Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1

Größe: px
Ab Seite anzeigen:

Download "Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1"

Transkript

1 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Aufgabe 1: Betrachtet wird folgendes Modell zur Erklärung des Managergehalts salary durch den Umsatz sales, die Eigenkapitalrendite roe und die Aktienrendite ros von Unternehmen: log(salary) = β 0 + β 1 log(sales) + β 2 roe + β 3 ros + u (1) wobei roe und ros als Prozentangaben vorliegen mit der Kodierung 1% = 0.01, 100% = 1 usw. i. OLS-Schätzung der Gleichung auf Basis von N = 209 Querschnittsdaten liefert folgendes Ergebnis: log(salary) = log(sales) roe ros (0.32) (0.035) (0.41) (0.054) N = 209, R 2 = (ˆ1) Um wie viel Prozent steigt das erwartete Managergehalt salary (näherungsweise), wenn cet. par. sales (relativ) um ein Prozent steigt? roe (absolut) um einen Prozentpunkt steigt (d.h. roe = 1% = 0.01)? ros (absolut) um zehn Prozentpunkte steigt (d.h. ros = 10% = 0.1)? ii. Stellen Sie die Nullhypothese auf, dass nach Kontrolle von sales und roe die Aktienrendite ros keinen Einfluss auf das Managergehalt hat. Kann diese Nullhypothese bei den vorliegenden Daten auf dem 5%-Niveau abgelehnt werden? Stellen Sie die Nullhypothese auf, dass nach Kontrolle von sales und ros die Eigenkapitalrendite roe keinen Einfluss auf das Managergehalt hat. Kann diese Nullhypothese bei den vorliegenden Daten auf dem 5%-Niveau abgelehnt werden? iii. Die beiden Größen roe und ros werden nun als Variablengruppe betrachtet. Formalisieren Sie die Nullhypothese auf, dass roe und ros gemeinsam keinen Einfluss auf salary haben (bei Kontrolle von sales) und beschreiben Sie ein Vorgehen, um die Ablehnbarkeit dieser Nullhypothese auf einem vorgegebenen Signifikanzniveau zu testen. Welcher p-wert für das Ergebnis dieses Tests ist angesichts der individuellen Signifikanzen von roe und ros zu erwarten: a: p < 5%, b: 5% p < 10%, c: p 10%? Warum kann es sein, dass der Test ein von dieser Erwartung abweichenden p-wert findet? iv. Sie vermuten einen (mit wachsendem roe) abnehmenden Grenzeffekt von roe auf log(salary). Beschreiben Sie, wie man dem durch Hinzufügen eines (aus roe abgeleiteten) zusätzlichen Regressors Rechnung tragen kann. Wenn tatsächlich ein abnehmender Grenzeffekt vorliegt, welches Vorzeichen hat dann der Koeffizient des zusätzlichen Regressors? Angenommen, die OLS-Schätzung mit dem zusätzlichen Regressor liefert eine Rendite r max, so dass für Unternehmen mit roe > r max ein negativer Effekt einer wachsenden Eigenkapitalrendite auf das Managergehalt zu erwarten wäre. Unter welchen Bedingungen deutet dies auf ein reales Phänomen hin (und nicht auf ein Artefakt, das der Modellspezifikation, d.h. der funktionalen Form des zusätzlichen Regressors, geschuldet ist)? v. Mit den Quadraten û 2 i der Residuen û i der OLS-Schätzung (ˆ1) wird das Modell û 2 i = δ 0 + δ 1 log(sales i ) + δ 2 roe i + δ 3 ros i + ε i mit OLS geschätzt und anschließend ein F -Test von H 0 : δ 1 = 0 δ 2 = 0 δ 3 = 0 durchgeführt. Die Verletzung welcher Gauß-Markov-Annahme wird damit adressiert? Um den Test (auf 5%-Niveau) durchzuführen, muss die F -Statistik mit einem kritischen Wert (95%-Quantil einer F -Verteilung) verglichen werden. Welchen kritischen Wert (welche F - Verteilung) müssen Sie verwenden: F 205,205 = 1.26, F 3,205 = 2.65, F 205,3 = 8.54, F 3,3 = 9.28? Die F -Statistik nimmt den Wert 4.1 an. Lässt sich die Nullhypothese dann auf 5%-Niveau ablehnen oder nicht? Liegt damit Evidenz für eine Verletzung der betreffenden Gauß-Markov- Annahme vor oder nicht?

