Lineare Gleichungssysteme

Größe: px
Ab Seite anzeigen:

Download "Lineare Gleichungssysteme"

Transkript

1 Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der Grundlage des Manuskriptes von Prof. Dr. M. Ludwig, TU Dresden 1

2 1 Problemstellung Gleichungssysteme, in denen die Unbekannten x k nur in der ersten Potenz auftreten und nicht miteinander multipliziert werden, heißen lineare Gleichungssysteme. Sie haben die Form x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. a m1 x 1 + a m2 x a mn x n = b m Die Koeffizienten a kl und die rechten Seiten b k sind gegebene Größen k = 1, 2,..., m, l = 1, 2,..., n. Im allgemeinen bestehen sie aus m Gleichungen mit n Unbekannten x 1,..., x n. Das Gleichungssystem lösen heißt, n Größen x 1,..., x n zu finden, die zusammen jede der m Gleichungen erfüllen. Im folgenden werden Lösungsmethoden vorrangig für lineare Gleichungssysteme mit n, m = 2 angegeben. Entsprechend werden die Unbekannten mit x und y bezeichnet. Die Resultate können auf allgemeinere Fälle übertragen werden. Alle vorkommenden Größen a kl, b k, x k, x, y, z usw. seien reell d.h. Elemente aus R und die Größen i, j, k, l, m, n seien natürliche Zahlen d.h. Elemente aus N. 2 Modellbildung Lineare Gleichungssysteme treten bei vielen Problemen in Naturwissenschaft, Technik und Wirtschaft auf z.b. lineare Optimierungsprobleme, Berechnungen basierend auf linearen Modellen, Näherungsrechnungen mittels Computer. Dabei entstehen im allgemeinen Gleichungssysteme mit sehr vielen Gleichungen, deren Lösung einen erheblichen Rechenaufwand erfordert. Heute werden derartige Systeme mittels Computer gelöst, wobei spezielle effiziente Lösungsmethoden genutzt werden kleinere Gleichungssysteme können bereits auf leistungsfähigen Taschenrechnern gelöst werden. Das Aufstellen der Gleichungen gehört zur Aufgabe von Experten des jeweiligen Gebietes und erfordert spezifische Fachkenntnisse. 2

3 3 Geometrische Interpretation Wir betrachten die geometrische Bedeutung von verschiedenen linearen Gleichungssystemen. Da es sich künftig immer um lineare Gleichungssysteme handelt, wird der Begriff linear im folgenden weggelassen. 3.1 Gleichungen mit einer Unbekannten eine Gleichung: ax = b Für feste Werte von a und b sind alle reellen Zahlen x zu bestimmen, die in die Gleichung eingesetzt, die Gleichheitsbedingung erfüllen. Betrachtet man die Funktion fx = ax b, so entspricht das Lösen der Gleichung gerade der Bestimmung der Nullstellen fx = 0 der linearen Funktion f. Für a 0 gibt es genau eine Nullstelle und somit genau eine Lösung x = b der Gleichung. a 2 Gleichungen a 1 x = b 1 a 2 x = b 2 Es sind alle reellen Zahlen x zu bestimmen, die beide Gleichungen gleichzeitig erfüllen. Falls a 1, a 2 0 besitzt jede Gleichung eine eindeutige Lösung x 1 bzw. x 2, aber in der Regel ist x 1 x 2, d.h. es gibt keine Lösung des Gleichungssystems aus beiden Gleichungen. Nur im Ausnahmefall, dass eine Gleichung ein Vielfaches der anderen ist, hat das System eine Lösung. Man sagt auch: das Gleichungssystem ist überbestimmt mehr Gleichungen als Unbekannte 3

