Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1

Größe: px
Ab Seite anzeigen:

Download "Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1"

Transkript

1 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Aufgabe 1: Betrachtet wird folgendes Modell zur Erklärung des Managergehalts salary durch den Umsatz sales, die Eigenkapitalrendite roe und die Aktienrendite ros von Unternehmen: log(salary) = β 0 + β 1 log(sales) + β 2 roe + β 3 ros + u (1) wobei roe und ros als Prozentangaben vorliegen mit der Kodierung 1% = 0.01, 100% = 1 usw. i. OLS-Schätzung der Gleichung auf Basis von N = 209 Querschnittsdaten liefert folgendes Ergebnis: log(salary) = log(sales) roe ros (0.32) (0.035) (0.41) (0.054) N = 209, R 2 = (ˆ1) Um wie viel Prozent steigt das erwartete Managergehalt salary (näherungsweise), wenn cet. par. sales (relativ) um ein Prozent steigt? roe (absolut) um einen Prozentpunkt steigt (d.h. roe = 1% = 0.01)? ros (absolut) um zehn Prozentpunkte steigt (d.h. ros = 10% = 0.1)? ii. Stellen Sie die Nullhypothese auf, dass nach Kontrolle von sales und roe die Aktienrendite ros keinen Einfluss auf das Managergehalt hat. Kann diese Nullhypothese bei den vorliegenden Daten auf dem 5%-Niveau abgelehnt werden? Stellen Sie die Nullhypothese auf, dass nach Kontrolle von sales und ros die Eigenkapitalrendite roe keinen Einfluss auf das Managergehalt hat. Kann diese Nullhypothese bei den vorliegenden Daten auf dem 5%-Niveau abgelehnt werden? iii. Die beiden Größen roe und ros werden nun als Variablengruppe betrachtet. Formalisieren Sie die Nullhypothese auf, dass roe und ros gemeinsam keinen Einfluss auf salary haben (bei Kontrolle von sales) und beschreiben Sie ein Vorgehen, um die Ablehnbarkeit dieser Nullhypothese auf einem vorgegebenen Signifikanzniveau zu testen. Welcher p-wert für das Ergebnis dieses Tests ist angesichts der individuellen Signifikanzen von roe und ros zu erwarten: a: p < 5%, b: 5% p < 10%, c: p 10%? Warum kann es sein, dass der Test ein von dieser Erwartung abweichenden p-wert findet? iv. Sie vermuten einen (mit wachsendem roe) abnehmenden Grenzeffekt von roe auf log(salary). Beschreiben Sie, wie man dem durch Hinzufügen eines (aus roe abgeleiteten) zusätzlichen Regressors Rechnung tragen kann. Wenn tatsächlich ein abnehmender Grenzeffekt vorliegt, welches Vorzeichen hat dann der Koeffizient des zusätzlichen Regressors? Angenommen, die OLS-Schätzung mit dem zusätzlichen Regressor liefert eine Rendite r max, so dass für Unternehmen mit roe > r max ein negativer Effekt einer wachsenden Eigenkapitalrendite auf das Managergehalt zu erwarten wäre. Unter welchen Bedingungen deutet dies auf ein reales Phänomen hin (und nicht auf ein Artefakt, das der Modellspezifikation, d.h. der funktionalen Form des zusätzlichen Regressors, geschuldet ist)? v. Mit den Quadraten û 2 i der Residuen û i der OLS-Schätzung (ˆ1) wird das Modell û 2 i = δ 0 + δ 1 log(sales i ) + δ 2 roe i + δ 3 ros i + ε i mit OLS geschätzt und anschließend ein F -Test von H 0 : δ 1 = 0 δ 2 = 0 δ 3 = 0 durchgeführt. Die Verletzung welcher Gauß-Markov-Annahme wird damit adressiert? Um den Test (auf 5%-Niveau) durchzuführen, muss die F -Statistik mit einem kritischen Wert (95%-Quantil einer F -Verteilung) verglichen werden. Welchen kritischen Wert (welche F - Verteilung) müssen Sie verwenden: F 205,205 = 1.26, F 3,205 = 2.65, F 205,3 = 8.54, F 3,3 = 9.28? Die F -Statistik nimmt den Wert 4.1 an. Lässt sich die Nullhypothese dann auf 5%-Niveau ablehnen oder nicht? Liegt damit Evidenz für eine Verletzung der betreffenden Gauß-Markov- Annahme vor oder nicht?

