Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre

Größe: px
Ab Seite anzeigen:

Download "Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre"

Transkript

1 Didaktik der Algebra und Gleichungslehre Algebra in den Jahrgangsstufen 5 bis 8 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Sommersemester 2008 Vollrath: Algebra in der Sekundarstufe Lernziele Natürliche Zahlen Lerninhalte Natürliche Zahlen Die Schüler sollen ein vertieftes Verständnis der dezimalen Stellenwertschreibweise gewinnen und dieses beim Rechnen mit natürlichen Zahlen anwenden. Große Anzahlen lernen sie mit geeigneten Verfahren abzuschätzen und zu bestimmen. Sie sollen größere Zahlen sicher lesen, schreiben, runden und in Schaubildern darstellen können sowie additive und multiplikative Beziehungen aufdecken. - Stellenwertschreibweise der Zahlen bis zu den Milliarden verstehen; Aufbau nach Einern, Zehnern, Hundertern, Tausendern, und Dreiergruppierung in Einer-, Tausender-, Millionen- und Milliardengruppe Zahlenraumerweiterung bis zur Billion - Zahlen zerlegen; Zahlbeziehungen entdecken und begründen - Verfahren zum Bestimmen und Abschätzen großer Anzahlen - Runden - Schaubilder (vor allem Balkendiagramme) deuten und selbst erstellen Schaubilder am Computer erstellen 3 4

2 Lernziele Grundrechenarten Lerninhalte Grundrechenarten Die Schüler rechnen im Kopf oder mit Hilfe von Notizen nach selbst gefundenen und begründbaren Wegen, auch überschlägig. Sie vertiefen ihr Verständnis von den schriftlichen Normalverfahren und gewinnen in ihrem Gebrauch Sicherheit und Geläufigkeit. Für die Beschreibung der Operationen und ihrer Ergebnisse verwenden sie Fachbegriffe. 5 - strategisches Rechnen; Rechenwege finden und begründen - Kopfrechnen mit einfachen Zahlen - überschlägiges Rechnen - Rechnen mit Notizen - schriftliche Normalverfahren (einer der Faktoren bzw. Divisor höchstens zweistellig) alternative Rechenverfahren - Fachbegriffe: addieren, subtrahieren, multiplizieren, dividieren; Addition, Subtraktion, Multiplikation, Division; Summe, Differenz, Produkt, Quotient 6 unverzichtbare und lebensbedeutsame Ziele und Inhalte der Arithmetik Aufbau des Zahlenraums, Stellenwertschreibweise, Zahlen ordnen Verfahren zum Bestimmen und Abschätzen großer Anzahlen Zahlen runden und in Schaubildern darstellen natürliche Zahlen situationsangemessen im Kopf und schriftlich sowohl genau als auch überschlägig addieren, subtrahieren, multiplizieren und dividieren 7 Lernziele Terme und Gleichungen Die Schüler entwickeln Terme mit Zahlen, Operationszeichen (nicht mehr als zwei verschiedene) und Klammern. Dabei stellen sie immer wieder den Bezug zu konkreten Sachverhalten her. Die Schüler lernen, Terme umzuformen und deren Wert zu berechnen. Gleichungen der Form ax ± b = c lösen sie mit Hilfe entsprechender Umkehraufgaben. 8

3 Lerninhalte Terme und Gleichungen - Zahlenterme umformen und Termwerte berechnen (Klammerregel, Regel Punkt-vor- Strich", Kommutativ- und Assoziativgesetz) - Terme zu Sachsituationen bilden und berechnen - Gleichungen der Form ax ± b = c (mit natürlichen Zahlen als Lösungen) ansetzen und lösen unverzichtbare/lebensbedeutsame Ziele und Inhalte: Zahlenterme ansetzen und deren Wert berechnen Gleichungen ansetzen und lösen 9 Algebra in der Jahrgangsstufe 5 Themen: 1. Anordnung in Í Mathematik 5. Hauptschule Bayern, Braunschweig: Westermann, 2004 (S. 28). Modell: Zahlenstrahl Die kleinere Zahl steht links von der größeren. 2. Wiederholung der Grundrechenarten 3. Rechenregeln und deren Begründung 4. Sehr einfache Gleichungen Zu den Themen 1 bis 3 siehe Vorlesung Didaktik der Zahlbereiche 10 Addition und Subtraktion in der Grundschule 1. Klasse: Einführung über Mengenvereinigung (statisch/dynamisch), 1+1-Tafel bis Klasse: Halbschriftliches Rechnen bis 100: Schrittweise: Stellenweise: 45 23= = = = = = 8 3. und 4. Klasse: Schriftliches Rechnen Stellenwerttafel: H Z E Normalverfahren: (erst ohne, später mit Übertrag) Addition und Subtraktion: Veranschaulichungen Zahlenstrahl: Mathematik 5. Hauptschule Bayern, Braunschweig: Westermann, 2004 (S ). Pfeilmodell: Aufgabe und Umkehraufgabe In beiden Modellen treten +a und a als Operator und Gegenoperator auf, die von einem Anfangszustand zu einem Endzustand führen. 12