4 3.2 Gleichungen mit zwei Unbekannten eine Gleichung: ax + by = c a 2 + b 2 0 Für feste Werte a, b und c sind alle reellen Zahlen x und y zu bestimmen, so dass die Gleichung erfüllt ist. a x Die linke Seite der Gleichung ist gerade das Skalarprodukt der Vektoren und b y in der xy-ebene. Die Gleichung wird auch als Geradengleichung bezeichnet, da die Menge aller Lösungen x, y eine Gerade in der xy-ebene beschreibt. Es gibt also unendlich viele Lösungen. Man sagt auch: die Gleichung ist unterbestimmt weniger Gleichungen als Unbekannte 2 Gleichungen a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 a 2 k+b 2 k 0, k = 1, 2 Für gegebene a k, b k, c k sind alle reellen Zahlen x und y zu bestimmen, so dass beide Gleichungen gleichzeitig erfüllt sind. Wir haben also 2 Geradengleichungen, deren Lösungsmenge jeweils eine Gerade ist. Schneiden sich beide Geraden in einem Punkt, so sind die Koordinaten dieses Schnittpunktes die einzige Lösung des obigen Gleichungssystems. Im Ausnahmefall, dass beide Geraden parallel sind, muss man zwei Fälle betrachten: entweder sind die Geraden verschieden und das Gleichungssystem hat keine Lösung oder die Geraden fallen zusammen und jeder Punkt x, y dieser Geraden liefert eine Lösung. 3 Gleichungen a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 a 2 k+b 2 k 0, k = 1, 2, 3 a 3 x + b 3 y = c 3 Wir haben hier 3 Geradengleichungen, so dass die Lösungsmenge für jede einzelne Gleichung eine Gerade ist. Nur im Ausnahmefall, in dem sich alle 3 Geraden in einem Punkt schneiden, besitzt das Gleichungssystem eine Lösung. In allen anderen Fällen gibt es keine Lösung. Man sagt wieder: das Gleichungssystem ist überbestimmt mehr Gleichungen als Unbekannte 4

5 3.3 Gleichungen mit drei Unbekannten eine Gleichung: ax + by + cz = d a 2 + b 2 + c 2 0 Mit Argumenten wie bisher erkennt man, dass die Menge aller Lösungen x, y, z eine Ebene im 3-dimensionalen xyz-raum beschreibt. Es gibt somit unendlich viele Lösungen und die Gleichung ist unterbestimmt. 2 Gleichungen a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 2 k+b 2 k+c 2 k 0, k = 1, 2 Abgesehen von Ausnahmefällen kann man als Lösungsmenge die Schnittmenge zweier nicht paralleler Ebenen erwarten, d.h. eine Gerade im xyz-raum. Es gibt also wieder unendlich viele Lösungen und die Gleichung ist unterbestimmt. 3 Gleichungen a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 2 k+b 2 k+c 2 k 0, k = 1, 2, 3 a 3 x + b 3 y + c 3 z = d 3 Abgesehen von Ausnahmefällen kann man als Lösungsmenge die Schnittmenge von drei Ebenen, wovon jeweils zwei nicht parallel zueinander sind, erwarten. Das ist auch der Schnittpunkt einer Ebene mit einer Geraden und liefert eine eindeutige Lösung des Gleichungssystems. vier und mehr Gleichungen Abgesehen von Ausnahmefällen sind solche Gleichungssysteme überbestimmt und besitzen keine Lösung. FAZIT: Abgesehen von Ausnahmefällen zeigen lineare Gleichungssysteme folgendes Lösungsverhalten: Anzahl Gleichungen < Anzahl Unbekannte unterbestimmt unendlich viele Lösungen Anzahl Gleichungen = Anzahl Unbekannte genau eine Lösung Anzahl Gleichungen > Anzahl Unbekannte überbestimmt keine Lösung 5