2 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 2 vi. Die Durbin-Watson-Statistik für die Regression (1) hat einen Wert von 0.9. Deutet dies auf ein potentielles Problem mit der Schätzung von (1) hin? Welche Maßnahmen ergreifen Sie? (Beachten Sie, dass wir es hier mit Querschnittsdaten zu tun haben, bei denen es keine natürliche Anordnung der Beobachtungseinheiten hier von Unternehmen bzw. deren Managern gibt.) vii. Angenommen, die Variablen roe und ros sind stark positiv miteinander korreliert, beide korrelieren jedoch fast nicht mit log(sales). In welche Richtung wird sich dann a) der geschätzte Koeffizient von ros, ˆβ ros, b) der Standardfehler von ros (Std-Abweichung von ˆβ ros ), c) die t-statistik von ros voraussichtlich bewegen, wenn der Regressor roe aus dem Regressionsmodell (1) herausgenommen wird? Welche Regression misst eher den Effekt einer exogenen Veränderung der Aktienrendite ros auf das Managergehalt, diejenige ohne oder diejenige mit roe? (mit Begründung; unter einer exogenen Veränderung von ros soll dabei eine solche Veränderung der Aktienrendite verstanden werden, bei der nicht gleichzeitig sales, roe oder unbeobachtete Faktoren, die auch das Managergehalt beeinflussen, verändert werden.) viii. Was würde in der Regression (1) geschehen, wenn roe und ros nperfekt miteinander korreliert wären?

3 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 3 Aufgabe 2: Gegeben ist ein Zeitreihen-Regressionsmodell y t = β 0 + β x t + u t (1) das unter den Gauß-Markov-Annahmen im Stationaritäts-Szenario betrachtet wird. i. Die Grundformen von Hypothesentests auf a) Autokorrelation in den Störtermen (Breusch-Godfrey), b) statische Heteroskedastie (Breusch-Pagan bzw. White) c) Instationarität in Form von Unit-Roots (Dickey-Fuller), d) ARCH-Effekte (Engle) können allesamt auf OLS-geschätzten Regressionsmodellen aufgebaut werden (teilweise sind sie der OLS-Schätzung von (1) nachgelagert sind und verwenden deren Residuen û t anstelle der Störterme u t ). Notieren Sie hinter den folgenden Angaben, welcher der obigen Tests jeweils in seiner Grundform adressiert wird (sofern überhaupt zutreffend): y t = α + ϱ y t 1 + ε t, Nullhypothese ϱ = 0 y t = α + ϱ y t 1 + ε t, Nullhypothese ϱ = 1 y t = α + ϱ û t 1 + ε t, Nullhypothese ϱ = 0 y t = α + ϱ û t 1 + ε t, Nullhypothese ϱ = 1 û t = α + ϱ û t 1 + ε t, Nullhypothese ϱ = 0 û t = α + ϱ û t 1 + ε t, Nullhypothese ϱ = 1 û 2 t = α + ϱ û t 1 + ε t, Nullhypothese ϱ = 0 û 2 t = α + ϱ û t 1 + ε t, Nullhypothese ϱ = 1 û 2 t = α + ϱ û 2 t 1 + ε t, Nullhypothese ϱ = 0 û 2 t = α + ϱ û 2 t 1 + ε t, Nullhypothese ϱ = 1 û 2 t = α + ϱ x t + ε t, Nullhypothese ϱ = 0 û t = α + ϱ x t + ε t, Nullhypothese ϱ = 0 ii. Welcher der vier Tests aus Teil i. sollte als erster (und für alle beteiligten Variablen) durchgeführt werden? Warum? In Bezug auf die Nullhypothese: Was unterscheidet diesen Test grundsätzlich von den drei anderen? Welche Maßnahme empfiehlt sich bei einer Verletzung der entsprechenden Gauß-Markov-Annahme (sofern nicht ko-integrierende Zeitreihen involviert sind)? iii. Bei welchen der vier Tests aus Teil i. ist selbst bei Verletzung der entsprechenden Gauß-Markov- Annahme noch Konsistenz der OLS-Schätzung sichergestellt (die anderen Gauß-Markov-Annahmen als erfüllt vorausgesetzt)? Erläutern Sie unter Verwendung der Begriffe Effizienz und statistische Inferenz die Probleme, die man bei OLS-Schätzung eines Modells hat, wo die Stationaritäts- und Exogenitätsannahmen erfüllt sind, aber Störterm-Heteroskedastie oder -Autokorrelation auftritt. iv. Wahr oder falsch: Wenn die Störterme in einem Regressionsmodell für Zeitreihen ARCH-Effekte enthalten, müssen sie notwendigerweise autokorreliert sein? v. Gegeben ist ein Zeitreihen-Modell, in dem instationäre Variablen auftreten ( Modell in Leveln ); als Alternative wird ein Modell betrachtet, in dem alle Variablen durch ihre ersten Differenzen ersetzt sind ( Modell in Differenzen ). Wahr oder falsch: Das R 2 der OLS-Schätzung des Modells in Differenzen ist notwendigerweise kleiner als das R 2 der OLS-Schätzung des Modells in Leveln? Gegeben ist ein Zeitreihen-Modell, in dem ARCH-Effekte auftreten. Das Modell wird einmal mit OLS geschätzt und einmal mit Maximum-Likelihood basierend auf einem GARCH(1,1)-Residualmodell. Wahr oder falsch: Das R 2 der GARCH-Schätzung ist notwendigerweise kleiner (oder gleich) dem R 2 der OLS-Schätzung? (Das R 2 der GARCH-Schätzung sei dabei definiert als 1 var(u)/ var(y) mit var(u) = 1 T t û2 t als empirischer Residualvarianz und var(y) als empirischer Varianz in y.)