4 Addition und Subtraktion: Veranschaulichungen Streifenmodell (vgl. Folien 4.6 und 5.10): Multiplikation und Division: Veranschaulichungen Pfeilmodell: Mathematik 5. Hauptschule Bayern, Braunschweig: Westermann, 2004 (S. 69). Rechenbäume bzw. -pläne: Simplex (nur eine Operation): Mathematik 5. Hauptschule Bayern, Braunschweig: Westermann, 2004 (S. 14). Rechenbäume bzw. -pläne: Komplex (mehrere Operationen): (für Kettenrechnungen) Formel 5. Bamberg / Stuttgart: C.C.Buchner / Klett, 2004 (S. 140). 13 Formel 5. Bamberg / Stuttgart: C.C.Buchner / Klett, 2004 (S. 140). Zwei-/Dreidimensionale Darstellungen (Wasserkästen, etc., vgl. Folie 4.13) 14 Begründung der Rechenregeln Mittels der verschiedenen Veranschaulichungen werden die Rechenregeln begründet (vgl. Kapitel 4) Wichtig: nicht nach einem Beispiel selbst die Regel aufstellen und dann üben lassen, sondern durch mehrere Beispiele die Regel selbst herausfinden lassen. Rechenregeln als Rechenvorteil: = =20+46= = 5 (7 2) = 7 (5 2) = 7 10 = Lösung von Gleichungen in Klasse 5 Additive Gleichungen: Gesucht sind alle x Í 0 mit a + x = b für a, b Í 0 (und a b). Multiplikative Gleichungen: Gesucht sind x Í 0 mit a x = b für a, b Í 0 (und a T b). Gleichungen dieses Typs finden sich schon in der Grundschule. Hier wird natürlich keine formale Lösung erwartet, sondern eine Übersetzung der Aufgabe in eine Formulierung, die unmittelbar eine Lösung liefert. Beispiel: 4 + x = 6. Übersetzung: Welche Zahl muss ich zu 4 addieren, um 6 zu erhalten? Dies wird als gedankliches Lösen bezeichnet und eignet sich nur für sehr einfache Gleichungen. 16

5 Lösung von Gleichungen in Klasse 5 Lösung von Gleichungen in Klasse 5 Lösen durch Probieren: Lösen mittels der Umkehraufgabe: Formel 5. Bamberg / Stuttgart: C.C.Buchner / Klett, 2004 (S. 88). Formel 5. Bamberg / Stuttgart: C.C.Buchner / Klett, 2004 (S. 89). Dieser Lösungsweg eignet sich auch für Ungleichungen, wenn mehrere Lösungen zu erwarten sind. Dahinter steckt die Auffassung von (Un-)Gleichungen als Aussagenformen, die je nach Wahl der Variablen zu 17 wahren oder falschen Aussagen werden. 18 Lösung von Gleichungen in Klasse 5 Lösung von Gleichungen in Klasse 5 Lösen mittels der Gegenoperatoren: Geometrisches Lösen (Streifenmodell): Formel 5. Bamberg / Stuttgart: C.C.Buchner / Klett, 2004 (S. 89). Formel 5. Bamberg / Stuttgart: C.C.Buchner / Klett, 2004 (S. 89). 19 Und schließlich nach Einführung des Waagemodells (vgl. Folie 5.12): 20

6 Lösung von Gleichungen in Klasse 5 Lösen mittels Äquivalenzumformungen: Formel 5. Bamberg / Stuttgart: C.C.Buchner / Klett, 2004 (S. 90). 21 Sonderfälle von Gleichungen Werden die Sonderfälle von Gleichungen betrachtet, bei denen entweder jede oder keine natürliche Zahl Lösung ist, so sollte man die Aufgaben so formulieren, dass die Schüler diese Ausartungen erwarten können: Überlege, ob es möglich ist, Zahlen x zu finden, so dass 2 + x = x + 3 gilt. Formel 5. Bamberg / Stuttgart: C.C.Buchner / Klett, 2004 (S. 93). Auch ist die Einsicht anzustreben, dass es in Í unlösbare Gleichungen gibt, weil Subtraktion und Division nicht immer ausführbar sind. 22 Sonderfälle von Gleichungen Gleichungen für Sachaufgaben Auch die Probleme mit der Null werden thematisiert: Multiplikation: x = 3 0 oder x = 0 3 x = 0. Grundvorstellung: dreimal 0 Taschengeld oder nullmal 3 Taschengeld bekommen! Division: x = 0 : 3 x = 0. Grundvorstellung: 0 Äpfel auf drei Kinder aufteilen! Permanenzreihen: 3 2 = = :3 = = = :3 = = 0 3 = 0:3 = Aber x = 3 : 0 ist unlösbar, denn die Gegenaufgabe ist x 0 = 3, mit dem Widerspruch 3=0! Typische Sachaufgaben in Klasse 5 sind Zahlenrätsel (zur Versprachlichung von Termen): Mathematik 5. Hauptschule Bayern, Braunschweig: Westermann, 2004 (S. 149).

7 Gleichungen für Sachaufgaben und leicht zu modellierende Sachsituationen: Mathematik 5. Hauptschule Bayern, Braunschweig: Westermann, 2004 (S. 149). Algebra in der Jahrgangsstufe 6 Themen: 1. Einführung der Menge der Bruchzahlen Á Rechenoperationen mit konkreten Brüchen und Dezimalbrüchen 2. Wiederholung der Rechenregeln; Distributivgesetz (Verteilungsgesetz) 3. Einfache Terme und Gleichungen ansetzen und lösen Wiederholung der Lösungswege aus Klasse 5, jetzt auch mit Bruchzahlen 26 Lernziele Terme und Gleichungen Lerninhalte Terme und Gleichungen Die Schüler entwickeln Terme und Gleichungen aus Sachzusammenhängen und geometrischen Aufgaben heraus. Bei der Termumformung wenden sie das Distributivgesetz an. Ausgehend von anschaulichen Modellen, zeichnerischen Darstellungen und Tabellen lernen sie Gleichungen zu lösen. - Zahlenterme und Terme mit einer Variablen ansetzen und umformen (Distributivgesetz); Termbegriff vertiefen - Gleichungen ansetzen; Gleichungsbegriff vertiefen - einfache Gleichungen durch Operationsumkehrung und Äquivalenzumformungen lösen - zu Termen und Gleichungen passende Sachsituationen finden unverzichtbare/lebensbedeutsame Ziele und Inhalte: Terme und Gleichungen zu Sachsituationen ansetzen, umformen und lösen Bayerischer Lehrplan für die Hauptschule Klasse 6 Bayerischer Lehrplan für die Hauptschule Klasse 6