6 4 Alternative geometrische Interpretation Wir betrachten 2 Gleichungen mit ein, zwei bzw. drei Unbekannten und betrachten die Gleichungen als Gleichung für Vektoren in der Ebene a a 2 2 0, b b 2 2 0, c c 2 2 0: a b c a 1 x = d 1 a 2 x = d 2 a 1 x + b 1 y = d 1 a 2 x + b 2 y = d 2 a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a1 d1 x = a 2 d 2 a1 b1 d1 x + y = a 2 b 2 d 2 a1 b1 c1 d1 x + y + z = a 2 b 2 c 2 d 2 Wir suchen also geeignete Vielfache der Vektoren gleich dem vorgegebenen Vektor d1 d 2 ist. a1 a 2 b1 c1, und, so dass deren Summe b 2 c 2 Fall a: Nur im Ausnahmefall, in dem a1 a 2 und d1 d 2 auf einer Geraden liegen, gibt es eine Lösung x. Sonst gibt es keine Lösung und das System ist überbestimmt. Fall b: Sind a1 a 2 und b1 b 2 linear unabhängig d.h. sie liegen nicht auf einer Geraden, dann gibt es genau eine Lösung x, y. Die anderen Fälle können als Ausnahme angesehen werden und können selbst diskutiert werden. Fall c: Falls nicht alle drei Vektoren a1 a 2 b1, b 2 und c1 c 2 auf einer Geraden liegen gibt es unendlich viele Lösungen und das System ist unterbestimmt. Die anderen Fälle können als Ausnahme angesehen werden und können selbst diskutiert werden. Ergebnis: Analog können wir auch für drei und mehr Gleichungen argumentieren und unsere Überlegungen bestätigen das Fazit aus dem vorigen Abschnitt. 6

7 5 Determinante Gleichungssysteme, die eine eindeutige Lösung besitzen, sind für Anwendungen besonders wichtig. Deshalb betrachten wir hier Systeme, bei denen die Anzahl von Gleichungen und Unbekannten gleich ist, also z.b. x + a 12 y = b 1 a 21 x + a 22 y = b 2 In der Praxis muss man überprüfen, ob ein reguläres Gleichungssystem d.h. kein Ausnahmefall vorliegt. Ein Schema von Zahlen a11 a 12 a 21 a 22 nennt man auch Matrix hier 2 2-Matrix. Die Zahl D = a 12 a 21 a = a 22 a 12 a heißt Determinante dieser Matrix. Der Betrag D ist gerade das Volumen des Parallelogramms, das von den Vektoren a12 a 22 aufgespannt wird. Somit hat man D 0 a11 a 21 und genau dann, wenn diese Vektoren linear unabhängig sind. Somit hat das obige Gleichungssystem genau dann eine eindeutige Lösung, wenn D 0 gilt. 1 1 Für die Matrix erhält man 1 4 D = = 4 1 = 5 7

8 6 Lösungsmethoden Die folgenden Verfahren können für wenige Gleichungen von Hand ausgeführt und für viele Gleichungen mittels Computer realisiert werden. Zur Demonstration der wichtigsten Techniken betrachten wir das Lösen von 2 Gleichungen mit 2 Unbekannten. Dabei betrachten wir neben dem allgemeinen Fall links stets ein konkretes Beispiel rechts und fordern stets D = a 22 a 12 a 21 0 so dass wir ein reguläres Problem haben: x + a 12 y = b 1 x + y = 3 a 21 x + a 22 y = b 2 x + 4y = Gleichsetzungsverfahren Auflösen beider Gleichungen nach der gleichen Unbekannten, z.b. nach x es seien, a 21 0: Gleichsetzen x = x beider Gleichungen: x = b 1 a 12 y x = y + 3 x = b 2 a 21 a 22 a 21 y x = 4y 2 Auflösen nach y: b 1 a 12 y = b 2 a 21 a 22 a 21 y y + 3 = 4y 2 y = b 2 a 21 b 1 a 22 a 12 a 21 y = 1 Lösung in eine der beiden Ausgangsgleichungen einsetzen z.b. in die erste und man erhält x: x = a 22b 1 a 12 b 2 a 22 a 12 a 21 x = 2 beachte: im Nenner der Lösungen steht jeweils die Determinante D 8