4 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 4 Aufgabe 2: Der Rohölweltmarkt wird von zwei Rohölsorten dominiert, einerseits das nordamerikanische West Texas Intermediate und andererseits das europäische Brent-Rohöl. Wir interessieren uns für die Wechselwirkung der Preise beider Sorten (Dollar pro Barrel, WTI t bzw. Brent t ) und den Effekt von Preisdiskrepanzen in der Vorperiode. Dabei liegen uns wöchentliche Daten für die Jahre 1993 bis 1996 vor. In die Modelle gehen logarithmierte Preise wti = log(wti), brent = log(brent) ein, so dass die ersten Differenzen als relative Wachstumsraten interpretiert werden können. Außerdem wird die Differenz der logarithmierten Preise ci := brent wti = log(brent/wti) (relative Abweichung der Preise) verwendet. Im Folgenden wird unterstellt, dass für diagnostische Tests, die Lags der erklärten Variable verwenden (z.b. ADF, Breusch-Godfrey), jeweils genau ein Lag korrekt ist. i. Was legen die folgenden Regressionen bzgl. der Präsenz einer Unit-Root und/oder eines deterministischen Trends in der jeweiligen Zeitreihe nahe? (gwti = wti, gbrent = brent, ci = brent wti) wti t = wti t wti t t (0.063) (0.022) (0.07) ( ) T = 209, R 2 = brent t = brent t brent t t (0.054) (0.020) (0.07) ( ) T = 209, R 2 = gwti t = gwti t gwti t t (0.0047) (0.10) (0.07) ( ) T = 209, R 2 = 0.52 gbrent t = gbrent t gbrent t t (0.0042) (0.09) (0.07) ( ) T = 209, R 2 = 0.46 ci t = ci t ci t t (0.006) (0.070) (0.056) ( ) T = 209, R 2 = 0.19 (Hinweis: Kritischer Wert des ADF-Tests mit Interzept u. Trend auf 5%-Niveau bei T = 209: 3.4) ii. Wir betrachten im Folgenden das Modell: wti t = β 0 +β 1 ci t 1 +β 2 wti t 1 +β 3 brent t 1 +u t. Warum können wir recht sicher sein, dass aus Stationaritätsgesichtspunkten eine OLS-Schätzung dieses Modells unproblematisch ist? Welches Vorzeichen wird β 1 voraussichtlich haben? Durchführung der OLS-Schätzung ergibt: wti t = (brent wti) t wti t brent t 1 (0.009) (0.10) (0.126) (0.14) T = 209, R 2 = Wenn der Preis von Brent-Rohöl denjenigen von WTI um 1% übersteigt, ist dann c.p. ein Anstieg oder ein Abfall des WTI-Preises in der Folgewoche zu erwarten? Um wieviel Prozent? Ist dieser Effekt (einer Preisdiskrepanz zwischen Brent- und WTI-Öl auf die WTI-Preisanpassung in der Folgewoche) signifikant auf dem 5%-Niveau? iii. Beantworten Sie die Fragen aus ii. wenn wti durch brent ersetzt wird, d.h. wenn das Modell brent t = β 0 + β 1 ci t 1 + β 2 wti t 1 + β 3 brent t 1 + u t lautet. Dessen OLS-Schätzung ergibt: brent t = (brent wti) t wti t brent t 1 (0.008) (0.10) (0.11) (0.12) T = 209, R 2 = Welchem der beiden Preise käme demzufolge eher eine Lead-Rolle, welchem eine Lag-Rolle zu?

