombinatoren Funktionale Programmierung (WS2005/2006) 3/1 Kapitel 3: Programmierung mit Kombinatoren Lernziele dieses Kapitels 1. Denken in unktionalen Komponenten, Vermeidung von Kontrolllussdenken (Rekursion) Details

Mehr

Funktionale Programmierung mit modernem C++ Rainer Grimm Schulungen, Coaching und Technologieberatung

Funktionale Programmierung mit modernem C++ Rainer Grimm Schulungen, Coaching und Technologieberatung Funktionale Programmierung mit modernem C++ Rainer Grimm Schulungen, Coaching und Technologieberatung Funktionale Programmierung in modernem C++ Funktional in C++ Warum Funktional? Definition Charakteristiken

Mehr

Funktionale Programmierung

Funktionale Programmierung Schleifen 1 Funktionale Programmierung Jörg Kreiker Uni Kassel und SMA Solar Technology AG Wintersemester 2011/2012 3 Teil I Jedem Anfang wohnt ein Zauber inne 4 Über mich Diplom in Informatik in Saarbrücken

Mehr

1 - FortProg ist: [ ] objekt-orientiert; [ ] funktional; [ ] logisch; [ ] manchmal nicht auszuhalten

1 - FortProg ist: [ ] objekt-orientiert; [ ] funktional; [ ] logisch; [ ] manchmal nicht auszuhalten 1 - FortProg ist: [ ] objekt-orientiert; [ ] funktional; [ ] logisch; [ ] manchmal nicht auszuhalten Java-1. a), e) Java-2. --- gestrichen --- Java-3. keine Antwort ist richtig Java-4. a) Java-5. a), b)

Mehr

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und

Mehr

Funktionale Programmiersprachen

Funktionale Programmiersprachen Funktionale Programmiersprachen An den Beispielen Haskell und Erlang Übersicht Programmiersprachen λ-kalkül Syntax, Definitionen Besonderheiten von funktionalen Programmiersprache, bzw. Haskell Objektorientierte

Mehr

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 8 -

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 8 - Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 8 - Dozent: Prof. Dr. G. Rote Tutoren: J. Fleischer, T. Haimberger, N. Lehmann, C. Pockrandt, A. Steen 03.01.2012 Ziele

Mehr

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Abstraktion mittels Polymorphie und Funktionen höherer Ordnung. Abschnitt 3.3. Polymorphie und Funktionen höherer Ordnung. Unterabschnitt 3.3.

Abstraktion mittels Polymorphie und Funktionen höherer Ordnung. Abschnitt 3.3. Polymorphie und Funktionen höherer Ordnung. Unterabschnitt 3.3. Abschnitt 3.3 Abstraktion mittels Polymorphie und Funktionen höherer Ordnung Überblick: Polymorphie und Funktionen höherer Ordnung Grundbegriffe der Typisierung Polymorphie als Abstraktionsmittel Typsysteme

Mehr

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre Was bisher geschah Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Übungen zur Vorlesung Funktionale Programmierung. Wintersemester 2012/2013 Übungsblatt 1

Übungen zur Vorlesung Funktionale Programmierung. Wintersemester 2012/2013 Übungsblatt 1 Übungsblatt 1 Installieren Sie die Haskell-Platform (http://www.haskell.org/platform/) auf ihrem Rechner. Stellen Sie zudem sicher, dass ghci zu ihrer Pfadvariablen hinzugefügt wird. Unter Windows nden

Mehr

Workshop Einführung in die Sprache Haskell

Workshop Einführung in die Sprache Haskell Workshop Einführung in die Sprache Haskell Nils Rexin, Marcellus Siegburg und Alexander Bau Fakultät für Informatik, Mathematik und Naturwissenschaften Hochschule für Technik, Wirtschaft und Kultur Leipzig

Mehr

19. Funktional-reaktive Programmierung

19. Funktional-reaktive Programmierung 19. Funktional-reaktive Programmierung Graphische Figuren type Dimension = Int data Figure = Rect Dimension Dimension Triangle Dimension Angle Dimension Polygon [Point] Circle Dimension Translate Point

Mehr

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Kryptographie Motivation Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Geheimzahlen (Geldkarten, Mobiltelefon) Zugriffsdaten (Login-Daten, Passwörter)

Mehr

Basiskonstrukte von Haskell

Basiskonstrukte von Haskell Basiskonstrukte von Haskell PD Dr. David Sabel Goethe-Universität Frankfurt am Main 29. September 2015 Basistypen und Operationen Ganzzahlen: Int = Ganzzahlen beschränkter Länge Integer = Ganzzahlen beliebiger

Mehr

Algorithmen. Sortieren 6/1

Algorithmen. Sortieren 6/1 Algorithmen Sortieren 6/1 Problemstellung Gegeben ist ein Array von Daten Gesucht ist die Umordnung des Arrays anhand eines Sortierkriteriums Vereinfacht hier statt Schlüssel und Vergleichsfunktion einfache

Mehr

Übergang von funktionaler zu OOP. Algorithmen und Datenstrukturen II 1

Übergang von funktionaler zu OOP. Algorithmen und Datenstrukturen II 1 Übergang von funktionaler zu OOP Algorithmen und Datenstrukturen II 1 Imperative vs. funktionale Programmierung Plakativ lassen sich folgende Aussagen treffen: funktional: imperativ: Berechnung von Werten

