Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Größe: px
Ab Seite anzeigen:

Download "Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten."

Transkript

1 Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme I Klausur zum Praktikum Aufgabe 1: ER-Modellierung = 3 Punkte Erstellen Sie ein ER-Modell zu einer Diplomprüfung. Benutzen Sie folgende Informationen: Professoren, Beisitzer und Studierende sind Personen. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Aufgabe 2: RelA, DRC, SQL = 5 Punkte Gegeben sei folgendes relationales Datenbankschema (ohne Angabe der Domänen und Schlüsselinformationen): Ware(Artikelnr, Bezeichnung, Preis) Anbieter(Artikelnr, Firmenbezeichnung, Ort) Kunde(Kundenr, Name, Artikelnr) Gegeben ist die folgende Anfrage: Wie heißen die Kunden, die vom Anbieter Putzi aus Hamburg den Artikel Zahnweiß bestellen? Formulieren Sie diese Query a) in relationaler Algebra, b) im Domänen-Kalkül und c) mittels SQL. Aufgabe 3: SQL, SELECT, UPDATE, DELETE Gegeben sind die folgenden Relationen. 6 * 1 = 6 Punkte COUNTRY id name person cities 1 Argentina Canada Cuba Germany France 7 5 STAFF id lastname 1 Jones 2 Smith Beantworten Sie folgende Fragen lediglich durch die Angabe der richtigen Antwort(en) aus den möglichen Antworten A), B), C) oder D).

2 a) Wieviele Zeilen liefert die folgende Query zurück? SELECT DISTINCT s.id FROM staff s, country c WHERE s.id = c.person A) 1 B) 2 C) 3 D) 4 b) Wie lautet das korrekte SQL-Statement zur Aktualisierung jedes Tupel der Relation STAFF? A) UPDATE lastname IN staff SET lastname = Greyson B) UPDATE lastname IN staff SET lastname TO Greyson C) UPDATE staff SET lastname = Greyson D) UPDATE staff WHERE lastname SET TO Greyson c) Wieviel Zeilen werden durch das folgende SQL-Statement in die Relation STAFF eingefügt? INSERT INTO staff SELECT person, Greyson FROM country WHERE person > 2 A) 0 B) 1 C) 2 D) 3 E) 4 d) Welcher der folgenden Ausdrücke liefert nicht genau eine einzige Zeile als Ergebnis zurück? A) SELECT person FROM country WHERE name LIKE G% B) SELECT person FROM country WHERE name LIKE ba C) SELECT COUNT(*) FROM country D) SELECT id, name FROM country WHERE person BETWEEN 7 AND 7 e) Welcher der folgenden Ausdrücke entfernt alle Tupel aus der Relation STAFF bei denen ein NULL-Wert für lastname gesetzt ist? A) DELETE ALL FROM staff WHERE lastname IS NULL B) DELETE ALL FROM staff WHERE lastname = NULL C) DELETE FROM staff WHERE lastname = NULL D) DELETE FROM staff WHERE lastname IS NULL f) Welcher der folgenden Ausdrücke entfernt alle Tupel aus der Relation COUNTRY, die im Attribut person bereits Einträge haben die gleichermaßen im Attribut id in der Relation STAFF vorkommen? A) DELETE FROM country WHERE id IN (SELECT id FROM staff) B) DELETE FROM country WHERE id IN (SELECT person FROM staff) C) DELETE FROM country WHERE person IN (SELECT id FROM staff) D) DELETE FROM country WHERE person IN (SELECT person FROM staff)

3 Aufgabe 4: SQL, DDL 5 * 1 = 5 Punkte Beantworten Sie folgende Fragen ebenfalls durch die Angabe der richtigen Antwort(en) aus den möglichen Antworten A), B), C) oder D). a) Gegeben ist der DDL-Ausdruck CREATE TABLE table1 (c1 CHAR(5) NOT NULL) Welcher der folgenden Einträge ist zulässig? A) NULL B) 5 C) abcdef D) abce b) Die folgende Transaktion sei ausgeführt. INSERT INTO staff VALUES (3, Gaylord ) ROLLBACK WORK INSERT INTO staff VALUES (4, Colbert ) INSERT INTO staff VALUES (5, Certius ) COMMIT Wieviele neue Zeilen befinden sich nun in der Relation STAFF? A) 0 B) 1 C) 2 D) 3 c) Welches der folgenden DDL-Statements legt eine neue Relation an in der das Attribut employid eindeutig ist? A) CREATE TABLE t1 (UNIQUE employid INTEGER) B) CREATE TABLE t1 (employid UNIQUE INTEGER) C) CREATE TABLE t1 (UNIQUE employid INTEGER NOT NULL) D) CREATE TABLE t1 (employid INTEGER NOT NULL, PRIMARY KEY (employid)) d) Gegeben sei der folgende DDL-Ausdruck. CREATE VIEW v1 AS SELECT c1 FROM t1 WHERE c1 = c WITH CHECK OPTION Welches der folgenden SQL-Statements wird Daten in die Tabelle einfügen? A) INSERT INTO V1 VALUES ( ca ) B) INSERT INTO V1 VALUES ( c ) C) INSERT INTO V1 VALUES ( d ) D) INSERT INTO V1 VALUES (c) e) Das Volltext-Prädikat CONTAINS ( database [1,3] systems ) paßt auf A) alle Texte, die database und zwischen 1 bis 3 Vorkommen von systems enthalten. B) z.b. auf... database and information systems... C) z.b. auf... database systems... D) alle Texte, in denen database und systems im Verhältnis 1:3 vorkommen.