8 Lösung von Gleichungen in Klasse 6 Lösung von Gleichungen in Klasse 6 Lösen von Simplexen mittels der Umkehraufgabe: Formel 6. Bamberg / Stuttgart: C.C.Buchner / Klett, 2005 (S. 116). 29 Lösen von Komplexen mittels der Gegenoperatoren: Formel 6. Bamberg / Stuttgart: C.C.Buchner / Klett, 2005 (S. 116). Lösung von Gleichungen in Klasse 6 Lösung von Gleichungen in Klasse 6 Geometrisches Lösen (Streifenmodell): Lösen mittels Äquivalenzumformungen: 30 Formel 6. Bamberg / Stuttgart: C.C.Buchner / Klett, 2005 (S. 118). Die Notation der Lösungsschritte erfolgt hier wie bei Äquivalenzumformungen. 31 Formel 6. Bamberg / Stuttgart: C.C.Buchner / Klett, 2005 (S. 119). 32

9 Gleichungen für Sachaufgaben Gleichungen für Geometrieaufgaben Thematisierung der Modellierungsschritte: Formel 6. Bamberg / Stuttgart: C.C.Buchner / Klett, 2005 (S. 121). Formel 6. Bamberg / Stuttgart: C.C.Buchner / Klett, 2005 (S. 121). Algebra in den Jahrgangsstufen 7 und 8 Themen: 1. Einführung der Menge der ganzen Zahlen Ù 7. Klasse: Addition und Subtraktion 8. Klasse bzw. 7M: Multiplikation und Division 2. Einführung der Menge der rationalen Zahlen Ð Alle Rechenoperationen (Divisor: Dezimalbruch) 3. Terme und Gleichungen mit bis zu einer Variablen ansetzen und lösen 7. Klasse: mit ganzen Zahlen Lernziele Terme und Gleichungen Die Schüler formen unter Anwendung von Rechenregeln und Rechengesetzen auch komplexere Terme um. Gleichungen lösen sie vorwiegend durch Äquivalenzumformungen, wobei anschauliche Modelle und zeichnerische Darstellungen als Vorstellungs- und Begründungshilfe dienen können. Ihre Fähigkeiten im Bereich des Ansetzens und Lösens von Gleichungen wenden sie bei Sachsituationen an. Zur Förderung des Verständnisses finden die Schüler gelegentlich auch zu Termen und Gleichungen passende Sachsituationen Klasse: mit rationalen Zahlen (Dezimalbrüche) Bayerischer Lehrplan für die Hauptschule Klasse 7

10 Lerninhalte Terme und Gleichungen - Terme mit ganzen Zahlen sowie bis zu einer Variablen ansetzen und umformen (vorteilhaftes Umstellen, Auflösen von Klammern und Ausklammern, Zerlegen und Zusammenfassen) - Gleichungen durch Äquivalenzumformungen lösen - zu Sachsituationen Gleichungen ansetzen und lösen unverzichtbare/lebensbedeutsame Ziele und Inhalte: Rechenregeln und Rechengesetze anwenden Terme und Gleichungen zu Sachsituationen ansetzen und lösen Maßeinheiten sachgerecht verwenden Bayerischer Lehrplan für die Hauptschule Klasse 7 37 Gleichungen für Sachaufgaben Zu Termen und Gleichungen Sachsituationen finden: Mathematik 7. Hauptschule Bayern, Braunschweig: Westermann, 2006 (S. 153). Gleichungen für Sachaufgaben Gleichungen für Geometrieaufgaben Veranschaulichung durch Streifenmodell: Mathematik 7. Hauptschule Bayern, Braunschweig: Westermann, 2006 (S. 155). Formel 7. Bamberg / Stuttgart: C.C.Buchner / Klett, 2004 (S. 90).

11 Gleichungen für Geometrieaufgaben Lernziele Terme und Gleichungen Formel 7. Bamberg / Stuttgart: C.C.Buchner / Klett, 2004 (S. 90). Die Schüler lösen komplexere Gleichungen durch Term- und Äquivalenzumformungen. Dabei bearbeiten sie auch einfache Aufgaben mit rationalen Zahlen. Bei der Bearbeitung von Sachsituationen setzen sie Gleichungen an und verwenden bekannte Formeln. Bayerischer Lehrplan für die Hauptschule Klasse 8 42 Lerninhalte Terme und Gleichungen Gleichungen äquivalent umformen - Terme mit rationalen Zahlen sowie bis zu einer Variablen umformen - Gleichungen im Bereich der rationalen Zahlen (in dezimaler Schreibweise) ansetzen und lösen - Werte in Formeln einsetzen; entstehende Gleichungen lösen unverzichtbare/lebensbedeutsame Ziele und Inhalte: Brüche in Dezimalbrüche umwandeln Terme umformen; Rechengesetze und Rechenregeln Gleichungen durch Äquivalenzumformungen lösen Maßeinheiten sachgerecht verwenden Bayerischer Lehrplan für die Hauptschule Klasse 8 43 Formel 8. Bamberg / Stuttgart: C.C.Buchner / Klett, 2006 (S. 90).

12 Gleichungen äquivalent umformen Gleichungen mit negativen Lösungen Fortgeschrittene Algorithmisierung! Formel 8. Bamberg / Stuttgart: C.C.Buchner / Klett, 2006 (S. 91). Formel 8. Bamberg / Stuttgart: C.C.Buchner / Klett, 2006 (S. 90). Gleichungen für Prozentaufgaben Gleichungen für Prozentaufgaben Formeln sind Gleichungen und können genauso umgeformt werden! Formel 8. Bamberg / Stuttgart: C.C.Buchner / Klett, 2006 (S. 85). Formel 8. Bamberg / Stuttgart: C.C.Buchner / Klett, 2006 (S. 85).

