6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum
|
|
- Maria Dittmar
- vor 5 Jahren
- Abrufe
Transkript
1 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte ρ( r, t) und Stromdichte J( r, t) Gesucht: die elektromagnetischen Felder als Funktion von Ort r und Zeit t. In der Grundaufgabe der Elektrodynamik werden Ladungen und Ströme als gegebene Ursachen des elektromagnetischen Feldes angesehen, analog zur Grundaufgabe der Mechanik, wo die wirkenden Kräfte Ursache für die zu berechnende Bewegung der Körper sind. Anmerkung: Das ist noch nicht der Weisheit letzter Schluß! Denn die Felder wirken über die verallgemeinerte Lorentzkraft auf die Ladungen zurück. Deren Bewegung wird dadurch beeinflußt, damit auch wieder die Felder, usw. usf. In diesem Kapitel beschränken wir uns aber auf die Grundaufgabe. 6.2 Einige allgemeine Folgerungen aus den MGl im Vakuum Wir werden von der differentiellen Formulierung ausgehen Mathematische Charakterisierung Für den Vakuumfall lassen sich die Felder D und H mit Hilfe der Materialgleichung eliminieren. Schreibt man weiter nur das gegebene immer rechts, so ergibt sich div E = ρ/ε 0 div B = 0 rot B ε 0 µ 0 E = µ 0 J rot E + B = 0 Zur mathematischen Charakterisierung dieser Gleichungen läßt sich sagen: (6.1) 1. Es sind inhomogene partielle Differentialgleichungen erster Ordnung in Ort und Zeit. = Für die eindeutige Lösung sind Rand- und Anfangsbedingungen erforderlich. Wir werden diese später bei den allgemeinen Lösungsformeln erörtern. 2. Es sind lineare Gleichungen = Es gilt das Superpositionsprinzip (s.u.) 3. Es sind insgesamt 8 skalare Gleichungen für nur 6 unbekannte Feldkomponenten. = Sind das etwa zu viele Gleichungen? (s.u.) Superpositionsprinzip Die MGl sind linear sowohl in den unbekannten Feldern als auch in den Inhomogenitäten ρ, J. Ohne Rand- Anfangsbedingung gilt dann: I.) Die allgemeine Lösung der inhomogenen Gleichung ergibt sich durch Addition der allgemeinen (einer beliebigen) Lösung der homogenen Gleichungen zu einer speziellen Lösung der inhomogenen.
2 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 26 II.) Wenn E 1, B 1 Lösungen zu ρ 1, J 1 und E 2, B 2 Lösungen zu ρ 2, J 2 sind, so sind E 1 + E 2, B 1 + B 2 Lösungen zu ρ 1 + ρ 2, J 1 + J 2 ( = Superpositionsprinzip) Widerspruchsfreiheit bei Ladungserhaltung Wir hatten festgestellt, daß die MGl (6.1) 8 Gleichungen für nur 6 Unbekannte sind. Das System scheint überbestimmt zu sein. Wir werden sehen, daß das nicht der Fall ist, wenn J und ρ bestimmte Bedingungen erfüllen. Vorgehen schrittweise. 1. Schritt Wir zeigen: für beliebiges E sind Induktionsgleichung (rechts unten) und magnetische Monopolgleichung (links unten) nicht widersprüchlich [das sind 4 Gleichungen für 3 Unbekannte] Wir bilden die Divergenz der Induktionsgleichung: 0 = div rot E + div B (6.2) NR1: div rot E = ( E) = ( ) E = 0 Spat (6.3) NR2: div B = div B (Vertauschbarkeit Reihenfolge Ableitung) (6.4) 0 = div B ( div B ist zeitlich konstant.) (6.5) Das ist mit der (keine magnetische) Monopolgleichung offensichtlich immer verträglich. Schritt 2 Analog für die anderen beiden MGl. µ 0 div J = div rot B ε 0 µ 0 div E ( ) = 0 ε 0 µ 0 div E Coulomb ρ = ε 0 µ 0 = div J + ρ ε 0 (6.6) (6.7) = 0 Kontinuiutätsgleichung (6.8) Nur wenn die Kontinuitätsgleichung erfüllt ist, sind die MGl. also widerspruchsfrei. Fazit Man kann also Stromdichten J und Ladungsdichten ρ für die Grundaufgabe der Elektrodynamik nicht ganz beliebig vorgeben, sondern nur solche, die der Kontinuitätsgleichung (2.5) genügen, d.h. das Gesetz von der Erhaltung der Ladung nicht verletzen. 6.3 Die elektrodynamischen Potentiale = Schlüssel zur allgemeinen Lösung der Maxwell-Gleichungen! Einführung der elektrodynamischen Potentiale Ausgangspunkt: die Maxwell-Gleichung div B = 0.
3 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 27 Diese wird automatisch gelöst durch den Ansatz B = rot A weil für beliebiges Feld A gilt div rot A 0. (6.9) Setzen wir den Ansatz in die MGl rot E + B = 0 ein, so ergibt sich 0 = rot E + rot A = rot E + rot A ( = rot E + A ). (6.10) Dies wird seinerseits automatisch gelöst durch den Ansatz E + A = grad ϕ, da rot grad ϕ 0 für beliebige ϕ. (6.11) Zusammengefaßt: Durch die Ansätze B = rot A E = A grad ϕ (6.12) werden 4 von den 8 MGl. automatisch gelöst. Hier werden die elektromagnetischen Felder E und B durch Differentiation aus den Feldern A und ϕ gewonnen. Letztere heißen deshalb elektrodynamische Potentiale, genauer: A( r) Vektorpotential ϕ( r) Skalarpotential. (6.13) Woher bekommt man aber die Potentiale? Die inhomogenen Wellengleichungen Um Bestimmungsgleichungen für die Potentiale zu erhalten, setzt man die Ansätze (6.12) in die restlichen MGl ein: Durchflutungsgleichung: rot rot A + ε 0 µ 0 2 A 2 t + ε 0µ 0 grad ϕ = µ 0 J (6.14) Coulombgleichung: div A div grad ϕ = ρ ε 0. (6.15) Das ist die Rohform der gesuchten Gleichungen. Noch recht kompliziert. Gute Physik ist meistens einfach. Wir versuchen also zu vereinfachen. Wir werden zunächst die Doppel-Operatoren umschreiben (s. Merkzettel zu Nabla, Grad, usw.): rot rot A = ( A) [bac-cab-regel] (6.16) = ( A) 2 A (6.17) = grad div A A = 2 x z Laplace-Operator. z2 (6.18) div grad ϕ = ϕ = 2 ϕ = ϕ. (6.19)
4 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 28 Damit werden die beiden Rohform-Gleichungen zu A 2 ( ) A ε 0 µ 0 2 = µ 0J ϕ + grad ε 0 µ 0 + div A ϕ + div A = ρ ε 0. (6.20) (6.21) Das ist immer noch recht unübersichtlich. Gute Gleichungen sind noch einfacher. Ein Wissenschaftler, der das weiß, gibt sich mit solchen Gleichungen nicht zufrieden. Er sucht weiter nach Vereinfachungen. Aber wie? Nun, er probiert dies und das. Selten klappt es auf Anhieb. Aber wenn man zäh genug ist und eine Vereinfachung überhaupt möglich, dann findet man sie auch irgendwann. In unserem Falle zeigt sich: Die Potentiale sind durch (6.12) noch nicht eindeutig festgelegt. Unter den vielen Möglichkeiten kann man sich nun jene raussuchen, die möglichst einfache Gleichungen erfüllen. Das geschieht durch die sogenannte Lorentz-Eichung div A + ε 0 µ 0 ϕ = 0 (6.22) Dadurch verschwindet der störende Gradient rechts in (6.20) und in (6.21) kann div A eliminiert werden: A ε 0 µ 0 2 A 2 = µ 0 J ϕ ε 0 µ 0 2 ϕ 2 = ρ ε 0 (6.23) (6.24) Das sieht doch schon viel freudlicher aus. Interessant: Links bei beiden Gleichungen die gleiche Kombination von Orts- und Zeitableitungen. Für diese hat sich die Abkürzung d Alembert-Operator := ε 0 µ (6.25) eingebürgert. Damit dann endgültig A = µ 0 J ϕ = ρ/ε 0 inhomogene Wellengleichungen (6.26) Diese Gl. sind doch schön einfach. Zusammen mit (6.12) und der Lorentz-Eichung (6.22) sind sie den Maxwell-Gleichungen äquivalent. Vorzüge: die Gleichungen für die 3 Komponenten von A sind voneinander und von der für ϕ entkoppelt. links immer der gleiche Operator, also auch gleiche Lösungsmethode anwendbar. Es gibt eine allgemeine Lösungsformel! Bevor wir letzteres zeigen,
5 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 29 Ergänzung zur Eichung 16 Wieso darf man Lorentz-eichen? Dazu folgende Überlegungen. Wenn die Potentiale A und ϕ gegeben sind, dann auch die physikalischen Felder durch (6.12). Umgekehrt ist das nicht der Fall! Wenn ich z.b. zu ϕ eine Konstante und zu A einen konstanten Vektor addiere, so ändern sich E und B nicht (weil die Konstanten beim Differenzieren verschwinden). Aber die Vieldeutigkeit von A und ϕ ist noch viel größer! Auch die Potentiale A = A grad f und ϕ = ϕ + f (6.27) erzeugen die gleichen Felder, wie A und ϕ. Dabei kann f( r) eine beliebige Funktion sein! (Natürlich differenzierbar). Beweis durch Einsetzen: rot A = rot A rot grad f = rot A = B (6.28) A grad ϕ = A + f grad f grad ϕ grad = A grad ϕ = E. (6.29) Den Übergang (6.27) nennt man Eichtransformation. Man muß diese Transformation aber nicht explizit ausführen, den es gilt: Behauptung: Die Lösungen A und ϕ der inhomogenen Wellengleichungen (6.26) erfüllen automatisch die Lorentz- Eichung, wenn diese auf dem Rand (im Unendlichen) gilt und J und ρ der Kontinuitätsgleichung genügen. Beweis: Addiere die Divergenz der inh. Wellengl. für A und ε 0 µ 0 / angewendet auf die für ϕ. Das gibt zunächst ( ) ( div A ϕ + ε 0 µ 0 = µ 0 div J + ρ ). (6.30) Die Klammer rechts verschwindet wegen der Kontinuitätsgleichung. Damit bleibt G = 0, wenn man die Klammer links mit G abkürzt. Dies hat aber nur die triviale Lösung G 0, wenn G = 0 auf dem Rande und bei t = das Kleingedruckte in Vorlesung nur verbal umrissen
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)
Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Repetitionsaufgaben Wurzelgleichungen
Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Charakteristikenmethode im Beispiel
Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1
B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,
Lineare Differentialgleichungen erster Ordnung erkennen
Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:
david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit
0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )
Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)
Musterlösungen zur Linearen Algebra II Blatt 5
Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische
DIFFERENTIALGLEICHUNGEN
DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung
Gleichungen Lösen. Ein graphischer Blick auf Gleichungen
Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term
Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK?
Impulsstrom Achim Rosch, Institut für Theoretische Physik, Köln zwei Fragen: Belegt das Gutachten wesentliche fachliche Fehler im KPK? Gibt es im Gutachten selbst wesentliche fachliche Fehler? andere wichtige
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
Hamilton-Formalismus
KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische
Chemie Zusammenfassung KA 2
Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Vorkurs Mathematik Übungen zu Differentialgleichungen
Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen
Lösungen zum 3. Aufgabenblatt
SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.
Anleitung über den Umgang mit Schildern
Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder
Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.
R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Spezielle Relativitätstheorie
Spezielle Relativitätstheorie Proseminar: Kosmologie und Teilchenphysik von Evangelos Nagel Physik vor dem 20. Jhd. Newton (Principia Mathematica): Der absolute Raum bleibt vermöge seiner Natur und ohne
a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:
Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend
Was ist das Budget für Arbeit?
1 Was ist das Budget für Arbeit? Das Budget für Arbeit ist ein Persönliches Geld für Arbeit wenn Sie arbeiten möchten aber nicht mehr in einer Werkstatt. Das gibt es bisher nur in Nieder-Sachsen. Und in
Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation
Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation Einführung Mit welchen Erwartungen gehen Jugendliche eigentlich in ihre Ausbildung? Wir haben zu dieser Frage einmal die Meinungen von Auszubildenden
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht
8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren
Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik
Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
Alle Schlüssel-Karten (blaue Rückseite) werden den Schlüssel-Farben nach sortiert und in vier getrennte Stapel mit der Bildseite nach oben gelegt.
Gentlemen", bitte zur Kasse! Ravensburger Spiele Nr. 01 264 0 Autoren: Wolfgang Kramer und Jürgen P. K. Grunau Grafik: Erhard Dietl Ein Gaunerspiel für 3-6 Gentlemen" ab 10 Jahren Inhalt: 35 Tresor-Karten
8. Quadratische Reste. Reziprozitätsgesetz
O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung
Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme
Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie
9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83
9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x
Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:
Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn
Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.
Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren
5 Eigenwerte und die Jordansche Normalform
Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n
Simulation LIF5000. Abbildung 1
Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles
!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.
Bifurkationen an geschlossenen Orbits 5.4 167 der Schnittabbldung konstruiert. Die Periode T (") der zugehörigen periodischen Lösungen ergibt sich aus =! + o 1 (") beziehungsweise Es ist also t 0 = T (")
Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])
3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere
Kapitel 4 Die Datenbank Kuchenbestellung Seite 1
Kapitel 4 Die Datenbank Kuchenbestellung Seite 1 4 Die Datenbank Kuchenbestellung In diesem Kapitel werde ich die Theorie aus Kapitel 2 Die Datenbank Buchausleihe an Hand einer weiteren Datenbank Kuchenbestellung
Info zum Zusammenhang von Auflösung und Genauigkeit
Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der
Klassenarbeit zu linearen Gleichungssystemen
Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge
Der Kunde zahlt die Gehälter.
Der Kunde zahlt die Gehälter. Hat man das erst einmal verstanden wird es leicht zufriedene Kunden zu gewinnen. E r f o l g s r e z e p t : Wann ist ein Kunde zufrieden? Wenn er merkt das wir zuhören Wenn
Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut wird, dass sie für sich selbst sprechen können Von Susanne Göbel und Josef Ströbl
Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut Von Susanne Göbel und Josef Ströbl Die Ideen der Persönlichen Zukunftsplanung stammen aus Nordamerika. Dort werden Zukunftsplanungen schon
Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner
Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Rechengesetze 1. Rechengesetze für natürliche Zahlen Es geht um
Ü b u n g s b l a t t 11
Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte
4. Versicherungsangebot
4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V
Gezielt über Folien hinweg springen
Gezielt über Folien hinweg springen Nehmen wir an, Sie haben eine relativ große Präsentation. Manchmal möchten Sie über Folien hinweg zu anderen Folien springen. Das kann vorkommen, weil Sie den gesamten
3.1. Die komplexen Zahlen
3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen
Gutes Leben was ist das?
Lukas Bayer Jahrgangsstufe 12 Im Hirschgarten 1 67435 Neustadt Kurfürst-Ruprecht-Gymnasium Landwehrstraße22 67433 Neustadt a. d. Weinstraße Gutes Leben was ist das? Gutes Leben für alle was genau ist das
Modellbildungssysteme: Pädagogische und didaktische Ziele
Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und
Gratis Excel SVERWEIS Funktions-Anleitung, Tutorial, ebook, PDF-E-Book
Gratis Excel SVERWEIS Funktions-Anleitung, Tutorial, ebook, PDF-E-Book Wir wollen wissen wieviel Umsatz Vertreter Müller im Juni gemacht hat? Dazu klicken wir irgendwo in ein Feld und geben ein: =SVERWEIS
Approximation durch Taylorpolynome
TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni
Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge
Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe
PowerPoint: Text. Text
PowerPoint: Anders als in einem verarbeitungsprogramm steht in PowerPoint der Cursor nicht automatisch links oben auf einem Blatt in der ersten Zeile und wartet auf eingabe. kann hier vielmehr frei über
8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens
phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für
Papa - was ist American Dream?
Papa - was ist American Dream? Das heißt Amerikanischer Traum. Ja, das weiß ich, aber was heißt das? Der [wpseo]amerikanische Traum[/wpseo] heißt, dass jeder Mensch allein durch harte Arbeit und Willenskraft
Kinderarmut. 1. Kapitel: Kinderarmut in der Welt
Kinderarmut 1. Kapitel: Kinderarmut in der Welt Armut gibt es überall auf der Welt und Armut ist doch sehr unterschiedlich. Armut? Was ist das? Woher kommt das? wieso haben die einen viel und die anderen
Physik 4, Übung 11, Prof. Förster
Physik 4, Übung 11, Prof. Förster Christoph Hansen Emailkontakt ieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls
1: 9. Hamburger Gründerpreis - Kategorie Existenzgründer - 08.09.2010 19:00 Uhr
1: 9. Hamburger Gründerpreis - Kategorie Existenzgründer - Sehr geehrter Herr Bürgermeister, sehr geehrter Herr Dr. Vogelsang, sehr geehrter Herr Strunz, und meine sehr geehrte Damen und Herren, meine
Charakteristikum des Gutachtenstils: Es wird mit einer Frage begonnen, sodann werden die Voraussetzungen Schritt für Schritt aufgezeigt und erörtert.
Der Gutachtenstil: Charakteristikum des Gutachtenstils: Es wird mit einer Frage begonnen, sodann werden die Voraussetzungen Schritt für Schritt aufgezeigt und erörtert. Das Ergebnis steht am Schluß. Charakteristikum
Wasserkraft früher und heute!
Wasserkraft früher und heute! Wasserkraft leistet heute einen wichtigen Beitrag zur Stromversorgung in Österreich und auf der ganzen Welt. Aber war das schon immer so? Quelle: Elvina Schäfer, FOTOLIA In
ONLINE-AKADEMIE. "Diplomierter NLP Anwender für Schule und Unterricht" Ziele
ONLINE-AKADEMIE Ziele Wenn man von Menschen hört, die etwas Großartiges in ihrem Leben geleistet haben, erfahren wir oft, dass diese ihr Ziel über Jahre verfolgt haben oder diesen Wunsch schon bereits
1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R
C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter
Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1
Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene
Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:
Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung
Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik
Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :
DollarIndex? AUD/JPY, AUD/USD? CHF/JPY - EUR/CHF, EUR/GBP, EUR/JPY, EUR/USD -
MikeC.Kock FOREX - Wochenausblick KW 30 DollarIndex? AUD/JPY, AUD/USD? CHF/JPY - EUR/CHF, EUR/GBP, EUR/JPY, EUR/USD - NZD/JPY, NZD/USD? USD/JPY Viel wird aktuell über die wirtschaftlichen Auswirkungen
3. LINEARE GLEICHUNGSSYSTEME
176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an
x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt
- 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde
So gehts Schritt-für-Schritt-Anleitung
So gehts Schritt-für-Schritt-Anleitung Software WISO Mein Büro Thema Eigene Auswertungen, Tabellenauswertungen Version/Datum V 13.00.05.101 Über die Tabellen-Auswertungen ist es möglich eigene Auswertungen
L10N-Manager 3. Netzwerktreffen der Hochschulübersetzer/i nnen Mannheim 10. Mai 2016
L10N-Manager 3. Netzwerktreffen der Hochschulübersetzer/i nnen Mannheim 10. Mai 2016 Referentin: Dr. Kelly Neudorfer Universität Hohenheim Was wir jetzt besprechen werden ist eine Frage, mit denen viele
18. Magnetismus in Materie
18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der
Festigkeit von FDM-3D-Druckteilen
Festigkeit von FDM-3D-Druckteilen Häufig werden bei 3D-Druck-Filamenten die Kunststoff-Festigkeit und physikalischen Eigenschaften diskutiert ohne die Einflüsse der Geometrie und der Verschweißung der
Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.
Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in
Schrittweise Anleitung zur Erstellung einer Angebotseite 1. In Ihrem Dashboard klicken Sie auf Neu anlegen, um eine neue Seite zu erstellen.
Schrittweise Anleitung zur Erstellung einer Angebotseite 1. In Ihrem Dashboard klicken Sie auf Neu anlegen, um eine neue Seite zu erstellen. Klicken Sie auf Neu anlegen, um Ihre neue Angebotseite zu erstellen..