4 Aufgabe 5: Trigger Gegeben sind die beiden Relationen: 4 Punkte Kunde(knr Integer, name Char(20), vorname Char(20)) KundeAlt(datum Date, knr integer, name Char(20), vorname Char(20)) Erstellen Sie einen Oracle-Trigger, der beim Update der kundennummer (Attribut knr) in der Relation Kunde eine Kopie des bisherigen Datensatzes mit vorangestelltem aktuellen Datum in die Relation KundeAlt schreibt. Aufgabe 6: ER-Transformation Gegeben sei folgendes ER-Modell. Hierbei sind Schlüssel fett gedruckt. 5 Punkte Globetrotter Personalausweisnr Name Vorname Anzahl_bereister_Städte war_in Stadt Name Land Postleitzahl Einwohnerzahl Transformieren Sie dieses ER-Modell in DDL-SQL-Statements. Wählen Sie hierzu geeignete Domänen. Dabei sollen in Globetrotter nur Datensätze mit einer Anzahl bereister Städte von mindestens fünf eingegeben werden können. Diese Beschränkung soll als verzögerbar deklariert werden. Hinweis: Zyklen in den Beziehungen zwischen Schlüsselattributen und ihre systemspezifische Auflösung können hier ignoriert werden.

5 Aufgabe 7: SQL-Programmierung =9Punkte Gegeben ist die folgende Relation. PC BAUTEILE ANR Artikelgruppe Beschreibung Stückzahl Einkaufspreis AMD 500 Prozessor 9 245, Papst Lüfter f. Intel 17 19, Wärmeleitpaste 112 2, Pentium III 600 Prozessor , Yamuha 10 CD s 9 8, Soundblaster 11 34,67 Geben Sie passende SQL-Statements zu den folgenden Aufgabenstellungen an. a) Es kommt eine Lieferung von 5 Stück Matrox 400 Grafikkarten (ANR 912, Artikelgruppe 3) zum Einkaufspreis von DM 120 an. Verbuchen Sie diesen Eingang! b) Vier Soundblaster wurden verkauft. Verbuchen Sie den Ausgang! c) ) Geben Sie für jede Produktgruppe die Anzahl der Artikel aus, deren Stückzahl größer 11 ist! (Hinweis: Denken Sie auch an Count-Bugs.) d) Löschen Sie nun die Spalte Artikelgruppe. e) Für die Verkäufer soll der Einkaufspreis nicht sichtbar sein. Konstruieren Sie dazu eine geeignete Sicht und erstellen Sie eine Rolle (ROLE aus Oracle 8i) mit entsprechenden Rechte an dieser Sicht. Aufgabe 8: JDBC-Programmierung =7Punkte a) Welche beiden Schritte sind nötig, um einen JDBC-Treiber aus einem Java-Programm anzusprechen und eine Datenbankverbindung aufzubauen? Nehmen Sie hierbei an, daß die Java- Umgebung (CLASSPATH etc.) bereits korrekt gesetzt ist. b) Welche Möglichkeit gibt es, um häufig gestellte JDBC-Anfragen zu beschleunigen? c) Geben Sie schematisch an, wie man mit JDBC die folgende Anfrage umsetzen kann. SELECT * FROM staff Als Lösung dieser Aufgabe genügt eine Quelltext-Skizze, d.h. gewertet wird nicht die exakte Syntax, sondern die prinzipielle Korrektheit der einzelnen Schritte. d) Was ist der Auto-commit-Modus? Wann ist es sinnvoll, ihn zu deaktivieren? e) Wozu dient die SQL Escape-Syntax in JDBC-Programmen?