9 6.2 Einsetzungsverfahren x + a 12 y = b 1 x + y = 3 a 21 x + a 22 y = b 2 x + 4y = 2 Auflösen einer Gleichung nach einer Unbekannten, z.b. der ersten Gleichung nach x x = b 1 a 12 y x = y + 3 Einsetzen des Ergebnisses in die andere Gleichung, d.h. hier in die zweite Gleichung: b1 a 21 a 12 y + a 22 y = b 2 y y = 2 Auflösen nach der verbleibenden Unbekannten, hier nach y, führt zu: y = b 2 a 21 b 1 a 22 a 12 a 21 y = 1 Die zweite Unbekannte berechnet man wie bei dem Gleichsetzungsverfahren: x = a 22b 1 a 12 b 2 a 22 a 12 a 21 x = Additionsverfahren Addition eines bestimmten evtl. auch negativen Vielfachen der ersten Gleichung zu einem bestimmten Vielfachen der zweiten Gleichung derart, dass eine Unbekannte nicht mehr auftritt. Konkret multiplizieren wir die erste Gleichung mit a 21, die zweite mit und addieren die so entstandenen Gleichungen: a 21 a 12 y + a 22 y = a 21 b 1 + b 2 5y = 5 Auflösen nach y liefert y = b 2 a 21 b 1 a 22 a 12 a 21 y = 1 Analog multipliziert man die erste Gleichung mit a 22, die zweite mit a 12 und addiert die entstandenen Gleichungen: a 22 x + a 12 a 21 x = a 22 b 1 + a 12 b 2 5x = 10 Auflösen nach x liefert x = a 22b 1 a 12 b 2 a 22 a 12 a 21 x = 2 9

10 6.4 Cramersche Regel Betrachte das reguläre Gleichungssystem x + a 12 y = b 1 x + y = 3 a 21 x + a 22 y = b 2 x + 4y = 2 D = a 22 a 12 a 21 0 D = = = 5 Ersetze in der Matrix der Koeffizienten die 1. Spalte bzw. die 2. Spalte durch die rechte Seite und berechne die Determinanten D 1 = b 1 a 12 b 2 a = b 1a 22 a 12 b 2 D 1 = = 12 2 = 10 D 2 = b 1 a 21 b = b 2 b 1 a 21 D 2 = = = 5 Verwendet man die Interpretation der Determinante als Volumen, so erhält man D 1 = Dx und D 2 = Dy Dies ergibt für die eindeutige Lösung des Gleichungssystems die sogenannte Cramersche Regel x = D 1 D, y = D 2 D x = 10 5 = 2, y = 5 5 = 1 Bemerkungen: a Falls D = D 1 = D 2 = 0, dann liegen alle drei Vektoren a11 a 21, a12 einer Geraden. Dies bedeutet, dass eine Gleichung ein Vielfaches der anderen Gleichung ist und es gibt unendlich viele Lösungen. b Falls D = 0 und wenigstens eine der Determinanten D 1, D 2 ist nicht Null, dann liegen die a11 a12 b1 Vektoren und auf einer Geraden und liegt auf einer anderen Geraden. a 21 a 22 In diesem Fall gibt es keine Lösung sofern b b b 2 a 22 und b1 b 2 auf 10