5 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 5 iv. a) Mit den Residuen û t der Schätzung aus ii. wird folgende OLS-Schätzung durchgeführt: û t = û t ci t wti t brent t 1 (0.023) (1.00) (0.27) (0.75) (0.28) T = 209, R 2 = Die Verletzung welcher Gauß-Markov-Annahme wird mit dieser Schätzung adressiert? Besteht hier Evidenz (auf 5%-Niveau) für eine Verletzung der betreffenden Gauß-Markov-Annahme? b) Mit den Quadraten der Residuen, û 2 t, von ii. wird folgende OLS-Schätzung durchgeführt: û 2 t = (brent wti) t 1 (0.0003) (0.004) T = 209, R 2 = Die Verletzung welcher Gauß-Markov-Annahme wird mit dieser Schätzung adressiert? Besteht hier Evidenz (auf 5%-Niveau) für eine Verletzung der betreffenden Gauß-Markov-Annahme? c) Schließlich wird folgende OLS-Schätzung durchgeführt: û 2 t = û 2 t 1 ( ) (0.07) T = 209, R 2 = Welche Effekte lassen sich mit dieser Schätzung testen? Lässt sich die Präsenz entsprechender Effekte hier auf dem 5%-Niveau bestätigen? v. Erläutern Sie knapp, auf welche Schwierigkeiten eine Verletzung der in den Teilen iv. getesteten Annahmen im Hinblick auf a) die Effizienz der OLS-Schätzung und b) die statistische Inferenz mit der OLS-Schätzung führt. vi. Weiterführende diagnostische Tests lassen ARCH-Effekte hoher Ordnung in den Residuen der Fehler-Korrektur-Modelle aus ii. bzw. iii vermuten. Wir schätzen die Modelle daher bei unterstellter GARCH(1,1)-Heteroskedastie mit Maximum Likelihood bei bedingter Normalverteilung u t I t 1 N (0, σ 2 t ): wti t = (brent wti) t wti t brent t 1 (0.007) (0.10) (0.147) (0.165) T = 209, R 2 = σ t 2 = û 2 t ( ) (0.05) (0.09) σt 1 2 brent t = (brent wti) t wti t brent t 1 (0.006) (0.08) (0.13) (0.15) T = 209, R 2 = σ t 2 = û 2 t ( ) (0.08) (0.12) σt 1 2 Wie würden sich demzufolge die Lead/Lag-Rollen zwischen den beiden Preisen verteilen? Bei welchem der beiden Preise haben demzufolge Schocks (die nicht durch die erklärenden Variablen abgefangen sind) einen stärkeren Effekt auf die Volatilität? (Ohne Signifikanztest) Die Schätzung von Outcome-Modellen unter ARCH oder GARCH-Heteroskedastie lassen sich näherungsweise als gewichtete OLS-Schätzungen (WLS-Schätzungen) interpretieren, wobei die Gewichtung umgekehrt proportional zur jeweiligen Volatilität ist (d.h. Zeitpunkte hoher Volatilität σ t gehen mit verringertem Gewicht ein, Zeitpunkte geringer Volatilität mit erhöhtem Gewicht). Erläutern Sie unter diesem Aspekt, dass die Schätzergebnisse mit folgender Aussage konsistent sind: In Phasen geringer Volatilität reagiert der Brent-Preis stärker auf eine Diskrepanz zwischen WTIund Brent-Preis, in Phasen hoher Volatilität dagegen der WTI-Preis. Schlagen Sie ein Modell vor, mit dem man solche Aussagen testen könnte.