6 Hinweise Als Hilfsmittel zur Klausur sind lediglich Schreibzeug und der Multimedia-Kurs Datenbanksysteme zugelassen! Versehen Sie Ihre Klausur mit Namen, Vornamen und Matrikelnummer. Die angegebenen Punktzahlen verstehen sich als Hinweise und sind noch nicht endgültig. Die Verleihung der gemeinsam durch den Lehrstuhl und die Firma Oracle gezeichneten Oracle-Zertifikate erfolgt im Rahmen einer kleinen Feier am 29. Februar im Hörsaal Beginn 12:30 Uhr. In diesem Rahmen werden auch die Scheine zur Vorlesung vergeben.

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 Hochschule Darmstadt DATENBANKEN Fachbereich Informatik Praktikum 3 Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 PL/SQL Programmierung Anwendung des Cursor Konzepts und Stored Procedures Und Trigger

Mehr

Klausur zur Vorlesung Datenbanksysteme I

Klausur zur Vorlesung Datenbanksysteme I Prof. Dr. W. Kießling 30.01.2002 Lehrstuhl für Datenbanken und Informationssysteme Universität Augsburg Klausur zur Vorlesung Datenbanksysteme I Wintersemester 2001/2002 Name Vorname Matrikelnummer Aufgabe

Mehr

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme Handout zur Unit Web-Technologien SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: nane.kratzke@fh-luebeck.de (Praktische

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007 6. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007 Aufgabe 1: Rekursion Betrachten Sie die folgende Tabelle

Mehr

105.3 SQL-Datenverwaltung

105.3 SQL-Datenverwaltung LPI-Zertifizierung 105.3 SQL-Datenverwaltung Copyright ( ) 2009 by Dr. W. Kicherer. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 2.0 Germany License. To view a

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung 6. Datenintegrität Motivation Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung nur sinnvolle Attributwerte (z.b. keine negativen Semester) Abhängigkeiten

Mehr

DBSP. Vorlesung. Prof. Dr. rer. nat. Nane Kratzke. Unit. Praktische Informatik und betriebliche Informationssysteme

DBSP. Vorlesung. Prof. Dr. rer. nat. Nane Kratzke. Unit. Praktische Informatik und betriebliche Informationssysteme Handout zur Vorlesung Vorlesung DBSP Unit Datenbanken SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: kratzke@fh-luebeck.de

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

Oracle 10g Einführung

Oracle 10g Einführung Kurs Oracle 10g Einführung Teil 5 Einführung Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 16 Seite 1 von 16 Agenda 1 Tabellen und Views erstellen 2 Indizes

Mehr

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin PhpMyAdmin = grafsches Tool zur Verwaltung von MySQL-Datenbanken Datenbanken erzeugen und löschen Tabellen und Spalten einfügen,

Mehr

VO Datenmodellierung. Katrin Seyr

VO Datenmodellierung. Katrin Seyr Datenintegrität Datenintegrität VO Datenmodellierung Katrin Seyr Institut für Informationssysteme Technische Universität Wien Katrin Seyr Seite 1 Datenintegrität 1. Überblick Überblick 1 Überblick 2 Integritätsbedingungen

Mehr

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt.

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt. Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Datenbanken und Informationssysteme II Szenario: Projektverwaltung. Es gibt Projekte, Projektleiter, Mitarbeiter und ihre Zuordnung zu Projekten.

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

5.8 Bibliotheken für PostgreSQL

5.8 Bibliotheken für PostgreSQL 5.8 Bibliotheken für PostgreSQL Haskell/WASH: Modul Dbconnect PHP: pqsql-funktionen Java/JSP: JDBC Perl: DBI database interface modul Vorläufige Version 80 c 2004 Peter Thiemann, Matthias Neubauer 5.9

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

Informations- und Wissensmanagement

Informations- und Wissensmanagement Übung zur Vorlesung Informations- und Wissensmanagement (Übung 1) Frank Eichinger IPD, Lehrstuhl für Systeme der Informationsverwaltung Zur Person Beruflicher Hintergrund Studium an der TU Braunschweig

Mehr

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL Früherer Name: SEQUEL SQL: Structured Query Language Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL ist eine deklarative Anfragesprache Teile von SQL Vier große Teile:

Mehr

Abbildung 1: Das ERM. Nun zu den Tabellen: Zunächst wird aus jeder Entity eine Tabelle, d.h. wir erhalten:

Abbildung 1: Das ERM. Nun zu den Tabellen: Zunächst wird aus jeder Entity eine Tabelle, d.h. wir erhalten: Lösung Casino 1 Zunächst das Entity-Relationship-Modell: Kundenverzeichnis wird getätigt von Bestellung führt aus enthält Personal n 1 beherrscht Speisekarte Tätigkeiten Abbildung 1: Das ERM Nun zu den

Mehr

Einführung in die Informatik II

Einführung in die Informatik II Einführung in die Informatik II Die Structured Query Language SQL Prof. Dr. Nikolaus Wulff SQL Das E/R-Modell lässt sich eins zu eins auf ein Tabellenschema abbilden. Benötigt wird eine Syntax, um Tabellen