2 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 2 vi. Die Durbin-Watson-Statistik für die Regression (1) hat einen Wert von 0.9. Deutet dies auf ein potentielles Problem mit der Schätzung von (1) hin? Welche Maßnahmen ergreifen Sie? (Beachten Sie, dass wir es hier mit Querschnittsdaten zu tun haben, bei denen es keine natürliche Anordnung der Beobachtungseinheiten hier von Unternehmen bzw. deren Managern gibt.) vii. Angenommen, die Variablen roe und ros sind stark positiv miteinander korreliert, beide korrelieren jedoch fast nicht mit log(sales). In welche Richtung wird sich dann a) der geschätzte Koeffizient von ros, ˆβ ros, b) der Standardfehler von ros (Std-Abweichung von ˆβ ros ), c) die t-statistik von ros voraussichtlich bewegen, wenn der Regressor roe aus dem Regressionsmodell (1) herausgenommen wird? Welche Regression misst eher den Effekt einer exogenen Veränderung der Aktienrendite ros auf das Managergehalt, diejenige ohne oder diejenige mit roe? (mit Begründung; unter einer exogenen Veränderung von ros soll dabei eine solche Veränderung der Aktienrendite verstanden werden, bei der nicht gleichzeitig sales, roe oder unbeobachtete Faktoren, die auch das Managergehalt beeinflussen, verändert werden.) viii. Was würde in der Regression (1) geschehen, wenn roe und ros nperfekt miteinander korreliert wären?

3 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 3 Aufgabe 2: Gegeben ist ein Zeitreihen-Regressionsmodell y t = β 0 + β x t + u t (1) das unter den Gauß-Markov-Annahmen im Stationaritäts-Szenario betrachtet wird. i. Die Grundformen von Hypothesentests auf a) Autokorrelation in den Störtermen (Breusch-Godfrey), b) statische Heteroskedastie (Breusch-Pagan bzw. White) c) Instationarität in Form von Unit-Roots (Dickey-Fuller), d) ARCH-Effekte (Engle) können allesamt auf OLS-geschätzten Regressionsmodellen aufgebaut werden (teilweise sind sie der OLS-Schätzung von (1) nachgelagert sind und verwenden deren Residuen û t anstelle der Störterme u t ). Notieren Sie hinter den folgenden Angaben, welcher der obigen Tests jeweils in seiner Grundform adressiert wird (sofern überhaupt zutreffend): y t = α + ϱ y t 1 + ε t, Nullhypothese ϱ = 0 y t = α + ϱ y t 1 + ε t, Nullhypothese ϱ = 1 y t = α + ϱ û t 1 + ε t, Nullhypothese ϱ = 0 y t = α + ϱ û t 1 + ε t, Nullhypothese ϱ = 1 û t = α + ϱ û t 1 + ε t, Nullhypothese ϱ = 0 û t = α + ϱ û t 1 + ε t, Nullhypothese ϱ = 1 û 2 t = α + ϱ û t 1 + ε t, Nullhypothese ϱ = 0 û 2 t = α + ϱ û t 1 + ε t, Nullhypothese ϱ = 1 û 2 t = α + ϱ û 2 t 1 + ε t, Nullhypothese ϱ = 0 û 2 t = α + ϱ û 2 t 1 + ε t, Nullhypothese ϱ = 1 û 2 t = α + ϱ x t + ε t, Nullhypothese ϱ = 0 û t = α + ϱ x t + ε t, Nullhypothese ϱ = 0 ii. Welcher der vier Tests aus Teil i. sollte als erster (und für alle beteiligten Variablen) durchgeführt werden? Warum? In Bezug auf die Nullhypothese: Was unterscheidet diesen Test grundsätzlich von den drei anderen? Welche Maßnahme empfiehlt sich bei einer Verletzung der entsprechenden Gauß-Markov-Annahme (sofern nicht ko-integrierende Zeitreihen involviert sind)? iii. Bei welchen der vier Tests aus Teil i. ist selbst bei Verletzung der entsprechenden Gauß-Markov- Annahme noch Konsistenz der OLS-Schätzung sichergestellt (die anderen Gauß-Markov-Annahmen als erfüllt vorausgesetzt)? Erläutern Sie unter Verwendung der Begriffe Effizienz und statistische Inferenz die Probleme, die man bei OLS-Schätzung eines Modells hat, wo die Stationaritäts- und Exogenitätsannahmen erfüllt sind, aber Störterm-Heteroskedastie oder -Autokorrelation auftritt. iv. Wahr oder falsch: Wenn die Störterme in einem Regressionsmodell für Zeitreihen ARCH-Effekte enthalten, müssen sie notwendigerweise autokorreliert sein? v. Gegeben ist ein Zeitreihen-Modell, in dem instationäre Variablen auftreten ( Modell in Leveln ); als Alternative wird ein Modell betrachtet, in dem alle Variablen durch ihre ersten Differenzen ersetzt sind ( Modell in Differenzen ). Wahr oder falsch: Das R 2 der OLS-Schätzung des Modells in Differenzen ist notwendigerweise kleiner als das R 2 der OLS-Schätzung des Modells in Leveln? Gegeben ist ein Zeitreihen-Modell, in dem ARCH-Effekte auftreten. Das Modell wird einmal mit OLS geschätzt und einmal mit Maximum-Likelihood basierend auf einem GARCH(1,1)-Residualmodell. Wahr oder falsch: Das R 2 der GARCH-Schätzung ist notwendigerweise kleiner (oder gleich) dem R 2 der OLS-Schätzung? (Das R 2 der GARCH-Schätzung sei dabei definiert als 1 var(u)/ var(y) mit var(u) = 1 T t û2 t als empirischer Residualvarianz und var(y) als empirischer Varianz in y.)