Interne und externe Modellvalidität

Interne und externe Modellvalidität Interne und externe Modellvalidität Interne Modellvalidität ist gegeben, o wenn statistische Inferenz bzgl. der untersuchten Grundgesamtheit zulässig ist o KQ-Schätzer der Modellparameter u. Varianzschätzer

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

1 Statistische Grundlagen

1 Statistische Grundlagen Konzepte in Empirische Ökonomie 1 (Winter) Hier findest Du ein paar Tipps zu den Konzepten in Empirische 1. Wenn Du aber noch etwas Unterstützung kurz vor der Klausur brauchst, schreib uns eine kurze Email.

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell:

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell: Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen LV-Leiterin: Univ.Prof.Dr. Sylvia Frühwirth-Schnatter 1 Wahr oder falsch? 1. Das folgende Modell ist ein GARCH(1,1)-Modell: Y

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang. Lehrstuhl für Statistik und empirische Wirtschaftsforschung Fach: Prüfer: Bachelorprüfung Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail Studiengang

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Statistik Einführung // Lineare Regression 9 p.2/72

Statistik Einführung // Lineare Regression 9 p.2/72 Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 9B a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Man kann erwarten, dass der Absatz mit steigendem Preis abnimmt, mit höherer Anzahl der Außendienstmitarbeiter sowie mit erhöhten

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Aufgabe 1 U t bedeute weißes Rauschen und B den Backshift

Mehr

Zeitreihen-Ökonometrie SS 2015 Lösung der Wiederholungsaufgaben

Zeitreihen-Ökonometrie SS 2015 Lösung der Wiederholungsaufgaben Zeitreihen-Ökonometrie SS 2015 Lösung der Wiederholungsaufgaben Aufgabe 23: Betrachtet wird folgendes Modell zur Erklärung des Managergehalts salary durch den Umsatz sales, die Eigenkapitalrendite roe

Mehr

Aufgabenstellung Aufgabe 1: Betrachten Sie das folgende ökonometrische Modell: y t = α + βx t + u t (1)

Aufgabenstellung Aufgabe 1: Betrachten Sie das folgende ökonometrische Modell: y t = α + βx t + u t (1) Klausur: Einführung in die Ökonometrie Prüfer: Prof. Dr. Karl-Heinz Paqué Dr.Ludwigv.Auer Semester: WS 1999/00 Als Hilfsmittel sind zugelassen: nicht-programmierbarer Taschenrechner Diese Klausur besteht

Mehr

1. Lösungen zu Kapitel 7

1. Lösungen zu Kapitel 7 1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei

Mehr

Klausur Sommersemester 2010

Klausur Sommersemester 2010 Klausur Sommersemester 2010 Lehrstuhl: Wirtschaftspolitik Prüfungsfach: Empirische Wirtschaftsforschung Prüfer: Prof. Dr. K. Kraft Datum: 04.08.2010 Hilfsmittel: Nicht-programmierbarer Taschenrechner Klausurdauer:

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Angewandte Ökonometrie Übung. Endogenität, VAR, Stationarität und Fehlerkorrekturmodell

Angewandte Ökonometrie Übung. Endogenität, VAR, Stationarität und Fehlerkorrekturmodell Angewandte Ökonometrie Übung 3 Endogenität, VAR, Stationarität und Fehlerkorrekturmodell Zeitreihenmodelle Zeitreihenmodelle Endogenität Instrumentvariablenschätzung Schätzung eines VARs Tests auf Anzahl

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Nachholklausur STATISTIK II

Nachholklausur STATISTIK II Nachholklausur STATISTIK II Name, Vorname: Matrikel-Nr.: Die Klausur enthält zwei Typen von Aufgaben: T e i l A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine

Mehr

Abschlussklausur (60 Minuten), 15. Juli 2014

Abschlussklausur (60 Minuten), 15. Juli 2014 Prof. Dr. Amelie Wuppermann Volkswirtschaftliche Fakultät Universität München Sommersemester 2014 Empirische Ökonomie 1 Abschlussklausur (60 Minuten), 15. Juli 2014 Bearbeitungshinweise Die Bearbeitungszeit

Mehr

1 Interaktion von zwei Dummyvariablen. 2 Interaktion einer Dummyvariablen mit einer kardinalskalierten Variablen

1 Interaktion von zwei Dummyvariablen. 2 Interaktion einer Dummyvariablen mit einer kardinalskalierten Variablen Modelle mit Interationsvariablen I Modelle mit Interationsvariablen II In der beim White-Test verwendeten Regressionsfuntion y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 2 1 + β 4 x 2 2 + β 5 x 1 x 2, ist anders

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand 1 Fragestellung Methoden.1 Vergleich der Anzahlen. Vergleich

Mehr

Datenanalyse mit Excel und Gretl

Datenanalyse mit Excel und Gretl Dozent: Christoph Hindermann christoph.hindermann@uni-erfurt.de Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 1 Teil 2: Gretl Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 2 Modellannahmen

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Empirische Analysen mit dem SOEP

Empirische Analysen mit dem SOEP Empirische Analysen mit dem SOEP Methodisches Lineare Regressionsanalyse & Logit/Probit Modelle Kurs im Wintersemester 2007/08 Dipl.-Volksw. Paul Böhm Dipl.-Volksw. Dominik Hanglberger Dipl.-Volksw. Rafael

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Inhalt 1 Einführung... 1 2 Ausgewählte Begriffe... 10 3 Vorgehensweise im Überblick... 14

Inhalt 1 Einführung... 1 2 Ausgewählte Begriffe... 10 3 Vorgehensweise im Überblick... 14 VII 1 Einführung... 1 1.1 Warum Versuche?... 1 1.2 Warum Statistik?... 1 1.3 Warum Versuchsplanung?... 4 1.4 Welche Art von Ergebnissen kann man erwarten?... 6 1.5 Versuche oder systematische Beobachtung?...

Mehr

Mikro-Ökonometrie: Small Sample Inferenz mit OLS

Mikro-Ökonometrie: Small Sample Inferenz mit OLS Mikro-Ökonometrie: Small Sample Inferenz mit OLS 1. November 014 Mikro-Ökonometrie: Small Sample Inferenz mit OLS Folie Zusammenfassung wichtiger Ergebnisse des letzten Kapitels (I) Unter den ersten vier

Mehr

Inhalt. Vorwort... 1 Einführung... 1. 2 Ausgewählte Begriffe... 11. 3 Vorgehensweise im Überblick... 17

Inhalt. Vorwort... 1 Einführung... 1. 2 Ausgewählte Begriffe... 11. 3 Vorgehensweise im Überblick... 17 Inhalt Vorwort.................................................................. V Inhalt.................................................................... VII 1 Einführung..........................................................

Mehr

Theorie und Empirie der Kaufkraftparität (23.5.)

Theorie und Empirie der Kaufkraftparität (23.5.) Theorie und Empirie der Kaufkraftparität (23.5.) Text: Taylor, A., Taylor M. (2004): The Purchasing Power Debate, NBER Working Paper No. 10607 (June 2004) Fragen: 1. Beschreiben Sie in ein, zwei Sätzen,

Mehr

Taschenbuch Versuchsplanung

Taschenbuch Versuchsplanung Wilhelm Kleppmann Taschenbuch Versuchsplanung Produkte und Prozesse optimieren Praxisreihe Qualitätswissen Herausgegeben von Franz J. Brunner Carl Hanser Verlag München Wien VII Inhalt 1 Einführung 1 1.1

Mehr

Regression mit Gretl Eine erste Einführung 1

Regression mit Gretl Eine erste Einführung 1 Kurzeinführung in Gretl S. 1 Regression mit Gretl Eine erste Einführung 1 Installation: Gretl für das entsprechende Betriebssystem herunterladen und die Setup-Datei ausführen. Hinweis: Für die Benutzung