Lehrkraft: Wochenstundenzahl:

Lehrkraft: Wochenstundenzahl: Schuljahr 20 / Schule: Lehrkraft: Wochenstundenzahl: Hinweis: Sachrechnen ist im amtlichen Lehrplan als eigener Lernbereich aufgeführt. In der unterrichtlichen Behandlung werden Ziele und Inhalte dieses

Mehr

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule Zahlbereichserweiterungen in der Hauptschule Didaktik der Zahlbereiche 4 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Wintersemester 2006/07 Natürliche Zahlen, : Klasse 5 positive

Mehr

Lehrplan Mathematik Klasse 4

Lehrplan Mathematik Klasse 4 Lehrplan Mathematik Klasse 4 Lernziele/ Inhalte Lernziel: Entwickeln von Zahlvorstellungen Orientieren im Zahlenraum bis 1 Million Schätzen und überschlagen Große Zahlen in der Umwelt Bündeln und zählen

Mehr

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 7 LU Nr nhaltliche Allg. Buch Arbeitsheft AB V* Mit Kopf, Hand und Taschenrechner MB 7 LU 3 nhaltliche Allg. Buch Arbeitsheft AB einfache Rechnungen im Kopf lösen und den TR sinnvoll einsetzen

Mehr

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5 Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel

Mehr

Mathematik 4 Primarstufe

Mathematik 4 Primarstufe Mathematik 4 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler GS Rethen Kompetenzorientierung Fach: Mathematik Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler - verwenden eingeführte mathematische Fachbegriffe sachgerecht. - erläutern

Mehr

M ATHEMATIK Klasse 3. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 1000 (S. 14 25)

M ATHEMATIK Klasse 3. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 1000 (S. 14 25) M ATHEMATIK Klasse 3 Stoffverteilungsplan Sachsen Duden Mathematik 3 Lehrplan: Lernziele / Inhalte Der (S. 14 25) Entwickeln von Zahlvorstellungen/Orientieren im Schätzen und zählen, Zählstrategien, Anzahl

Mehr

Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen?

Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen? Modulabschlussprüfung ALGEBRA / GEOMETRIE Lösungsvorschläge zu den Klausuraufgaben Aufgabe 1: Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen? Im

Mehr

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1 Didaktik der Algebra 4.1 Didaktik der Algebra Didaktik der Algebra 4.2 Inhalte Didaktik der Algebra 1 Ziele und Inhalte 2 Terme 3 Funktionen 4 Gleichungen Didaktik der Algebra 4.3 Didaktik der Algebra

Mehr

Stoffverteilungsplan Mathematik Klasse 5

Stoffverteilungsplan Mathematik Klasse 5 Stoffverteilungsplan Mathematik Klasse 5 Lehrwerk: Mathematik heute; Schroedel Zeitraum Themen/Inhalte Begriffe/Bemerkungen Lehrbuch/KA Leitidee/Kompetenzen Weitere Hinweise 6 Wochen Natürliche Zahlen

Mehr

Stoffverteilungsplan Schnittpunkt Band

Stoffverteilungsplan Schnittpunkt Band Stoffverteilungsplan Schnittpunkt Band 6 978-3-12-742151-4 Schule: Lehrer: - formulieren naheliegende Fragen zu vertrauten Situationen Kompetenzbereich Argumentieren - stellen mathematische Vermutungen

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

Selbsteinschätzung. Strategien aufgabenbezogen bewerten. Kenntnis der Rechenwege auch bei schriftlichen Rechenverfahren

Selbsteinschätzung. Strategien aufgabenbezogen bewerten. Kenntnis der Rechenwege auch bei schriftlichen Rechenverfahren Schwerpunkt: Flexibles Rechnen - Klasse 3/4 Flexibles Rechnen Die Schülerinnen und Schüler: - nutzen aufgabenbezogen oder nach eigenen Präferenzen eine Strategie des Zahlenrechnens, ein schriftliches Normalverfahren

Mehr

nicht vorhanden nicht vorhanden nicht vorhanden nicht vorhanden nicht vorhanden nicht vorhanden

nicht vorhanden nicht vorhanden nicht vorhanden nicht vorhanden nicht vorhanden nicht vorhanden MATHEMATIK Lehrplan R5 Lehrplan R6 Lehrplan R7 Lehrplan M7 5.1 NATÜRLICHE ZAHLEN Stellenwertschreibweise der Zahlen bis zu den Milliarden verstehen; Aufbau nach Einern, Zehnern, Hundertern, Tausendern,...

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 1. Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 2. Teilbarkeit durch 5 und 10 3. Quersummen berechnen 4. Teilbarkeit durch 3, 6 und 9 5. Gemischte

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse 1. Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 2. Nachbarzahlen 3. Zahlenrätsel 1/2 4. Zahlenrätsel 2/2 5. Zahlen ordnen

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Turmzimmer 1: Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 7. Ist die Zahl ein Teiler? 2. Teilbarkeit durch 5 und 10 8. Teiler in der Zahlentafel suchen 3. Quersummen berechnen 9. Ist die

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse Seite 1 Turmzimmer 1: Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 7. Schreibe mit arabischen Ziffern! 1 2. Nachbarzahlen 8. Schreibe mit arabischen Ziffern! 2 3. Zahlenrätsel

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen

Mehr

9. Arbeitsplan mit Implementierung des Lehrplans Mathematik Klasse 4

9. Arbeitsplan mit Implementierung des Lehrplans Mathematik Klasse 4 9. Arbeitsplan mit Implementierung des Lehrplans Mathematik Klasse 4 Prozessbezogene Kapitel 1: Wiederholung und Vertiefung Seiten 4 21 (ca. 1. 6. Woche) Rechnen im Zahlenraum bis 1000 festigen; Rechenstrategien

Mehr

Lernmodul Addition. Addition von 2 Zahlen. Addition von 3 Zahlen. Additionsgleichungen. Lernmodul Bruchrechnen. Brüche addieren. Brüche subtrahieren

Lernmodul Addition. Addition von 2 Zahlen. Addition von 3 Zahlen. Additionsgleichungen. Lernmodul Bruchrechnen. Brüche addieren. Brüche subtrahieren Lernmodul Addition Addition von 2 Zahlen Addition von 3 Zahlen Additionsgleichungen Lernmodul Bruchrechnen Brüche addieren Brüche subtrahieren Lernmodul Division Division durch 2, 3, 4, 5, 10 Division

Mehr

Mathematik 1 Primarstufe

Mathematik 1 Primarstufe Mathematik 1 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige

Mehr

Hausinternes Curriculum Alfred-Krupp-Schule

Hausinternes Curriculum Alfred-Krupp-Schule Hausinternes Curriculum Alfred-Krupp-Schule Jahrgangsstufe 5 Fach: Mathematik Version vom 12.11.2008 (Jan, Hö) Natürliche Zahlen Symmetrie Schätzen Rechnen Überschlagen Flächen Körper Ganze Zahlen - natürliche