4 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 4 Aufgabe 2: Der Rohölweltmarkt wird von zwei Rohölsorten dominiert, einerseits das nordamerikanische West Texas Intermediate und andererseits das europäische Brent-Rohöl. Wir interessieren uns für die Wechselwirkung der Preise beider Sorten (Dollar pro Barrel, WTI t bzw. Brent t ) und den Effekt von Preisdiskrepanzen in der Vorperiode. Dabei liegen uns wöchentliche Daten für die Jahre 1993 bis 1996 vor. In die Modelle gehen logarithmierte Preise wti = log(wti), brent = log(brent) ein, so dass die ersten Differenzen als relative Wachstumsraten interpretiert werden können. Außerdem wird die Differenz der logarithmierten Preise ci := brent wti = log(brent/wti) (relative Abweichung der Preise) verwendet. Im Folgenden wird unterstellt, dass für diagnostische Tests, die Lags der erklärten Variable verwenden (z.b. ADF, Breusch-Godfrey), jeweils genau ein Lag korrekt ist. i. Was legen die folgenden Regressionen bzgl. der Präsenz einer Unit-Root und/oder eines deterministischen Trends in der jeweiligen Zeitreihe nahe? (gwti = wti, gbrent = brent, ci = brent wti) wti t = wti t wti t t (0.063) (0.022) (0.07) ( ) T = 209, R 2 = brent t = brent t brent t t (0.054) (0.020) (0.07) ( ) T = 209, R 2 = gwti t = gwti t gwti t t (0.0047) (0.10) (0.07) ( ) T = 209, R 2 = 0.52 gbrent t = gbrent t gbrent t t (0.0042) (0.09) (0.07) ( ) T = 209, R 2 = 0.46 ci t = ci t ci t t (0.006) (0.070) (0.056) ( ) T = 209, R 2 = 0.19 (Hinweis: Kritischer Wert des ADF-Tests mit Interzept u. Trend auf 5%-Niveau bei T = 209: 3.4) ii. Wir betrachten im Folgenden das Modell: wti t = β 0 +β 1 ci t 1 +β 2 wti t 1 +β 3 brent t 1 +u t. Warum können wir recht sicher sein, dass aus Stationaritätsgesichtspunkten eine OLS-Schätzung dieses Modells unproblematisch ist? Welches Vorzeichen wird β 1 voraussichtlich haben? Durchführung der OLS-Schätzung ergibt: wti t = (brent wti) t wti t brent t 1 (0.009) (0.10) (0.126) (0.14) T = 209, R 2 = Wenn der Preis von Brent-Rohöl denjenigen von WTI um 1% übersteigt, ist dann c.p. ein Anstieg oder ein Abfall des WTI-Preises in der Folgewoche zu erwarten? Um wieviel Prozent? Ist dieser Effekt (einer Preisdiskrepanz zwischen Brent- und WTI-Öl auf die WTI-Preisanpassung in der Folgewoche) signifikant auf dem 5%-Niveau? iii. Beantworten Sie die Fragen aus ii. wenn wti durch brent ersetzt wird, d.h. wenn das Modell brent t = β 0 + β 1 ci t 1 + β 2 wti t 1 + β 3 brent t 1 + u t lautet. Dessen OLS-Schätzung ergibt: brent t = (brent wti) t wti t brent t 1 (0.008) (0.10) (0.11) (0.12) T = 209, R 2 = Welchem der beiden Preise käme demzufolge eher eine Lead-Rolle, welchem eine Lag-Rolle zu?