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

3. Einführung in die Zeitreihenanalyse

3. Einführung in die Zeitreihenanalyse 3. Einführung in die Zeitreihenanalyse Dr. Johann Burgstaller Finance Department, JKU Linz (Dieser Foliensatz wurde zuletzt aktualisiert am 25. Dezember 2007.) Dr. Johann Burgstaller IK Empirische Kapitalmarktforschung

Mehr

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift:

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift: 20-minütige Klausur zur Vorlesung Lineare Modelle im Sommersemester 20 PD Dr. Christian Heumann Ludwig-Maximilians-Universität München, Institut für Statistik 2. Oktober 20, 4:5 6:5 Uhr Überprüfen Sie

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

2.3 Nichtlineare Regressionsfunktion

2.3 Nichtlineare Regressionsfunktion Nichtlineare Regressionsfunktion Bisher: lineares Regressionsmodell o Steigung d. Regressionsgerade ist konstant o Effekt einer Änderung von X auf Y hängt nicht vom Niveau von X oder von anderen Regressoren

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser 1 / 28 Kointegration Kapitel 19 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 28 Inhalt I(d), Trends, Beispiele Spurious Regression Kointegration, common trends Fehlerkorrektur-Modell Test

Mehr

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25 Inhaltsverzeichnis Einleitung 19 Zu diesem Buch 19 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Falsche Voraussetzungen 21 Wie dieses Buch aufgebaut ist 21 Teil I: Datenanalyse und Grundlagen

Mehr

Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren

Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren Institut für Arbeitsmarkt- und Berufsforschung Folie 1 Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren Katharina Hampel Marcus Kunz Norbert Schanne Antje Weyh Dr.

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Kap. 12: Regression mit Zeitreihendaten und Prognosemodelle

Kap. 12: Regression mit Zeitreihendaten und Prognosemodelle Kap. 12: Regression mit Zeitreihendaten und Prognosemodelle Motivation Grundbegriffe Autoregressionen (AR-Modelle) Dynamische Regressionsmodelle (ADL-Modelle) Nichstationarität Ausblick 12.1 Motivation

Mehr

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch 1 2 - Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch Badewannenkurve. -mit der Badewannenkurve lässt

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

6.2 Regressionsanalyse

6.2 Regressionsanalyse c-kennzahlensystem (ROCI) 6. Regressionsanalyse Die Regressionsanalyse zählt zu den wichtigsten Analysemethoden des Kommunikationscontrollings und hat ihre tiefen Wurzeln in der Statistik. Im Rahmen des

Mehr

Taschenbuch Versuchsplanung Produkte und Prozesse optimieren

Taschenbuch Versuchsplanung Produkte und Prozesse optimieren Wilhelm Kleppmann Taschenbuch Versuchsplanung Produkte und Prozesse optimieren ISBN-10: 3-446-41595-5 ISBN-13: 978-3-446-41595-9 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41595-9

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Annahmen des linearen Modells

Annahmen des linearen Modells Annahmen des linearen Modells Annahmen des linearen Modells zusammengefasst A1: Linearer Zusammenhang: y = 0 + 1x 1 + 2x 2 + + kx k A2: Zufallsstichprobe, keine Korrelation zwischen Beobachtungen A3: Erwartungswert

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse III: Diagnostik

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse III: Diagnostik Institut für Soziologie Methoden 2 Regressionsanalyse III: Diagnostik Wiederholung Regressionsanalyse beruht auf verschiedenen Annahmen Sind Annahmen verletzt, sind bestimmte Eigenschaften der Schätzer

Mehr

Taschenbuch Versuchsplanung

Taschenbuch Versuchsplanung Wilhelm Kleppmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Taschenbuch Versuchsplanung Produkte und Prozesse

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

DOE am Beispiel Laserpointer

DOE am Beispiel Laserpointer DOE am Beispiel Laserpointer Swen Günther Ein wesentliches Ziel im Rahmen der Neuproduktentwicklung ist die aus Kundesicht bestmögliche, d.h. nutzenmaximale Konzeption des Produktes zu bestimmen (vgl.

Mehr

Prüfung eines Datenbestandes

Prüfung eines Datenbestandes Prüfung eines Datenbestandes auf Abweichungen einzelner Zahlen vom erwarteten mathematisch-statistischen Verhalten, die nicht mit einem Zufall erklärbar sind (Prüfung auf Manipulationen des Datenbestandes)

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Methoden-Validierung in der Analytik Version 2.1

Methoden-Validierung in der Analytik Version 2.1 Die Software Methoden-Validierung in der Analytik MVA dient der Auswertung von Validierungsdaten. Der Umfang orientiert sich im Wesentlichen an den Richtlinien der ICH (International Conference on the

Mehr

Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil. Name, Vorname. Matrikelnr. Studiengang. E-Mail-Adresse. Unterschrift

Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil. Name, Vorname. Matrikelnr. Studiengang. E-Mail-Adresse. Unterschrift Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil Name, Vorname Matrikelnr. Studiengang E-Mail-Adresse Unterschrift

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang. Lehrstuhl für Statistik und empirische irtschaftsforschung, SS 2009 ach: Prüfer: Bachelorprüfung Praxis der empirischen irtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirtschaftsforschung Anne Neumann 21. Oktober 2015 Anne Neumann EWF 21. Oktober 2015 1 / 9 Inhaltsverzeichnis 1 Grobgliederung 2 Grundlagen Anne Neumann EWF 21. Oktober 2015 2 / 9 Grobgliederung

Mehr

Tests einzelner linearer Hypothesen I

Tests einzelner linearer Hypothesen I 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen I Neben Tests für einzelne Regressionsparameter sind auch Tests (und Konfidenzintervalle) für Linearkombinationen

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Bachelorprüfung SS 2015

Bachelorprüfung SS 2015 Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung SS 205

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 27 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de 1 Gliederung 7 Weitere Krigingverfahren 7.1 Simple-Kriging 7.2 Indikator-Kriging

Mehr

Statistischer Rückschluss und Testen von Hypothesen

Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss Lerne von der Stichprobe über Verhältnisse in der Grundgesamtheit Grundgesamtheit Statistischer Rückschluss lerne aus Analyse

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Übungen (HS-2010): Urteilsfehler. Autor: Siegfried Macho

Übungen (HS-2010): Urteilsfehler. Autor: Siegfried Macho Übungen (HS-2010): Urteilsfehler Autor: Siegfried Macho Inhaltsverzeichnis i Inhaltsverzeichnis 1. Übungen zu Kapitel 2 1 Übungen zu Kontingenz- und Kausalurteile 1 Übung 1-1: 1. Übungen zu Kapitel 2 Gegeben:

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Auswertung von kritischen Daten Vorgehensweise anhand eines Beispiels Visual-XSel 10.0

Auswertung von kritischen Daten Vorgehensweise anhand eines Beispiels Visual-XSel 10.0 Auswertung von kritischen Daten Vorgehensweise anhand eines Beispiels Visual-XSel 10.0??? Curt Ronniger 2007 Bei Neueinstieg in das Programm, sollte zunächst die Dokumentation XSelDoE10.pdf gelesen werden.

Mehr

2 Anwendungen und Probleme

2 Anwendungen und Probleme Universität Ulm 89069 Ulm Germany Prof. Dr. Werner Smolny Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Institutsdirektor 2 Anwendungen

Mehr

Tutorial: Rangkorrelation

Tutorial: Rangkorrelation Tutorial: Rangkorrelation In vielen Sportarten gibt es mehr oder weniger ausgefeilte Methoden, nicht nur die momentanen Leistungen (der jetzige Wettkampf, das jetzige Rennen, das jetzige Spiel,..) der

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Zeitreihen. Statistik II

Zeitreihen. Statistik II Statistik II Wiederholung Literatur -Daten Trends und Saisonalität Fehlerstruktur Statistik II (1/31) Wiederholung Literatur -Daten Trends und Saisonalität Fehlerstruktur Statistik II (1/31) Zum Nachlesen

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Modulklausur Multivariate Verfahren

Modulklausur Multivariate Verfahren Name, Vorname Matrikelnummer Modulklausur 31821 Multivariate Verfahren Datum Punkte Note Termin: 28. März 2014, 9.00-11.00 Uhr Erstprüfer: Univ.-Prof. Dr. H. Singer Hinweise zur Bearbeitung der Modulklausur

Mehr