Mehr

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann. Dreisatz Der Dreisatz ist ein Rechenverfahren, das man bei proportionalen Zuordnungen anwenden kann. 3 Tafeln Schokolade wiegen 5 g. Wie viel Gramm wiegen 5 Tafeln? 1. Satz: 3 Tafeln wiegen 5 g.. Satz:

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klett Ich kann Mathe: Zahlen. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klett Ich kann Mathe: Zahlen. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Klett Ich kann Mathe: Zahlen Das komplette Material finden Sie hier: School-Scout.de Ich kann... MATHE Schritt für Schritt verstehen

Mehr

Vorbereitung auf den Hauptschulabschluss Mathematik

Vorbereitung auf den Hauptschulabschluss Mathematik Katrin Hiemer/Elisabeth Vogt Vorbereitung auf den Hauptschulabschluss Mathematik MANZ VERLAG Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung in anderen als den gesetzlich zugelassenen

Mehr

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler...

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler... I Natürliche Zahlen 1. Zählen und darstellen stellen Beziehungen zwischen Zahlen und Größen in Tabellen bzw. Diagrammen (Säulendiagramm, Balkendiagramm) dar, lesen Informationen aus Tabellen und Diagrammen

Mehr

Brüche. Zuordnungen. Arithmetik/Algebra. 1 Multiplizieren von Brüchen 2 Dividieren von Brüchen 3 Punkt vor Strich. Klammern Üben Anwenden Nachdenken

Brüche. Zuordnungen. Arithmetik/Algebra. 1 Multiplizieren von Brüchen 2 Dividieren von Brüchen 3 Punkt vor Strich. Klammern Üben Anwenden Nachdenken Brüche Schuleigener Lehrplan Mathematik Klasse 7 auf der Basis der Kernlehrpläne Stand August 2009 Zeitraum Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Schnittpunkt 7 5 Doppelstunden Kommunizieren

Mehr

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Symbolschreib- symbolische und

Mehr

Terme als Baupläne. Terme als Baupläne. Vorteile der Formelsprache. Vorteile der Formelsprache

Terme als Baupläne. Terme als Baupläne. Vorteile der Formelsprache. Vorteile der Formelsprache Terme als Baupläne Terme als Baupläne Darstellung durch Rechenbäume (Baumdiagramme): Bei Termen für geometrische Größen interessiert man sich dagegen oft eher dafür, welche Größen in die Berechnung eingehen

Mehr

KGS Curriculum Mathematik Hauptschule Klasse 5. Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene Bemerkungen Kapitel 1 Zahlen und Daten

KGS Curriculum Mathematik Hauptschule Klasse 5. Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene Bemerkungen Kapitel 1 Zahlen und Daten Cornelsen: Schlüssel zur Mathematik Klasse 5 Differenzierende Ausgabe Niedersachsen ISBN: 978-3-06-006720-6 KGS Curriculum Mathematik Hauptschule Klasse 5 Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Wie sollen diese Kompetenzen vermittelt werden?

Wie sollen diese Kompetenzen vermittelt werden? Welches sind die wesentlichen Kompetenzen für die Jahrgangsstufen 7 / 8? Die folgende Tabelle gibt einen Überblick über die Kompetenzerwartungen des Lehrplans am Ende der Klasse : allgemeine mathematische

Mehr

Didaktik der Zahlbereichserweiterungen

Didaktik der Zahlbereichserweiterungen 3.1 vom Hofe, R.; Hattermann, M. (2014): Zugänge zu negativen Zahlen. mathematik lehren 183, S. 2-7 Jürgen Roth Didaktik der Zahlbereichserweiterungen Modul 5: Fachdidaktische Bereiche 3.2 Inhaltsverzeichnis

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 7

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 7 1. Rationale Zahlen Vernetzen Geben Ober- und Unterbegriffe an und führen Beispiele und Gegenbeispiele als Beleg an (z.b. Proportionalität, Viereck) Überprüfen bei einem Problem die Möglichkeit mehrerer

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Arbeitsplan für Rheinland-Pfalz. Kapitel 1: Wiederholung und Vertiefung, Seite 4 15 (ca Woche)

Arbeitsplan für Rheinland-Pfalz. Kapitel 1: Wiederholung und Vertiefung, Seite 4 15 (ca Woche) Arbeitsplan für Rheinland-Pfalz 4 6 7 8 9 Wiederholung: Addieren, Subtrahieren, Einmaleins Kreative Aufgaben: Regelwürmer Addieren und Subtrahieren zweistelliger Zahlen Inhaltsbezogene Kapitel 1: Wiederholung

Mehr

BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK

BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK Allgemeine mathematische Kompetenzen (AK) 1. Kompetenzbereich Modellieren (AK 1) 1.1 Eine Sachsituation in ein mathematisches Modell (Terme und Gleichungen) übertragen,

Mehr

Synopse zum Rahmenlehrplan Berlin/Brandenburg. Formel 7 Berlin/Brandenburg (ISBN ) Seite 1 von 10

Synopse zum Rahmenlehrplan Berlin/Brandenburg. Formel 7 Berlin/Brandenburg (ISBN ) Seite 1 von 10 Seite 1 von 10 Synopse zum Rahmenlehrplan Berlin/Brandenburg Formel 7 Berlin/Brandenburg (ISBN 978-3-661-60037-6) C.C.Buchner Verlag GmbH & Co. KG Telefon +49 951 16098-200 www.ccbuchner.de Stoffverteilungsplan

Mehr

inhaltsbezogene Kompetenzbereiche/Kompetenzen Ordnen und vergleichen Zahlen

inhaltsbezogene Kompetenzbereiche/Kompetenzen Ordnen und vergleichen Zahlen Arithmetik/Algebra 1. Rechnen mit Brüchen Vergleichen und bewerten Lösungswege Argumentationen und Darstellungen Erkunden Untersuchen Muster und Beziehungen bei Zahlen und Figuren und stellen Vermutungen

Mehr

Problemlösen. Modellieren

Problemlösen. Modellieren Die Menge Bruchzahlen (Fortsetzung) Primfaktorzerlegungen zur Ermittlung von ggt und kgv Darstellen von Bruchteilen in Sachzusammenhängen und am Zahlenstrahl Eigenschaften von Bruchzahlen, Kürzen, Erweitern

Mehr

Schulinternes Curriculum Mathematik Sekundarstufe I (Kl. 5 & 6) Stand: Oktober 2012

Schulinternes Curriculum Mathematik Sekundarstufe I (Kl. 5 & 6) Stand: Oktober 2012 Schulinternes Curriculum Mathematik Sekundarstufe I (Kl. 5 & 6) Stand: Oktober 2012 Fach: Mathematik Stand: 10/2012 Fachvorsitzender: Da Mathematik : Schulinternes Curriculum - Realschule Klasse 5 Die

Mehr

Arbeitsplan Mathe, 3. Schuljahr

Arbeitsplan Mathe, 3. Schuljahr : 1.-10.Woche Lernvoraussetzungen erfassen Wiederholung des in Klasse 2 Gelernten Lerninhalte des 2. Schuljahres beherrschen Eingangsdiagnostik Wiederholung mit abgewandelten Übungen Diagnosebögen zum

Mehr

KGS Curriculum Mathematik Hauptschule Klasse 5

KGS Curriculum Mathematik Hauptschule Klasse 5 KGS Curriculum Mathematik Hauptschule Klasse 5 Lehrwerk: Maßstab Band 5 Verlag: Schrödel Inhalte Kapitel 1 Zahlen und Daten - Fragebogen auswerten, Strichlisten, Tabellen und Diagramme anlegen - Zahlen

Mehr

SRB- Schulinterner Lehrplan Mathematik Klasse 5

SRB- Schulinterner Lehrplan Mathematik Klasse 5 Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln Funktionen Beziehungen zwischen Zahlen und zwischen Größen in Tabellen und Diagrammen darstellen Interpretieren

Mehr

Monat Inhalt und Lernziele laut Lehrplan Bemerkung September

Monat Inhalt und Lernziele laut Lehrplan Bemerkung September September 1. Die natürlichen Zahlen Kenntnisse und Fähigkeiten im Umgang mit natürlichen Zahlen vertiefen Vorstellungen mit natürlichen Zahlen verbinden natürliche Zahlen am Zahlenstrahl darstellen und

Mehr

Lernziele Matbu. ch 8

Lernziele Matbu. ch 8 Lernziele Matbu. ch 8 Beachte auch den Refernzrahmen des Stellwerk8 www. stellwerk- check. ch LU Priorität Grobziel (aus Mathbu.ch 8) Lernziele Begriffe 2 1 Mit gebrochenen Zahlen operieren: Gebrochene

Mehr

Rechnen mit natürlichen Zahlen

Rechnen mit natürlichen Zahlen Addieren und Subtrahieren einer Zahl Fachausdrücke bei der Addition und Subtraktion: Addition (+) 52 + 27 = 79 1. Summand + 2. Summand = Summe Rechnen mit natürlichen Zahlen Subtraktion ( - ) Strichrechnungen

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 5 Reihen- Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen folge Die Schülerinnen und Schüler

Mehr

MATHEMATIK 3. KL. FL. Übungstyp

MATHEMATIK 3. KL. FL. Übungstyp MATHEMATIK 3. KL. FL ID Übungstyp Anzahl Aufgaben Arithmetik/Algebra Zahlvorstellungen Zahlwörter - Zahlen (ID 1056-3) 1056 Übung 42 Stellenwerttafel (ID 1271-3) 1271 Übung 15 Zahlen bilden 1 (ID 1057-3)

Mehr

Abfolge in 6 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in 6 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 1. 1.1 Mischungs- und Teilverhältnisse 1.2 Zahlenstrahl Gebrochene Zahlen 1.3 Ordnen von 1.4 Addieren und Subtrahieren von Kommutativ- und Assoziativgesetz der Addition 1.5 Vervielfachen und Teilen von

Mehr

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik Gut.Besser.FiT Klasse Das musst du wissen! Mathematik Von Grundschullehrern EMPFOHLEN Entspricht den Lehrplänen Das musst du wissen! Mathematik Klasse von Andrea Essers Illustrationen von Guido Wandrey

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen

Mehr

Stoffverteilungsplan Mathematik Klassenstufe 3 Schuljahr: Schule:

Stoffverteilungsplan Mathematik Klassenstufe 3 Schuljahr: Schule: Stoffverteilungsplan Mathematik Klassenstufe 3 Schuljahr: Schule: ZEIT INHALTE KOMPETENZEN Rechenrakete Bemerkungen Schulwochen 1000 LEITIDEEN: ZAHLEN UND OPERATIONEN RAUM UND FORM MUSTER UND STRUKTUREN

Mehr

Didaktik der Bruchrechnung

Didaktik der Bruchrechnung Naturwissenschaft Kristin Jankowsky Didaktik der Bruchrechnung Referat (Handout) Mathematisch Naturwissenschaftliche Fakultät II Didaktik der Mathematik Seminar: Prüfungskolloquium Didaktik der Mathematik

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 1. Zahlenstrahl 1. Zehnerschritte bis 1000: Wie heißen die Zahlen? 2. Zehnerschritte bis 1000: Von wo bis wo? 3. Zehnerschritte bis 1000: Wo ist

Mehr

Stoffverteilungsplan. Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr

Stoffverteilungsplan. Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr Stoffverteilungsplan Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das. Schuljahr Anregungen für Mathematik in der Realschule Niedersachsen auf der Grundlage von Mathematik heute Welches

Mehr

Arbeitsplan mit Implementierung des Lehrplans Mathematik Klasse 3

Arbeitsplan mit Implementierung des Lehrplans Mathematik Klasse 3 Arbeitsplan mit Implementierung des Lehrplans Mathematik Klasse 3 Prozessbezogene Inhaltsbezogene Kapitel 1: Wiederholung und Vertiefung Seite 4 17 (ca. 1. 4. Woche) Rechnen im Zahlenraum bis 100 festigen;

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 1. Zählen, Mengen erfassen und Zahlen schreiben 1. Mengen erfassen 1 2. Mengen erfassen 2 3. Zähle die Kästchen 4. Zähle die Gegenstände 5. Zähle

Mehr

Planungsvorschlag zum Themenbereich Natürliche Zahlen. in Klasse 5

Planungsvorschlag zum Themenbereich Natürliche Zahlen. in Klasse 5 Marion Roscher, Hans-Dieter Sill Oktober 2006 Planungsvorschlag zum Themenbereich Natürliche Zahlen Ziele und Schwerpunkte Forderungen der Bildungsstandards in Klasse 5 Die Schülerinnen und Schüler nutzen

Mehr

Curriculum MATHEMATIK Sekundarstufe I. Genoveva-Gymnasium Köln Lehrplan SEK1 G8 Mathematik Seite 1

Curriculum MATHEMATIK Sekundarstufe I. Genoveva-Gymnasium Köln Lehrplan SEK1 G8 Mathematik Seite 1 Curriculum MATHEMATIK Sekundarstufe I Klasse Inhalte Fertigkeiten Sonstiges 5 Natürliche Zahlen und Größen Große Zahlen Stellentafel Zweiersystem; Römische Zahlzeichen Zahlenstrahl Runden von Zahlen Bilddiagramme

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 6 Reihenfolge Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.7 Brüche mit gleichem

Mehr

Stoffverteilungsplan Mathematik 6 auf der Grundlage der Kerncurricula 2005 Schnittpunkt 6 Klettbuch KGS Schneverdingen

Stoffverteilungsplan Mathematik 6 auf der Grundlage der Kerncurricula 2005 Schnittpunkt 6 Klettbuch KGS Schneverdingen Kompetenzen Inhalte Schnittpunkt 6 nehmen Probleme als Herausforderung an nutzen das Buch zur Informationsbeschaffung übertragen Lösungsbeispiele auf neue Aufgaben stellen das Problem anders dar ebener

Mehr

Inhalt. 01 Lehrplanübersicht 02 Sequenzkarte Terme Sequenzkarte Gleichungen

Inhalt. 01 Lehrplanübersicht 02 Sequenzkarte Terme Sequenzkarte Gleichungen Inhalt Seminarbuch 37 Wie war das doch gleich wieder? Seminarbuch 38 Wir lösen Gleichungen - Lösungsmodelle 1 Seminarbuch 39 Lösungsmodelle 2 Seminarbuch 40 Lösungsmodelle 3 Seminarbuch 41 Rechenregeln

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN. Algebra 1.) Darstellen natürlicher Zahlen: Vor- und Nachteile der Darstellungsformen erarbeiten.

Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN. Algebra 1.) Darstellen natürlicher Zahlen: Vor- und Nachteile der Darstellungsformen erarbeiten. Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN 1.) Darstellen natürlicher Zahlen: Stochastik Funktionen Zahl als Ziffern- und Wortform Große Zahlen Darstellung am Zahlenstrahl; Darstellung im Zehnersystem

Mehr

1. Funktionale Zusammenhänge & Sachsituationen Aufgabenbeispiele für Lernende in separater Beilage

1. Funktionale Zusammenhänge & Sachsituationen Aufgabenbeispiele für Lernende in separater Beilage Funktionale Zusammenhänge & Sachsituationen Aufgabenbeispiele für Lernende in separater Beilage Tabellen und Funktionsgraphen interpretieren und darstellen Wertetabellen lesen und beschreiben. Daten in

Mehr

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b)

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b) GLEICHUNGEN Gleichungslehre Bisher haben Sie Aufgaben kennen gelernt, bei denen eine Rechenoperation vorgegeben war und Sie das Ergebnis berechnen sollten. Nach dem Gleichheitszeichen war dann das Ergebnis

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: 1; 2; 3; 4; Nimmt man auch die 0 hinzu, schreibt man: 0; 1; 2; 3; 4; Zahlenstrahl Je weiter rechts eine Zahl

Mehr

Lernmodul Bruchrechnen. Gemischte, unechte Brüche. Brüche: Addition, Subtraktion. Brüche multiplizieren. Kehrwert.

Lernmodul Bruchrechnen. Gemischte, unechte Brüche. Brüche: Addition, Subtraktion. Brüche multiplizieren. Kehrwert. Lernmodul Bruchrechnen Gemischte, unechte Brüche Brüche: Addition, Subtraktion Brüche multiplizieren Kehrwert Brüche dividieren Lernmodul Dezimalrechnung Dezimalzahlen addieren, subtrahieren Dezimalzahlen

Mehr

Stoffverteilungsplan für die Jahrgangsstufe 5 in Berlin/Brandenburg auf der Basis von Mathematik heute

Stoffverteilungsplan für die Jahrgangsstufe 5 in Berlin/Brandenburg auf der Basis von Mathematik heute Schülerband Mathematik heute (978--07-80-9) (978--07-8-) Mathematik für die Jahrgangsstufen -0, gültig ab Schuljahr 07/08 Zahlen und Größen» Zahlen über eine Million Stellentafel» Anordnung der natürlichen

Mehr

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK 1. Allgemeine mathematische Kompetenzen Primarbereich Allgemeine mathematische Kompetenzen zeigen sich in der lebendigen Auseinandersetzung mit Mathematik und

Mehr

Rechentraining. 4 a) b) c) d) e) f) g) h)

Rechentraining. 4 a) b) c) d) e) f) g) h) Rechentraining Kopfrechenaufgaben 1 a) 27 + 13 b) 45 + 25 c) 78 + 22 d) 64 + 36 e) 205 + 95 f) 909 + 91 g) 487 + 23 h) 630 + 470 i) 777 + 333 j) 34 23 k) 42 33 l) 177 78 m) 555 444 n) 1010 101 o) 808 88

Mehr

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen prozessbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I:

Mehr

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe Schwerpunkt: Flexibles Rechnen Thema Kompetenz Kenntnisse/ Fertigkeiten/ Voraussetzungen, um die Kompetenz zu erlangen - Flexibles Rechnen (Addition, Subtraktion, Multiplikation, Division) - nutzen aufgabenbezogen

Mehr

Argumentieren/Kommunizieren

Argumentieren/Kommunizieren 4 Wochen Geometrie Erfassen Grundbegriffe, Kreisfläche, Kreislinie, Radius, Mittelpunkt, Durchmesser kennen, benennen und differenzieren Benennungen beim Winkel, Scheitel, Beschriftungen Neben, Scheitel,

Mehr

Terme, Gleichungen und Zahlenmengen

Terme, Gleichungen und Zahlenmengen Die natürlichen Zahlen Die natürlichen Zahlen werden mit dem Symbol N dargestellt. N = {1 ;2 ;3 ;4 ;5; 6;...} Zur einfachen Erfassung von Daten kann man eine Strichliste anfertigen. Beispiel: Größen der

Mehr

Schuleigener Arbeitsplan der Grundschule Barienrode zum Kerncurriculum Mathematik

Schuleigener Arbeitsplan der Grundschule Barienrode zum Kerncurriculum Mathematik Schuleigener Arbeitsplan der Grundschule Barienrode zum Kerncurriculum Mathematik 1 Erwartete Kompetenzen am Ende des 1. Schuljahrgangs Erwartete prozessbezogene Kompetenzen am Ende des 1. Schuljahrganges

Mehr

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987

Mehr

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7 Themen verschiedener Darstellungsmöglichkeiten von Proportionaler, ihre Darstellung in Koordinatensystemen und Berechnungen mit Hilfe des Dreisatz antiproportionaler, ihre Darstellung im Koordinatensystem

Mehr

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.3 Rechnen mit ganzen Zahlen 1 25 Erstelle zu den folgenden Zahlenrätseln zunächst einen Rechenausdruck und

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

Stoffverteilungsplan Mathematik Klasse 5 RS,

Stoffverteilungsplan Mathematik Klasse 5 RS, Stoffverteilungsplan Mathematik Klasse 5 RS, 04.12.2006 Inhalte Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methoden 1 Die natürlichen Zahlen Unsere neue Klasse 1 Strichlisten und Diagramme

Mehr

Abfolge in 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 1. Natürliche Zahlen und Größen 1.1 Große Zahlen Stellentafel 1.2 1.3 Zweiersystem 1.4 Römische Zahlzeichen 1.5 Anordnung der natürlichen Zahlen Zahlenstrahl 1.6 Runden von Zahlen Bilddiagramme 1.7 Länge

Mehr

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen Zahlen und Operationen 30 Kapitel 1: Kapitel 1 Zahlen und Größen 6 Zahlen und Größen 1 Vielfache von großen Zahlen darstellen, lesen und inhaltlich interpretieren Zahlen über 1 Million Stellentafel Große

Mehr

Inhaltsübersicht. Jahrgang: 6 Schuljahr: 2015/2016 Halbjahr: 1/2. inhaltsbezogene prozessbezogene Kompetenzen. Halbjahr/1 Zeit (in Wochen)

Inhaltsübersicht. Jahrgang: 6 Schuljahr: 2015/2016 Halbjahr: 1/2. inhaltsbezogene prozessbezogene Kompetenzen. Halbjahr/1 Zeit (in Wochen) Halbjahr/1 Zeit (in Wochen) Inhalte Seite inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen / mögliche Berufsfelder / 1 6 Wochen 1 18.09.15 1. Teilbarkeit 1.1 Noch fit? 1.2 Teiler und Vielfache 1.3

Mehr

2.Schuljahr. Schuleigener Arbeitsplan für das Fach Mathematik

2.Schuljahr. Schuleigener Arbeitsplan für das Fach Mathematik V e r l ä s s l i c h e G r u n d s c h u l e Hauptstraße 5 30952 Ronnenberg-Weetzen 05109-52980 Fax 05109-529822 2.Schuljahr Schuleigener Arbeitsplan für das Fach Mathematik Kompetenzbereiche, erwartete

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Sachkompetenz Zahlen. Zahlen lesen und schreiben. zählen, Zahlen ordnen. Zahlen erfassen. Zahlen als Operatoren verwenden

Sachkompetenz Zahlen. Zahlen lesen und schreiben. zählen, Zahlen ordnen. Zahlen erfassen. Zahlen als Operatoren verwenden Zahlen Zahlen lesen und schreiben Zahlen und Zahlwörter lesen und schreiben Zahlen und Zahlwörter bis 20 lesen und schreiben Zahlen bis 100 lesen und schreiben große Zahlen lesen und schreiben die Bedeutung

Mehr

M ATHEMATIK Klasse 3. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 1000 (S )

M ATHEMATIK Klasse 3. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 1000 (S ) M ATHEMATIK Klasse 3 Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern Duden Mathematik 3 Lehrplan: Anforderungen / Inhalte Der Zahlenraum bis 1000 (S. 14 25) Entwickeln von Zahlvorstellungen

Mehr

Lernbausteine Mathematik

Lernbausteine Mathematik 1 Vorwort Die tragen den Bildungsstandards für die Grundschule (Jahrgangsstufe 4) und den Bildungsstandards für den Hauptschulabschluss nach Klasse 9, sowie dem Mittleren Bildungsabschluss Rechnung. Sie

Mehr

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik Gut.Besser.FiT Klasse Das musst du wissen! Mathematik Von Grundschullehrern EMPFOHLEN Entspricht den Lehrplänen Das musst du wissen! Mathematik Klasse von Andrea Essers Illustrationen von Guido Wandrey

Mehr

Unterrichtseinheit Natürliche Zahlen I

Unterrichtseinheit Natürliche Zahlen I Fach/Jahrgang: Mathematik/5.1 Unterrichtseinheit Natürliche Zahlen I Darstellen unterschiedliche Darstellungsformen verwenden und Beziehungen zwischen ihnen beschreiben (LE 8) Darstellungen miteinander

Mehr