5 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 5 iv. a) Mit den Residuen û t der Schätzung aus ii. wird folgende OLS-Schätzung durchgeführt: û t = û t ci t wti t brent t 1 (0.023) (1.00) (0.27) (0.75) (0.28) T = 209, R 2 = Die Verletzung welcher Gauß-Markov-Annahme wird mit dieser Schätzung adressiert? Besteht hier Evidenz (auf 5%-Niveau) für eine Verletzung der betreffenden Gauß-Markov-Annahme? b) Mit den Quadraten der Residuen, û 2 t, von ii. wird folgende OLS-Schätzung durchgeführt: û 2 t = (brent wti) t 1 (0.0003) (0.004) T = 209, R 2 = Die Verletzung welcher Gauß-Markov-Annahme wird mit dieser Schätzung adressiert? Besteht hier Evidenz (auf 5%-Niveau) für eine Verletzung der betreffenden Gauß-Markov-Annahme? c) Schließlich wird folgende OLS-Schätzung durchgeführt: û 2 t = û 2 t 1 ( ) (0.07) T = 209, R 2 = Welche Effekte lassen sich mit dieser Schätzung testen? Lässt sich die Präsenz entsprechender Effekte hier auf dem 5%-Niveau bestätigen? v. Erläutern Sie knapp, auf welche Schwierigkeiten eine Verletzung der in den Teilen iv. getesteten Annahmen im Hinblick auf a) die Effizienz der OLS-Schätzung und b) die statistische Inferenz mit der OLS-Schätzung führt. vi. Weiterführende diagnostische Tests lassen ARCH-Effekte hoher Ordnung in den Residuen der Fehler-Korrektur-Modelle aus ii. bzw. iii vermuten. Wir schätzen die Modelle daher bei unterstellter GARCH(1,1)-Heteroskedastie mit Maximum Likelihood bei bedingter Normalverteilung u t I t 1 N (0, σ 2 t ): wti t = (brent wti) t wti t brent t 1 (0.007) (0.10) (0.147) (0.165) T = 209, R 2 = σ t 2 = û 2 t ( ) (0.05) (0.09) σt 1 2 brent t = (brent wti) t wti t brent t 1 (0.006) (0.08) (0.13) (0.15) T = 209, R 2 = σ t 2 = û 2 t ( ) (0.08) (0.12) σt 1 2 Wie würden sich demzufolge die Lead/Lag-Rollen zwischen den beiden Preisen verteilen? Bei welchem der beiden Preise haben demzufolge Schocks (die nicht durch die erklärenden Variablen abgefangen sind) einen stärkeren Effekt auf die Volatilität? (Ohne Signifikanztest) Die Schätzung von Outcome-Modellen unter ARCH oder GARCH-Heteroskedastie lassen sich näherungsweise als gewichtete OLS-Schätzungen (WLS-Schätzungen) interpretieren, wobei die Gewichtung umgekehrt proportional zur jeweiligen Volatilität ist (d.h. Zeitpunkte hoher Volatilität σ t gehen mit verringertem Gewicht ein, Zeitpunkte geringer Volatilität mit erhöhtem Gewicht). Erläutern Sie unter diesem Aspekt, dass die Schätzergebnisse mit folgender Aussage konsistent sind: In Phasen geringer Volatilität reagiert der Brent-Preis stärker auf eine Diskrepanz zwischen WTIund Brent-Preis, in Phasen hoher Volatilität dagegen der WTI-Preis. Schlagen Sie ein Modell vor, mit dem man solche Aussagen testen könnte.