11 6.5 Gaußscher Algorithmus Eine Kombination von Additions- und Einsetzungsverfahren führt zum Gaußschen Algorithmus auch Gaußsches Eliminationsverfahren. Hierbei multipliziert und addiert man die Gleichungen derart, dass eine Dreiecksstruktur entsteht. Wir betrachten wieder x + a 12 y = b 1 x + y = 3 a 21 x + a 22 y = b 2 x + 4y = 2 Die 1. Gleichung übernehmen wir unverändert. Dann multiplizieren wir die 1. Gleichung mit a 21 und addieren die so entstandene Gleichung zur zweiten. Dabei erhält man die Gleichung ã 22 y = b 2 mit ã 22 = a 22 a 12a 21, b2 = b 2 b 2a 21 Diese verwendet man nun anstelle der 2. Gleichung, d.h. man hat das System x + a 12 y = b 1 ã 22 y = b 2 x + y = 3 5y = 5 Nun löst man die 2. Gleichung nach y auf. Die erhaltene Lösung wird in die 1. Gleichung eingesetzt, um x zu berechnen: y = b 2 ã 22 y = 1 x = b 1 a 12 y = b 1 a 12 b2 ã 22 x = = 2 Somit besteht der Gaußsche Algorithmus aus folgenden Schritten: Erzeugung einer Dreiecksstruktur Berechnung der Unbekannten durch Rückrechnung Einsetzungsverfahren. Bemerkung: a Beim Gaußschen Algorithmus ist darauf zu achten, dass bei den auftretenden Multiplikationsfaktoren die Nenner immer von Null verschieden sind. b Der Gaußsche Algorithmus ist besonders für die Lösung linearer Gleichungssysteme mittels Computer geeignet. 11

12 7 Lösung unterbestimmter und überbestimmter Systeme Unterbestimmte und überbestimme Gleichungssysteme kann man z.b. auch mit dem Einsetzungs-, Gleichsetzungs- oder Additionsverfahren behandeln. An zwei Beispielen demonstrieren wir, welches Ergebnis man im allgemeinen erhält. 7.1 Unterbestimmte Systeme Wir betrachten 2 Gleichungen mit 3 Unbekannten: x y z = 2 x + y 5z = 4 Auflösen der 1. Gleichung nach x: x = y + z + 2 Einsetzen in die 2. Gleichung: 2y 4z = 2 Auflösen dieser Gleichung nach y: y = 2z + 1 Einsetzen in die Gleichung für x: x = 3z + 3 Interpretation des Ergebnisses Man kann beliebige Werte für z wählen und erhält durch Einsetzen in die Lösungsformeln jeweils eine Lösung des Gleichungssystems: z.b. z = 1 Lösung x, y, z = 6, 3, 1 z = 2 Lösung x, y, z = 3, 3, 2 Auf diese Weise erhält man alle Lösungen. Das sind unendlich viele, die alle auf einer Geraden im 3-dimensionalen xyz-raum liegen. 7.2 Überbestimmte Systeme Wir betrachten drei Gleichungen mit zwei Unbekannten: x y = 2 x + y = 4 x + y = 6 Wir bestimmen die Lösung von zwei Gleichungen, z.b. der ersten beiden: Addition der Gleichungen liefert: 2x = 6 x = 3 Einsetzen in die 1. Gleichung liefert: 3 y = 2 y = 1 Einsetzen dieser Lösung für x, y = 3, 1 in die verbleibende dritte Gleichung: Wir stellen fest, dass das System keine Lösung besitzt. 12

13 8 Lösung in Abhängigkeit von Parametern In vielen Anwendungen stehen nicht sofort alle Werte für die Koeffizienten a kl bzw. für die rechte Seite b k fest, da sie z.b. materialabhängige Parameter sind. In diesen Fällen ist es oft sinnvoll, die Lösung in Abhängigkeit eines oder auch mehrerer Parameter darzustellen. Wir wollen dies an einem Beispiel demonstrieren. ax y = 2 x + y = 4 z.b. Auflösen der 1. Gleichung nach y: y = ax 2 dies in die 2. Gleichung einsetzen: x + ax 2 = 4 Auflösen nach x: x = a Einsetzen in die Gleichung für y: y = 6a 1 + a 2 Wir stellen fest, dass wir für jede Wahl des Parameters a 1 die eindeutige Lösung sofort ausrechnen können: z.b. a = 1 Lösung x, y = 3, 1 a = 0 Lösung x, y = 6, 2 Bemerkung zu a = 1: In diesem Fall ist die linke Seite der 2. Gleichung ein Vielfaches der linken Seite der ersten Gleichung Faktor -1. Insbesondere ist die Determinante D = = 1 1 = 0. Es liegt also ein Ausnahmefall vor und es gibt keine Lösung. 13