Mehr

WS 2011/2012. Georg Sauthoff 1. November 1, 2011

WS 2011/2012. Georg Sauthoff 1. November 1, 2011 WS 2011/2012 Georg 1 AG Praktische Informatik November 1, 2011 1 gsauthof@techfak.uni-bielefeld.de Übungen Abgaben und Aufgabenblätter am Ende der Vorlesung Skript gibt es demnächst in den Übungen Der

Mehr

Funktionen höherer Ordnung

Funktionen höherer Ordnung 4 Funktionen höherer Ordnung In den vorangegangenen Kapiteln haben wir gesehen, dass in funktionalen Sprachen alle zusammengesetzte Werte Ausdrücke über Konstruktoren sind, die intern als Bäume bzw. als

Mehr

Lösung: InfA - Übungsblatt 07

Lösung: InfA - Übungsblatt 07 Lösung: InfA - Übungsblatt 07 Michele Ritschel & Marcel Schilling 23. Dezember 2008 Verwendete Abkürzungen: Beweis, vollständige Induktion, IA: Induktionsanfang/Induktionsanker, IS: Induktionsschritt/Induktionssprung,

Mehr

Programmtransformationen und Induktion in funktionalen Programmen

Programmtransformationen und Induktion in funktionalen Programmen Programmtransformationen und Induktion in funktionalen Programmen Prof. Dr. Manfred Schmidt-Schauß Künstliche Intelligenz und Softwaretechnologie 13. Januar 2009 Einschub: Monadisches IO verzögern Implementierung

Mehr

Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 4 (Sortieren und Konstruktoren)

Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 4 (Sortieren und Konstruktoren) Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 4 (Sortieren und Konstruktoren)

Mehr

Haskell, Typen, und Typberechnung. Grundlagen der Programmierung 3 A. Einige andere Programmiersprachen. Typisierung in Haskell

Haskell, Typen, und Typberechnung. Grundlagen der Programmierung 3 A. Einige andere Programmiersprachen. Typisierung in Haskell Haskell, Typen, und Typberechnung Grundlagen der Programmierung 3 A Typen, Typberechnung und Typcheck Prof. Dr. Manfred Schmidt-Schauß Ziele: Haskells Typisierung Typisierungs-Regeln Typ-Berechnung Milners

Mehr

Programmieren in Haskell. Stefan Janssen. Strukturelle Rekursion. Universität Bielefeld AG Praktische Informatik. 10.

Programmieren in Haskell. Stefan Janssen. Strukturelle Rekursion. Universität Bielefeld AG Praktische Informatik. 10. Universität Bielefeld AG Praktische Informatik 10. Dezember 2014 Wiederholung: Schema: f :: [σ] -> τ f [] = e 1 f (a : as) = e 2 where s = f as wobei e 1 und e 2 Ausdrücke vom Typ τ sind und e 2 die Variablen

Mehr

Typklassen. Natascha Widder

Typklassen. Natascha Widder Typklassen Natascha Widder 19.11.2007 Motivation Typklassen fassen Typen mit ähnlichen Operatoren zusammen ermöglichen überladenen Funktionen Definition Typklassen Deklarationsschema class Name Platzhalter

Mehr

Praktische Informatik 3

Praktische Informatik 3 Praktische Informatik 3 Christoph Lüth WS 02/03 Vorlesung vom 21.10.2002: Einführung Organisatorisches 2 Personal Vorlesung: Christoph Lüth MZH 8120, Tel. 7585 Stud. Tutoren: Felix Beckwermert

Mehr

Tag 8. Beispiel: Tabellen formatieren

Tag 8. Beispiel: Tabellen formatieren Tag 8 Beispiel: Tabellen formatieren Am heutigen Tag geht es nicht in erster Linie darum, neue Konzepte einzuführen, sondern wir wollen sehen, was wir mit dem bereits Erlernten schon erreichen können.

Mehr

Grundlagen der Programmierung 2. Sortierverfahren

Grundlagen der Programmierung 2. Sortierverfahren Grundlagen der Programmierung 2 Sortierverfahren Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 30. Mai 2006 Sortieren Ziel: Bringe Folge von Objekten in eine Reihenfolge

Mehr

Eine Einführung in die funktionale Programmierung mit Haskell

Eine Einführung in die funktionale Programmierung mit Haskell TECHNISCHE UNIVERSITÄT CAROLO-WILHELMINA ZU BRAUNSCHWEIG Übungsskript Eine Einführung in die funktionale Programmierung mit Haskell Jan Oliver Ringert, überarbeitet von Henning Basold und Christoph Szeppek

Mehr

Tag 7. Pattern Matching und eigene Datentypen

Tag 7. Pattern Matching und eigene Datentypen Tag 7 Pattern Matching und eigene Datentypen Heute werden wir eine Technik kennenlernen, die dafür sorgt, daß wir sehr viel übersichtlichere und kürzere Programme schreiben können. Als Überleitung auf

Mehr

Lazy Pattern Matching. 10. Dezember 2014

Lazy Pattern Matching. 10. Dezember 2014 Lazy Lazy s Universität Bielefeld AG Praktische Informatik 10. Dezember 2014 Themen-Vorschau : as-s und lazy s Client-Server-Programmierung Lazy s matching (alias Mustervergleich) kennen wir bereits aus

Mehr