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell:

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell: Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen LV-Leiterin: Univ.Prof.Dr. Sylvia Frühwirth-Schnatter 1 Wahr oder falsch? 1. Das folgende Modell ist ein GARCH(1,1)-Modell: Y

Mehr

Abschlussklausur (60 Minuten), 15. Juli 2014

Abschlussklausur (60 Minuten), 15. Juli 2014 Prof. Dr. Amelie Wuppermann Volkswirtschaftliche Fakultät Universität München Sommersemester 2014 Empirische Ökonomie 1 Abschlussklausur (60 Minuten), 15. Juli 2014 Bearbeitungshinweise Die Bearbeitungszeit

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

Regression mit Gretl Eine erste Einführung 1

Regression mit Gretl Eine erste Einführung 1 Kurzeinführung in Gretl S. 1 Regression mit Gretl Eine erste Einführung 1 Installation: Gretl für das entsprechende Betriebssystem herunterladen und die Setup-Datei ausführen. Hinweis: Für die Benutzung

Mehr

3. Einführung in die Zeitreihenanalyse

3. Einführung in die Zeitreihenanalyse 3. Einführung in die Zeitreihenanalyse Dr. Johann Burgstaller Finance Department, JKU Linz (Dieser Foliensatz wurde zuletzt aktualisiert am 25. Dezember 2007.) Dr. Johann Burgstaller IK Empirische Kapitalmarktforschung

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Zeitreihen. Statistik II

Zeitreihen. Statistik II Statistik II Wiederholung Literatur -Daten Trends und Saisonalität Fehlerstruktur Statistik II (1/31) Wiederholung Literatur -Daten Trends und Saisonalität Fehlerstruktur Statistik II (1/31) Zum Nachlesen

Mehr

Klausur Sommersemester 2010

Klausur Sommersemester 2010 Klausur Sommersemester 2010 Lehrstuhl: Wirtschaftspolitik Prüfungsfach: Empirische Wirtschaftsforschung Prüfer: Prof. Dr. K. Kraft Datum: 04.08.2010 Hilfsmittel: Nicht-programmierbarer Taschenrechner Klausurdauer:

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze Lehrstuhl für Statistik und empirische irtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im ach Ökonometrie im S 20/2 Lösungsskizze Aufgabe (.5 Punkte) Sie verfügen über einen Datensatz, der Informationen

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Zeitreihenanalyse. Teil III: Nichtlineare Zeitreihenmodelle. Prof. Dr. W. Zucchini, Dr. O. Nenadić, A. Schlegel. Göttingen, Januar 2008 DAX

Zeitreihenanalyse. Teil III: Nichtlineare Zeitreihenmodelle. Prof. Dr. W. Zucchini, Dr. O. Nenadić, A. Schlegel. Göttingen, Januar 2008 DAX Zeitreihenanalyse Teil III: Nichtlineare Zeitreihenmodelle Prof. Dr. W. Zucchini, Dr. O. Nenadić, A. Schlegel DAX -10-5 0 5 10 0 200 400 600 800 1000 trading day Göttingen, Januar 2008 Inhaltsverzeichnis

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 2 Multivariate Verfahren Musterlösung Aufgabe 1 (28 Punkte) Der Marketing-Leiter einer Lebensmittelherstellers möchte herausfinden, mit welchem Richtpreis eine neue Joghurt-Marke auf

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

Multivariate Zeitreihenanalyse mit EViews 4.1

Multivariate Zeitreihenanalyse mit EViews 4.1 Multivariate Zeitreihenanalyse mit EViews 4.1 Unterlagen für LVen des Instituts für Angewandte Statistic (IFAS) Johannes Kepler Universität Linz Stand: 30. Mai 2005, Redaktion: Frühwirth-Schnatter 1 Deskriptive

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Stochastische Prozesse und Zeitreihenmodelle

Stochastische Prozesse und Zeitreihenmodelle Kapitel 12 Stochastische Prozesse und reihenmodelle [ Stochastische Prozesse und reihenmodelle ] Einleitung:.com-Blase an der NASDAQ Department of Statistics and Mathematics WU Wien c 2008 Statistik 12

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse Multiple Regression II: Signifikanztests,, Multikollinearität und Kohortenanalyse Statistik II Übersicht Literatur Kausalität und Regression Inferenz und standardisierte Koeffizienten Statistik II Multiple

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Kap. 9: Regression mit einer binären abhängigen Variablen

Kap. 9: Regression mit einer binären abhängigen Variablen Kap. 9: Regression mit einer binären abhängigen Variablen Motivation Lineares Wahrscheinlichkeitsmodell Probit- und Logit-Regression Maximum Likelihood Empirisches Beispiel: Analyse der HMDA-Daten Ausblick:

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

adjusted R 2 korrigiertes Bestimmtheitsmaß, korrigiertes R 2 Bias, Verzerrung coefficient of determination Bestimmtheitsmaß, R 2

adjusted R 2 korrigiertes Bestimmtheitsmaß, korrigiertes R 2 Bias, Verzerrung coefficient of determination Bestimmtheitsmaß, R 2 acceptance region Annahmebereich adjusted R 2 korrigiertes Bestimmtheitsmaß, korrigiertes R 2 alternative hypothesis Alternativhypothese asymptotic distribution asymptotische Verteilung asymptotic normal

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

Klausur STATISTIK 2 für Diplom VWL

Klausur STATISTIK 2 für Diplom VWL Klausur STATISTIK 2 für Diplom VWL Name, Vorname: Matrikel-Nr. Die Klausur enthält zwei Typen von Aufgaben: Teil A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Untersuchungen zum Thema Tracking Error

Untersuchungen zum Thema Tracking Error Untersuchungen zum Thema Tracking Error J. Fulmek 24. August 2003 1 Einleitung Im Folgenden werden folgende Punkte untersucht: 1. verschiedene in der Literatur übliche Definitionen des Tracking Errors

Mehr

1 wenn i weiblich, w i = 0 sonst.

1 wenn i weiblich, w i = 0 sonst. Kapitel 10 Multikollinearität God abhors a naked singularity. (Stephen Hawking) 10.1 Problem Von Multikollinearität, bzw. Kollinearität, spricht man, wenn zwei oder mehrere erklärende x Variablen hoch

Mehr

Diskriminanzanalyse Beispiel

Diskriminanzanalyse Beispiel Diskriminanzanalyse Ziel bei der Diskriminanzanalyse ist die Analyse von Gruppenunterschieden, d. h. der Untersuchung von zwei oder mehr Gruppen hinsichtlich einer Vielzahl von Variablen. Diese Methode

Mehr

Kapitel 3: Interpretationen

Kapitel 3: Interpretationen Kapitel 3: 1. Interpretation von Outputs allgemein... 1 2. Interpretation von Signifikanzen... 1 2.1. Signifikanztests / Punktschätzer... 1 2.2. Konfidenzintervalle... 2 3. Interpretation von Parametern...

Mehr

Koeffizienten der Logitanalyse. Kurt Holm. Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at

Koeffizienten der Logitanalyse. Kurt Holm. Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at Koeffizienten der Logitanalyse Kurt Holm Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at 1 Kurt Holm Koeffizienten der Logitanalyse Eine häufig gestellte Frage lautet:

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Fallbeispiel 5: Humankapital und Returns to Education. Seite 1

Fallbeispiel 5: Humankapital und Returns to Education. Seite 1 Fallbeispiel 5: Humankapital und Returns to Education Seite 1 Gliederung Einführung: Wirkungsanalysen in der Wirtschaftspolitik I. Theoretischer Teil 1 Humankapital 2 Returns to Education: Schooling Model

Mehr

von Peter Zimmermann 462 Seiten, Uhlenbruch Verlag, 1997 EUR 98,- inkl. MwSt. und Versand ISBN 3-9804400-6-0

von Peter Zimmermann 462 Seiten, Uhlenbruch Verlag, 1997 EUR 98,- inkl. MwSt. und Versand ISBN 3-9804400-6-0 Reihe Portfoliomanagement, Band 7: SCHÄTZUNG UND PROGNOSE VON BETAWERTEN Eine Untersuchung am deutschen Aktienmarkt von Peter Zimmermann 462 Seiten, Uhlenbruch Verlag, 1997 EUR 98,- inkl. MwSt. und Versand

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

IRBA Konversionsfaktoren- Entwicklung und Validierung der Schätzung

IRBA Konversionsfaktoren- Entwicklung und Validierung der Schätzung IRBA Konversionsfaktoren- Entwicklung und Validierung der Schätzung Raffaela Handwerk, Ronny Rehbein Inhalt Einleitung... 1 Bestimmung des Schätzers... 1 Segmentierung des Schätzers... 3 Validierung der

Mehr

Master of Science in Pflege

Master of Science in Pflege Master of Science in Pflege Modul: Statistik Einfache und multiple Regressionsanalyse / Logistische Regressionsanalyse November 2012 Prof. Dr. Jürg Schwarz Folie 2 Programm 28. November 2012: Vormittag

Mehr

ChangePoint-Analysen - ein Überblick

ChangePoint-Analysen - ein Überblick ChangePoint-Analysen - ein Überblick Gliederung Motivation Anwendungsgebiete Chow Test Quandt-Andrews Test Fluktuations-Tests Binary Segmentation Recursive circular and binary segmentation algorithm Bayesscher

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Faktorenanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007

Faktorenanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007 Faktorenanalyse Bacher, SoSe2007 1. Grundlegende Verfahren explorative FA (EXFA): Für eine Menge von Variablen/Items werden zugrunde liegende gemeinsame (latente) Dimensionen/Faktoren gesucht, die Faktorstruktur

Mehr

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge)

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 Methoden der Modellbildung statischer Systeme Teil 2 (für ausgewählte Masterstudiengänge) FACHGEBIET Systemanalyse PRAKTIKUM Experimentelle Prozeßanalyse 2 VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge) Verantw. Hochschullehrer: Prof.

Mehr

2.Tutorium Generalisierte Regression

2.Tutorium Generalisierte Regression 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte

Mehr

Binäre Auswahlmodelle (Logit, Probit,...)

Binäre Auswahlmodelle (Logit, Probit,...) Binäre Auswahlmodelle (Logit, Probit,...) 27. November 204 In diesem Kapitel führen wir eine Klasse von Modellen für binäre Auswahlprobleme ein, deren wichtigste Vertreter das Logit- und das Probit-Modell

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Evaluation. Caroline Sporleder. Computational Linguistics Universität des Saarlandes. Sommersemester 2011 26.05.2011

Evaluation. Caroline Sporleder. Computational Linguistics Universität des Saarlandes. Sommersemester 2011 26.05.2011 Evaluation Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 26.05.2011 Caroline Sporleder Evaluation (1) Datensets Caroline Sporleder Evaluation (2) Warum evaluieren?

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Kapitel 23 Lineare Regression

Kapitel 23 Lineare Regression Kapitel 23 Lineare Regression Sowohl einfache als auch multiple Regressionsanalysen können Sie mit dem Befehl STATISTIK REGRESSION LINEAR... durchführen. Dabei lassen sich mit Hilfe diverser Optionen zahlreiche

Mehr

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede Universität Ulm Seminararbeit zum Thema Data Mining und Statistik: Gemeinsamkeiten und Unterschiede vorgelegt von: Daniel Meschenmoser betreut von: Dr. Tomas Hrycej Dr. Matthias Grabert Ulm, im Februar

Mehr

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Andreas Berlin 14. Juli 2009 Bachelor-Seminar: Messen und Statistik Inhalt: 1 Aspekte einer Messung 2 Mess-System-Analyse 2.1 ANOVA-Methode 2.2 Maße

Mehr

WENDEPUNKTE IN FINANZMÄRKTEN Prognose und Asset Allocation

WENDEPUNKTE IN FINANZMÄRKTEN Prognose und Asset Allocation Reihe Financial Research, Band 3: WENDEPUNKTE IN FINANZMÄRKTEN Prognose und Asset Allocation von Claus Huber 619 Seiten, Uhlenbruch Verlag, 2000 EUR 59.- inkl. MwSt. und Versand ISBN 3-933207-11-8 - -

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Fragen und Antworten zu Kapitel 18

Fragen und Antworten zu Kapitel 18 Fragen und Antworten zu Kapitel 18 (1) Nennen Sie verschiedene Zielsetzungen, die man mit der Anwendung der multiplen Regressionsanalyse verfolgt. Die multiple Regressionsanalyse dient der Kontrolle von

Mehr

3 Zusammenhangsmaße Zusammenhangshypothesen

3 Zusammenhangsmaße Zusammenhangshypothesen 3 Zusammenhangsmaße Zusammenhangshypothesen Zusammenhänge (zwischen 2 Variablen) misst man mittels Korrelationen. Die Wahl der Korrelation hängt ab von: a) Skalenniveau der beiden Variablen: 1) intervallskaliert

Mehr

Aufgabenblatt 10 zur Lehrveranstaltung Quantitative Methoden der Betriebswirtschaftslehre I Frühjahrssemester 2015

Aufgabenblatt 10 zur Lehrveranstaltung Quantitative Methoden der Betriebswirtschaftslehre I Frühjahrssemester 2015 Universität Bern Bern, den 27. April 2015 Professur für Quantitative Methoden der BWL Schützenmattstr. 14, 3012 Bern Prof. Dr. Norbert Trautmann, Oliver Strub E-Mail: oliver.strub@pqm.unibe.ch Fragestunde

Mehr

Übungen zur Veranstaltung Statistik 2 mit SPSS

Übungen zur Veranstaltung Statistik 2 mit SPSS Raum 22, Tel. 39 4 Aufgabe 5. Wird der neue Film MatchPoint von Woody Allen von weiblichen und männlichen Zuschauern gleich bewertet? Eine Umfrage unter 00 Kinobesuchern ergab folgende Daten: Altersgruppe

Mehr

Klausur Wirtschaftsmathematik Lösungshinweise

Klausur Wirtschaftsmathematik Lösungshinweise Klausur Wirtschaftsmathematik Lösungshinweise Prüfungsdatum: 27. Juni 2015 Prüfer: Etschberger Studiengang: Wirtschaftsingenieurwesen Aufgabe 1 16 Punkte Anton Arglos hat von seiner Großmutter 30 000 geschenkt

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios Bernd Rosenow Rafael Weißhaupt Frank Altrock Universität zu Köln West LB AG, Düsseldorf Gliederung Beschreibung des Datensatzes

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Kapitel 8. Dummy Variablen. Let us remember the unfortunate econometrician

Kapitel 8. Dummy Variablen. Let us remember the unfortunate econometrician Kapitel 8 Dummy Variablen Let us remember the unfortunate econometrician who, in one of the major functions of his system, had to use a proxy for risk and a dummy for sex. (Machlup, 974, 892) Dummy Variablen

Mehr

Einfache Hypothesentests für multiple Regressionen

Einfache Hypothesentests für multiple Regressionen Kapitel 6 Einfache Hypothesentests für multiple Regressionen Economists have inherited from the physical sciences the myth that scientific inference is objective, and free of personal prejudice. This is

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Generalthema: Kreditrisikomanagement Thema 3: Bonitätsbeurteilung mit linearer Regressionsanalyse. Gliederung

Generalthema: Kreditrisikomanagement Thema 3: Bonitätsbeurteilung mit linearer Regressionsanalyse. Gliederung Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003 Zuständiger Mitarbeiter: Dipl.-Kfm. Stefan Krohnsnest

Mehr

Musterlösung Tutorium 3 zur Vorlesung

Musterlösung Tutorium 3 zur Vorlesung PROF. DR.MICHAEL FUNKE DIPL.VW. KRISTIN GÖBEL Musterlösung Tutorium 3 zur Vorlesung Makroökonomik (WS 2010/11) Aufgabe 1: Das IS-LM-Modell in einer geschlossenen Volkswirtschaft a) Zeigen Sie unter Verwendung

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

STATISTIK 1 - BEGLEITVERANSTALTUNG

STATISTIK 1 - BEGLEITVERANSTALTUNG STATISTIK 1 - BEGLEITVERANSTALTUNG VORLESUNG 4 ALPHA / BETA-FEHLER 12.12.2014 1 12.12.2014 1 Mona Ulrich, Psychologie (M.Sc.) AGENDA 01 STATISTISCHE HYPOTHESEN 02 POPULATION / STICHPROBE 03 ALPHA/ BETA-FEHLER

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik BeStat-1 (7 ) n = 400 Personen wurden gefragt, wie viele Stück eines

Mehr

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen Univariate/ multivariate Ansätze Klaus D. Kubinger Effektgrößen Rasch, D. & Kubinger, K.D. (2006). Statistik für das Psychologiestudium Mit Softwareunter-stützung zur Planung und Auswertung von Untersuchungen

Mehr

Persistenz von Kalenderanomalien am deutschen Aktienmarkt 1

Persistenz von Kalenderanomalien am deutschen Aktienmarkt 1 Persistenz von Kalenderanomalien am deutschen Aktienmarkt 1 Christian Salm 2 und Jörg Siemkes 3 Zusammenfassung: Ziel der vorliegenden Arbeit ist es, den deutschen Aktienmarkt auf die fünf bekanntesten

Mehr

Modellierung von Preisprozessen: Stochastische Volatilität

Modellierung von Preisprozessen: Stochastische Volatilität Modellierung von Preisprozessen: Stochastische Volatilität Jochen Krebs 30.11.2007 Gliederung 1. Ausgangssituation 2. Volatilitätsbegriffe 3. Ursachen von Volatilitätsschwankungen 4. Ein Volatilitäts-Informations-Modell

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Aufgabe 1 a) BWL-Student S hat von seinem Lieblingsonkel 10.000 geschenkt bekommen mit der Auflage damit etwas Vernünftiges zu machen. Nachdem

Mehr