Mehr

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language) Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

Einteilung von Datenbanken

Einteilung von Datenbanken Datenbanksysteme (c) A.Kaiser; WU-Wien 1 Einteilung von Datenbanken 1. formatierte Datenbanken 2. unformatierte Datenbanken Information Retrieval Systeme 2 Wozu Datenbanken? Speicherung und Verwaltung

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung Informa=onssysteme Sommersemester 2015 6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema

Mehr

Datumsangaben, enthält mindestens Jahr, Monat, Tag

Datumsangaben, enthält mindestens Jahr, Monat, Tag Datenbanken mit SQL Informatik - Sprenger Häufig wird mit Tabellenkalkulationen gearbeitet, obwohl der Einsatz von Datenbanken sinnvoller ist. Tabellenkalkulationen wie Microsoft Excel oder LibreOffice

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) DDL ist Teil von SQL (Structured

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis. SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit

Mehr

Introduction to Data and Knowledge Engineering. 6. Übung SQL

Introduction to Data and Knowledge Engineering. 6. Übung SQL Introduction to Data and Knowledge Engineering 6. Übung SQL Aufgabe 6.1 Datenbank-Schema Buch PK FK Autor PK FK ISBN Titel Preis x ID Vorname Nachname x BuchAutor ISBN ID PK x x FK Buch.ISBN Autor.ID FB

Mehr

Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten

Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten Vorname: Nachname: Matrikelnummer: Bei der Klausur sind keine Hilfsmittel (Skripten,

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3) Vorlesung #5 SQL (Teil 3) Fahrplan Besprechung der Übungsaufgaben Rekursion Rekursion in SQL-92 Rekursion in DBMS- Dialekten (Oracle und DB2) Views (Sichten) - gespeicherte Abfragen Gewährleistung der

Mehr

Unterabfragen (Subqueries)

Unterabfragen (Subqueries) Unterabfragen (Subqueries) Die kürzeste Formulierung ist folgende: SELECT Felderliste FROM Tabelle1 WHERE Tabelle1.Feldname Operator (SELECT Feldname FROM Tabelle2 WHERE Bedingung); wobei Tabelle1 und

Mehr

Datenbanken SQL. Insert, Update, Delete, Drop. Krebs

Datenbanken SQL. Insert, Update, Delete, Drop. Krebs Datenbanken SQL Insert, Update, Delete, Drop Krebs Inhalt 1. Datensätze einfügen: INSERT 2. Datensätze verändern: UPDATE 3. Datensätze löschen: DROP vs. DELETE Beispiel Datenbank Schule Klasse P_Klasse

Mehr

4. Datenbanksprache SQL

4. Datenbanksprache SQL 4. Datenbanksprache SQL Standard-Sprache für das Arbeiten mit relationalen Datenbanken: Structured Query Language Datendefinition: Anlegen, Ändern und Löschen von Datenbankstrukturen Datenmanipulation:

Mehr

Labor 3 - Datenbank mit MySQL

Labor 3 - Datenbank mit MySQL Labor 3 - Datenbank mit MySQL Hinweis: Dieses Labor entstand z.t. aus Scripten von Prof. Dr. U. Bannier. 1. Starten des MySQL-Systems MySQL ist ein unter www.mysql.com kostenlos erhältliches Datenbankmanagementsystem.

Mehr

Referentielle Integrität

Referentielle Integrität Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische

Mehr

Java Application 1 Java Application 2. JDBC DriverManager. JDBC-ODBC Br idge. ODBC Driver Manager. Dr iver C. Dr iver D.

Java Application 1 Java Application 2. JDBC DriverManager. JDBC-ODBC Br idge. ODBC Driver Manager. Dr iver C. Dr iver D. 1 Copyright 1996-1997 by Axel T. Schreiner. All Rights Reserved. 7 Datenbankzugriff Prinzip Dieser Abschnitt beschäftigt sich mit dem Paket java.sql, das eine SQL-Schnittstelle für Java verkapselt. Java-Programme

Mehr

Datenbank- und Informationssysteme. Lösungsvorschläge zu Übungsblatt 2. Sommersemester 1999. CREATE DOMAIN KennzeichenDomain AS VARCHAR(9);

Datenbank- und Informationssysteme. Lösungsvorschläge zu Übungsblatt 2. Sommersemester 1999. CREATE DOMAIN KennzeichenDomain AS VARCHAR(9); Institut für Angewandte Informatik AIFB und Formale Beschreibungsverfahren Universität Karlsruhe (TH) Prof. Dr. W. Stucky U. Schmidle Tel.: 0721 / 608-3812, 3509 Fax.: 0721 / 693717 e-mail: stucky schmidle

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 8 Hausaufgabe 1 Übung zur Vorlesung Grundlagen: Datenbanken im WS13/14 Henrik Mühe (muehe@in.tum.de)

Mehr

Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken

Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken Rückblick Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken Data Definition Language zur Schemadefinition (z.b. CREATE TABLE zum Anlegen von Tabellen) Data

Mehr

Referentielle Integrität

Referentielle Integrität Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische

Mehr

6. Datenintegrität. Integritätsbedingungen

6. Datenintegrität. Integritätsbedingungen 6. Integritätsbedingungen dienen zur Einschränkung der Datenbankzustände auf diejenigen, die es in der realen Welt tatsächlich gibt. sind aus dem erstellten Datenmodell ableitbar (semantisch) und können

Mehr

5.3 Datenänderung/-zugriff mit SQL (DML)

5.3 Datenänderung/-zugriff mit SQL (DML) 5.3 Datenänderung/-zugriff mit SQL (DML) Hinweis: - DML-Anweisungen sind mengenorientiert - Mit einer Anweisungen kann mehr als ein Tupel eingefügt, geändert, gelöscht oder gelesen werden Benutzungs- und

Mehr

4.14.3 Bedingungen über Werte. 4.14.4 Statische Integrität. CHECK-Klausel

4.14.3 Bedingungen über Werte. 4.14.4 Statische Integrität. CHECK-Klausel 4.14.3 Bedingungen über Werte 4.14.4 Statische Integrität Zu jeder Tabelle werden typischerweise ein Primärschlüssel und möglicherweise weitere Schlüssel festgelegt (UNIQUE-Klausel). In jeder Instanz zu

Mehr

Relationales Datenbanksystem Oracle

Relationales Datenbanksystem Oracle Relationales Datenbanksystem Oracle 1 Relationales Modell Im relationalen Modell wird ein relationales Datenbankschema wie folgt beschrieben: RS = R 1 X 1 SC 1... R n X n SC n SC a a : i=1...n X i B Information

Mehr

Objektrelationale, erweiterbare Datenbanken WS 04/05

Objektrelationale, erweiterbare Datenbanken WS 04/05 Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Institut für Informationssysteme Dr.C.Türker Objektrelationale, erweiterbare Datenbanken WS 0405 Übung 8 Aufgabe

Mehr

DB2 SQL, der Systemkatalog & Aktive Datenbanken

DB2 SQL, der Systemkatalog & Aktive Datenbanken DB2 SQL, der Systemkatalog & Aktive Datenbanken Lehr- und Forschungseinheit Datenbanken und Informationssysteme 1 Ziele Auf DB2 Datenbanken zugreifen DB2 Datenbanken benutzen Abfragen ausführen Den Systemkatalog

Mehr

Objektrelationale und erweiterbare Datenbanksysteme

Objektrelationale und erweiterbare Datenbanksysteme Objektrelationale und erweiterbare Datenbanksysteme Erweiterbarkeit SQL:1999 (Objekt-relationale Modellierung) In der Vorlesung werden nur die Folien 1-12 behandelt. Kapitel 14 1 Konzepte objekt-relationaler

Mehr

SQL-Befehlsliste. Vereinbarung über die Schreibweise

SQL-Befehlsliste. Vereinbarung über die Schreibweise Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche Teile

Mehr

SQL-Anweisungen. SELECT (SQL Data Query Language)

SQL-Anweisungen. SELECT (SQL Data Query Language) SQL-Anweisungen SELECT (SQL Data Query Language) SELECT * SELECT * FROM "meine Tabelle"; SELECT feldname1, feldname2 SELECT feldname1, feldname2 FROM meinetabelle ORDER BY feldname2, feldname1 DESC; WHERE

Mehr

Wirtschaftsinformatik 2. Tutorium im WS 11/12

Wirtschaftsinformatik 2. Tutorium im WS 11/12 Wirtschaftsinformatik 2. Tutorium im WS 11/12 Entity/Relationship-Modell SQL Statements Tutorium Wirtschaftsinformatik WS 11/12 2.1 Datenmodellierung mit ERM (1) Datenmodellierung zur Erarbeitung des konzeptionellen

Mehr

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL Relationales Modell: SQLDDL SQL als Definitionssprache SQLDDL umfaßt alle Klauseln von SQL, die mit Definition von Typen Wertebereichen Relationenschemata Integritätsbedingungen zu tun haben Externe Ebene

Mehr

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL Datenmodifikation mit SQL Folie 45 SQL - Datenmodifikation Einfügen INSERT INTO Relation [(Attribut, Attribut,...)] VALUES (Wert, Wert,...) INSERT INTO Relation [(Attribut, Attribut,...)] SFW-Anfrage Ändern

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Abfragen (Queries, Subqueries)

Abfragen (Queries, Subqueries) Abfragen (Queries, Subqueries) Grundstruktur einer SQL-Abfrage (reine Projektion) SELECT [DISTINCT] {* Spaltenname [[AS] Aliasname ] Ausdruck} * ; Beispiele 1. Auswahl aller Spalten SELECT * ; 2. Auswahl

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15

Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15 Vorwort..................................................... 13 Kapitel 1 Einleitung.......................................... 15 Kapitel 2 SQL der Standard relationaler Datenbanken... 19 2.1 Die Geschichte................................

Mehr

PHP + MySQL. Die MySQL-Datenbank. Hochschule Karlsruhe Technik & Wirtschaft Internet-Technologien T3B250 SS2014 Prof. Dipl.-Ing.

PHP + MySQL. Die MySQL-Datenbank. Hochschule Karlsruhe Technik & Wirtschaft Internet-Technologien T3B250 SS2014 Prof. Dipl.-Ing. PHP + MySQL Die MySQL-Datenbank Zusammenspiel Apache, PHP, PHPMyAdmin und MySQL PHPMyAdmin Verwaltungstool Nutzer Datei.php oder Datei.pl Apache HTTP-Server PHP Scriptsprache Perl Scriptsprache MySQL Datenbank

Mehr

5.6 Praktischer Teil. Modellierung einer Schulen-Lehrer-Verwaltung, kurz SLV (was sonst )

5.6 Praktischer Teil. Modellierung einer Schulen-Lehrer-Verwaltung, kurz SLV (was sonst ) 5.6 Praktischer Teil Modellierung einer Schulen-Lehrer-Verwaltung, kurz SLV (was sonst ) Vorgehen - Aufgabenbeschreibung - Erstellung des E/R-Modells Entities, Attribute, Relationen, Schlüssel Kardinalitäten,

Mehr

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13 Auf einen Blick Vorwort 13 Teil 1 Vorbereitung Kapitel 1 Einleitung 17 Kapitel 2 SQL - der Standard relationaler Datenbanken 21 Kapitel 3 Die Beispieldatenbanken 39 Teil 2 Abfrage und Bearbeitung Kapitel

Mehr

Datenintegrität. Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung

Datenintegrität. Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung Statische vs. dynamische Integritätsbedingungen Statische Integritätsbedingungen Bedingungen

Mehr

Programmieren II. Beispiele für RDBMS. Relationale Datenbanken. Datenbanken SQL. Dr. Klaus Höppner JDBC. Hochschule Darmstadt SS 2008

Programmieren II. Beispiele für RDBMS. Relationale Datenbanken. Datenbanken SQL. Dr. Klaus Höppner JDBC. Hochschule Darmstadt SS 2008 Programmieren II Datenbanken Dr. Klaus Höppner SQL Hochschule Darmstadt SS 2008 JDBC 1 / 20 2 / 20 Relationale Datenbanken Beispiele für RDBMS Ein Datenbanksystem ist ein System zur Speicherung von (großen)

Mehr

Lösungen der Übungsaufgaben von Kapitel 10

Lösungen der Übungsaufgaben von Kapitel 10 Lösungen der Übungsaufgaben von Kapitel 10 1. Legen Sie mit einem SQL - Befehl eine neue Tabelle PERSON_KURZ mit den Feldern Kurz_Id, Kurz_Name an. Machen Sie das so, dass Kurz_Id der Primärschlüssel wird

Mehr

(Von der Nähe zur Distanz zum User geordnet)

(Von der Nähe zur Distanz zum User geordnet) Datebanken Was ist eigentlich eine Datenbank? Datenbanken, Datenhaltungsschicht und Datenbankensysteme (hier als Synonyme zu verstehen) finden viele unterschiedliche Anwendungsbereiche. Datenbanken kann

Mehr

Datenbanken. Datenintegrität + Datenschutz. Tobias Galliat. Sommersemester 2012

Datenbanken. Datenintegrität + Datenschutz. Tobias Galliat. Sommersemester 2012 Datenbanken Datenintegrität + Datenschutz Tobias Galliat Sommersemester 2012 Professoren PersNr Name Rang Raum 2125 Sokrates C4 226 Russel C4 232 2127 Kopernikus C3 310 2133 Popper C3 52 2134 Augustinus

Mehr

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2 SQL SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R IV-1 Beispielrelationen Filiale ( Name Leiter Stadt Einlagen ) Konto ( KontoNr KundenNr FilialName Saldo ) Kredit

Mehr

FACHHOCHSCHULE MANNHEIM. Hochschule für Technik und Gestaltung. Beispielklausur zur Vorlesung:

FACHHOCHSCHULE MANNHEIM. Hochschule für Technik und Gestaltung. Beispielklausur zur Vorlesung: FACHHOCHSCHULE MANNHEIM Hochschule für Technik und Gestaltung DBA Bachelor Fakultät Informatik BEISPIELKLAUSUR Beispielklausur zur Vorlesung: Datenbanken (DBA) im Bachelor-Studiengang Informatik, Fakultät

Mehr

4. Objektrelationales Typsystem Kollektionstypen. Nested Table

4. Objektrelationales Typsystem Kollektionstypen. Nested Table Nested Table Bei einer Nested Table handelt es sich um eine Tabelle als Attributwert. Im Gegensatz zu Varray gibt es keine Beschränkung bei der Größe. Definition erfolgt auf einem Basistyp, als Basistypen

Mehr

dbis Praktikum DBS I SQL Teil 2

dbis Praktikum DBS I SQL Teil 2 SQL Teil 2 Übersicht Fortgeschrittene SQL-Konstrukte GROUP BY HAVING UNION / INTERSECT / EXCEPT SOME / ALL / ANY IN / EXISTS CREATE TABLE INSERT / UPDATE / DELETE 2 SELECT Syntax SELECT FROM [WHERE [GROUP

Mehr

ABTEILUNGS- ABTEILUNGS- LEITER NAME

ABTEILUNGS- ABTEILUNGS- LEITER NAME Übungsaufgaben Übungsaufgabe 1 - Normalisierung - Gegeben ist folgende unnormalisierte Relation, die Daten über Mitarbeiter und deren Abteilungszughörigkeit enthält. Weiterhin sind die Beteiligung(en)

Mehr

Datenbanken. Zusammenfassung. Datenbanksysteme

Datenbanken. Zusammenfassung. Datenbanksysteme Zusammenfassung Datenbanksysteme Christian Moser Seite 1 vom 7 12.09.2002 Wichtige Begriffe Attribut Assoziation API Atomares Attribut Datenbasis DBMS Datenunabhängigkeit Datenbankmodell DDL DML DCL ER-Diagramm

Mehr

Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten

Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten Vorname: Nachname: Matrikelnummer: Bei der Klausur sind keine Hilfsmittel (Skripten,

Mehr

Informatik 12 Datenbanken SQL-Einführung

Informatik 12 Datenbanken SQL-Einführung Informatik 12 Datenbanken SQL-Einführung Gierhardt Vorbemerkungen Bisher haben wir Datenbanken nur über einzelne Tabellen kennen gelernt. Stehen mehrere Tabellen in gewissen Beziehungen zur Beschreibung

Mehr

Informatik für Ökonomen II: Datenintegrität. Prof. Dr. Carl-Christian Kanne

Informatik für Ökonomen II: Datenintegrität. Prof. Dr. Carl-Christian Kanne Informatik für Ökonomen II: Datenintegrität Prof. Dr. Carl-Christian Kanne 1 Konsistenzbedingungen DBMS soll logische Datenintegrität gewährleisten Beispiele für Integritätsbedingungen Schlüssel Beziehungskardinalitäten

Mehr

Datenbanken: Datenintegrität. www.informatikzentrale.de

Datenbanken: Datenintegrität. www.informatikzentrale.de Datenbanken: Datenintegrität Definition "Datenkonsistenz" "in der Datenbankorganisation (...) die Korrektheit der gespeicherten Daten im Sinn einer widerspruchsfreien und vollständigen Abbildung der relevanten

Mehr

SQL-DDL und SQL-Anfragen. CREATE TABLE Kategorie (Bezeichnung VARCHAR(15) NOT NULL PRIMARY KEY, Klassifikationskriterium VARCHAR(100) NOT NULL )

SQL-DDL und SQL-Anfragen. CREATE TABLE Kategorie (Bezeichnung VARCHAR(15) NOT NULL PRIMARY KEY, Klassifikationskriterium VARCHAR(100) NOT NULL ) Technische Universität München WS 2003/04, Fakultät für Informatik Datenbanksysteme I Prof. R. Bayer, Ph.D. Lösungsblatt 6 Dipl.-Inform. Michael Bauer Dr. Gabi Höfling 1.12.2003 SQL-DDL und SQL-Anfragen

Mehr

Web Technologien Klassische Datenbanken am Beispiel von MySQL

Web Technologien Klassische Datenbanken am Beispiel von MySQL Web Technologien Klassische Datenbanken am Beispiel von MySQL Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00

Mehr

Konstante Relationen

Konstante Relationen Konstante Relationen values-syntax erzeugt konstante Relation values ( [, Konstante] * )[, ( [, Konstante] * )]* Beispiel values (1, eins ), (2, zwei ), (3, drei ); Resultat ist eine

Mehr

SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";

SET SQL_MODE=NO_AUTO_VALUE_ON_ZERO; phpmyadmin SQL Dump version 3.2.4 http://www.phpmyadmin.net Host: localhost Erstellungszeit: 13. April 2011 um 18:44 Server Version: 5.1.41 PHP-Version: 5.3.1 SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO"; /*!40101

Mehr

Vorlesung Informatik II

Vorlesung Informatik II Vorlesung Informatik II Universität Augsburg Wintersemester 2011/2012 Prof. Dr. Bernhard Bauer Folien von: Prof. Dr. Robert Lorenz Lehrprofessur für Informatik 08. Exkurs: Datenbanken 1 Motivation Datenbanksysteme

Mehr

SQL-Vertiefung. VU Datenbanksysteme. Reinhard Pichler

SQL-Vertiefung. VU Datenbanksysteme. Reinhard Pichler SQL-Vertiefung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester 2015/16 Gliederung

Mehr

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2 5 Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn 7 7. Datenbank-Zugriff Zum Beispiel aus PHP-Skripten: Client 7-2 Struktur einer Datenbank 7-3 Erzeugen von Datenbanken

Mehr

Klausur Datenbanken Wintersemester 2011/2012 Prof. Dr. Wolfgang May 8. Februar 2012, 14-16 Uhr Bearbeitungszeit: 90 Minuten

Klausur Datenbanken Wintersemester 2011/2012 Prof. Dr. Wolfgang May 8. Februar 2012, 14-16 Uhr Bearbeitungszeit: 90 Minuten Klausur Datenbanken Wintersemester 2011/2012 Prof. Dr. Wolfgang May 8. Februar 2012, 14-16 Uhr Bearbeitungszeit: 90 Minuten Vorname: Nachname: Matrikelnummer: Studiengang: Bei der Klausur sind keine Hilfsmittel

Mehr

Datenbank und Tabelle mit SQL erstellen

Datenbank und Tabelle mit SQL erstellen Datenbank und Tabelle mit SQL erstellen 1) Übung stat Mit dem folgenden Befehlen legt man die Datenbank stat an und in dieser die Tabelle data1 : CREATE DATABASE stat; USE stat; CREATE TABLE data1 ( `id`

Mehr

3.17 Zugriffskontrolle

3.17 Zugriffskontrolle 3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man

Mehr

Übung 7 DBMS-FUNKTIONALITÄTEN UND DATENIMPORT

Übung 7 DBMS-FUNKTIONALITÄTEN UND DATENIMPORT Übung 7 DBMS-FUNKTIONALITÄTEN UND DATENIMPORT 1 Metadaten a) Wozu werden Metadaten im Umfeld von DBMS benötigt? b) Nennen Sie mindestens zwei weitere Anwendungsfelder, in denen Metadaten zum Einsatz kommen.

Mehr

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,

Mehr

9. Einführung in Datenbanken

9. Einführung in Datenbanken 9. Einführung in Datenbanken 9.1 Motivation und einführendes Beispiel 9.2 Modellierungskonzepte der realen Welt 9.3 Anfragesprachen (Query Languages) 9.1 Motivation und einführendes Beispiel Datenbanken

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 Kapitel 33 Der xml-datentyp In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 995 996 Kapitel 33: Der xml-datentyp Eine der wichtigsten

Mehr

Universität Augsburg, Institut für Informatik WS 2014/2015 Prof. Dr. W. Kießling 28. Nov. 2014 F. Wenzel, L. Rudenko Lösungsblatt 6

Universität Augsburg, Institut für Informatik WS 2014/2015 Prof. Dr. W. Kießling 28. Nov. 2014 F. Wenzel, L. Rudenko Lösungsblatt 6 Universität Augsburg, Institut für Informatik WS 2014/2015 Prof. Dr. W. Kießling 28. Nov. 2014 F. Wenzel, L. Rudenko Lösungsblatt 6 Aufgabe 1: SQL: DDL und DML a) DDL: Datenbanksysteme I CREATE TABLE Bundeslaender

Mehr

Garten -Daten Bank. Was ist das? Dr. Karsten Tolle PRG2 SS 2013

Garten -Daten Bank. Was ist das? Dr. Karsten Tolle PRG2 SS 2013 Garten -Daten Bank Was ist das? Dr. Karsten Tolle PRG2 SS 2013 Inhalt heute Kurz: Motivation und Begriffe SQL (am Beispiel MySQL und Workbench) create table(tabelle erzeugen) insert into(einfügen) select

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 10 Übung zur Vorlesung Grundlagen: Datenbanken im WS16/17 Harald Lang, Linnea Passing (gdb@in.tum.de)

Mehr