14 9 Fehlerdiskussion Wir betrachten das konkrete reguläre Gleichungssystem x y = x y = 0 mit der exakten Lösung, z.b. mittels Cramerscher Regel x = , y = Löst man das Gleichungssystem auf einem Computer mit 12 Gleitkommastellen mittels Gleichsetzungsverfahren, erhält man als Lösung bei Auflösung jeweils nach x: x = , y = , bei Auflösung jeweils nach x: x = , y = , Die Ursache der sehr großen Abweichungen vom exakten Resultat liegt in der Stellenauslöschung bei der Differenzbildung in Verbindung mit der Division. Sie tritt besonders dann auf, wenn beide Gleichungen Geraden repräsentieren, die fast parallel sind das ist der Fall wenn die Determinante D sehr klein ist. In solchen Fällen sind Verfahren einzusetzen, die derartige Stellenauslöschungen weitestgehend vermeiden. Im vorliegenden Fall liefert z.b. das Gaußsche Verfahren eine bessere Lösung x = , y = , die aber immer noch mit einem großen Fehler behaftet ist. 14

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

1 Geometrie - Lösungen von linearen Gleichungen

1 Geometrie - Lösungen von linearen Gleichungen Übungsmaterial Geometrie - Lösungen von linearen Gleichungen Lineare Gleichungen sind von der Form y = f(x) = 3x + oder y = g(x) = x + 3. Zwei oder mehr Gleichungen bilden ein Gleichungssystem. Ein Gleichungssystem

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Lineare Gleichungen und lineare Gleichungssysteme mit zwei Variablen. 1.1 Beispiel einer linearen Gleichung mit zwei Variablen 2

Lineare Gleichungen und lineare Gleichungssysteme mit zwei Variablen. 1.1 Beispiel einer linearen Gleichung mit zwei Variablen 2 KBWR, Duisurg Seite von 30 9..006 Lineare Gleichungen und lineare Gleichungssysteme mit zwei Varialen Inhalt: Seite. Beispiel einer linearen Gleichung mit zwei Varialen. Normalform einer linearen Gleichung

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Lineare Gleichungssysteme und Gauß'scher Algorithmus

Lineare Gleichungssysteme und Gauß'scher Algorithmus Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier

Mehr

Lösen von linearen Gleichungssystemen mit zwei Unbekannten:

Lösen von linearen Gleichungssystemen mit zwei Unbekannten: Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte März 2008 Zusammenfassung IB 1. Lagebeziehungen zwischen geometrischen Objekten 1.1 Punkt-Gerade Ein Punkt kann entweder auf einer gegebenen

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Lineare Funktionen. Die generelle Form der Funktion lautet dabei:

Lineare Funktionen. Die generelle Form der Funktion lautet dabei: Lineare Funktionen Das Thema lineare Funktionen begleitet euch in der Regel von der 7. Klasse an und wird stufenweise erlernt. Meist beginnt es mit einfachem Zeichnen oder Ablesen einer linearen Funktion

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1 Didaktik der Algebra 4.1 Didaktik der Algebra Didaktik der Algebra 4.2 Inhalte Didaktik der Algebra 1 Ziele und Inhalte 2 Terme 3 Funktionen 4 Gleichungen Didaktik der Algebra 4.3 Didaktik der Algebra

Mehr

1 Lineare Gleichungssysteme und Matrizen

1 Lineare Gleichungssysteme und Matrizen 1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe

Mehr

Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN

Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Schule Thema Bundesgymnasium für Berufstätige Salzburg Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Unterlagen LehrerInnenteam Sehr oft treten in der Mathematik

Mehr

Erzeugende Funktionen

Erzeugende Funktionen Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen Grundwissensblatt 8. Klasse IV. Lineare Gleichungen mit zwei Variablen. Eigenschaften von linearen Gleichungen mit zwei Variablen Alle linearen Gleichungen der Form a + by = c (oder auch y = m + t) erfüllen:

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

Rabatt und Skonto. Rechnung Computersystem. Bruttopreis Rabatt Nettopreis Skonto Zahlung. 2'950.00 Fr. 2'457.35 Fr.

Rabatt und Skonto. Rechnung Computersystem. Bruttopreis Rabatt Nettopreis Skonto Zahlung. 2'950.00 Fr. 2'457.35 Fr. Ratt und Skonto Rechnung Computersystem Computer P7 '650.00 Fr. Drucker XX 300.00 Fr. Total '950.00 Fr. 15% 44.50 Fr. '507.50 Fr. % 50.15 Fr. '457.35 Fr. Bruttopreis Ratt Nettopreis Skonto Zahlung Worterklärungen

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Lineare Gleichungssysteme mit zwei Unbekannten

Lineare Gleichungssysteme mit zwei Unbekannten Lineare Gleichungssysteme mit zwei Unbekannten Wie beginnen mit einem Beispiel: Gesucht ist die Lösung des folgenden Gleichungssystems: (I) 2x y = 4 (II) x + y = 5 Hier stehen eine Reihe von Verfahren

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen

Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen Geradengleichungen und lineare Funktionen Lese- und Lerntext für Anfänger Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen Geraden schneiden Auch über lineare Gleichungssystem

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

1.5 lineare Gleichungssysteme

1.5 lineare Gleichungssysteme 1.5 lineare Gleichungssysteme Inhaltsverzeichnis 1 Was ist ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten? 2 2 Wie lösen wir ein lineares Gleichungssystem mit zwei Unbekannten?

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie TI voyage 200 Kompaktwissen Lineare Algebra und analytische Geometrie Eine kleine Hilfe für Schüler der DSB Seite 2 TI voyage 200 Kompaktwissen Algebra/Geometrie Diese Anleitung soll helfen, Aufgaben aus

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Das Lösen linearer Gleichungssysteme

Das Lösen linearer Gleichungssysteme Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n

Mehr

Basistext Geraden und Ebenen

Basistext Geraden und Ebenen Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

Aufgabe 1: Malerarbeiten

Aufgabe 1: Malerarbeiten Aufgabe 1: Malerarbeiten Fritz braucht zwei Stunden, um ein Zimmer zu streichen. Susi braucht für das gleiche Zimmer drei Stunden. Wie lange brauchen beide zusammen, um das Zimmer zu streichen? Lösung:

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Mathematik 1, Teil B. Inhalt:

Mathematik 1, Teil B. Inhalt: FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe.

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe. 38 3 Lineare Gleichungsssteme mit zwei Variablen Lineare Gleichungsssteme grafisch lösen Beim Tarif REGENBGEN zahle ich für das Telefonieren mit dem Hand zwar einen Grundpreis. Dafür sind aber die Gesprächseinheiten

Mehr

Übungsaufgaben mit Lösungen zu Lineargleichungssystemen

Übungsaufgaben mit Lösungen zu Lineargleichungssystemen Übungsaufgaben mit Lösungen zu Lineargleichungssystemen Wolfgang Kippels 6. März 2014 Inhaltsverzeichnis 1 Einleitung 3 2 Übungsaufgaben 3 2.1 Aufgabe 1................................... 3 2.2 Aufgabe

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben /3 Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 8 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

1 3Lineares Gleichungssystem Aufgaben und L 0 2sungen

1 3Lineares Gleichungssystem Aufgaben und L 0 2sungen Lineares Gleichungssystem Aufgaben und L 0 sungen http://www.fersch.de 0 8Klemens Fersch 5. April 0 Inhaltsverzeichnis Einsetzverfahren (). Interaktiv.......................................................

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr