Kleiner Satz von Fermat

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kleiner Satz von Fermat"

Transkript

1 Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt (a+1) p a p + 1 p a+1 mo p. Damit gilt er Satz für alle a N 0. Für a < 0 gilt ( a) p a mo p mit a > 0. Für p = 2 ist a a+2a = a mo p. Daraus folgt ie Aussage. Für ungeraes p folgt a ( a) p = ( 1) p a p = a p mo p. Multiplikation mit ( 1) liefert ie gewünschte Ientität. Zahlentheorie - V06 Kleiner Satz von Fermat, lineare Gleichungen, Chinesischer Restsatz 49 / 231

2 Kleiner Satz von Fermat Korollar Kleiner Satz von Fermat (Variante) Sei p P. Dann gilt a p 1 1 mo p für alle a Z mit p a. Wir wissen p a p a bzw. p a(a p 1). Da p prim un p a folgt p a p 1 un amit a p 1 1 mo p. Anwenung: Bei Rechnung moulo p reuziere Exponenten moulo p 1. Moulo p = 5 gilt z.b = = 2 3 (2 4 ) = mo 5. Zahlentheorie - V06 Kleiner Satz von Fermat, lineare Gleichungen, Chinesischer Restsatz 50 / 231

3 Teiler un Vielfache Lemma über Teiler un Vielfache Für a, b Z un n, m N gilt: 1 Falls a b mo n un m n, ann ist a b mo m. 2 Es gilt a b mo n gw ma mb mo mn. (1) Aus n a b un m n folgt m a b. (2) : Aus n a b folgt mn m(a b). : Aus nm m(a b) folgt nmc = m(a b) un amit nc = a b. Zahlentheorie - V06 Kleiner Satz von Fermat, lineare Gleichungen, Chinesischer Restsatz 51 / 231

4 Lösbarkeit linearer Gleichungen Satz Lösbarkeit linearer Gleichungen Seien a, b Z un n N mit ax b mo n. Sei = ggt(a, n). 1 Falls eine Lösung x Z existiert, so gilt b. 2 Sei b. Seien y, z Z mit ya+zn = ggt(a, n) =. Ein x Z ist Lösung gw x y b mo n. (1) Sei x eine Lösung mit ax b mo n. Dann gilt ax = b+kn bzw. b = ax kn. = ggt(a, n) teilt beie Summanen rechts. Damit gilt b. (2) : Sei x y b mo n. Dann gilt ax ay b b ( zn) b zn b Damit folgt ax b mo n,.h. x ist eine Lösung. mo a n Zahlentheorie - V06 Kleiner Satz von Fermat, lineare Gleichungen, Chinesischer Restsatz 52 / 231

5 Lösbarkeit linearer Gleichungen (Fortsetzung) : Sei x eine Lösung mit ax b mo n. Dann gilt yax ( nz)x x yb mo n. Aus er letzten Kongruenz folgt x y b mo n. Anmerkung: Für ggt(a, n) = 1 existiert immer eine Lösung x yb mo n. Bsp: Berechne ie Lösungsmenge von 4x 2 mo 6. Der Erw. Eukliische Algorithmus liefert ggt(4, 6) = = 2. Damit gilt x mo 3. D.h. ie Lösungsmenge ist 2+3Z. Zahlentheorie - V06 Kleiner Satz von Fermat, lineare Gleichungen, Chinesischer Restsatz 53 / 231

6 Lösung von simultanen Kongruenzen Ziel: Bestimme alle Lösungen es Kongruenzensystems cx a mo n x b mo m Falls c 1 löse nach x auf (voriger Satz), ersetze n urch D.h. wir können oba annehmen, ass c = = 1. Satz Chinesischer Restsatz (CRT, Version 1) n ggt(c,n). Seien a, b Z un n, m N. Sei = ggt(n, m) = yn+zm, y, z Z. 1 Falls as System x a mo n x b mo m lösbar ist, gilt a b mo. 2 Sei a b mo. Ein x Z ist eine Lösung gw x a yn a b mo nm. Beachte: Für teilerfreme n, m ist as System immer lösbar. Zahlentheorie - V06 Kleiner Satz von Fermat, lineare Gleichungen, Chinesischer Restsatz 54 / 231

7 Chinesischer Restsatz (1) Sei x eine Lösung mit x a mo n un x b mo m. Da n un m folgt x a mo x b mo. Damit gilt a b mo. (2) : Sei x a yn a b mo nm. Wegen n un m können wir x moulo n un m betrachten. Moulo n gilt x a yn a b a mo n un moulo m gilt x a yn a b a ( zm) a b a (a b)+zm a b b mo m. Damit ist x eine Lösung es simultanen Kongruenzensystems. : Seien x, x Lösungen. Wir zeigen, ass ann x x mo nm. Wegen x a x mo n un x b x mo m folgt n x x un m x x. D.h. x x ist gemeinsames Vielfaches von n un m. kgv(n, m) ist kleinstes gemeinsames Vielfaches von n un m,.h. kgv(n, m) x x. Wegen kgv(n, m) = nm ggt(n,m) = nm folgt x x mo nm. Zahlentheorie - V06 Kleiner Satz von Fermat, lineare Gleichungen, Chinesischer Restsatz 55 / 231

8 Chinesischer Restsatz Bsp: Löse as folgene System simultaner Kongruenzen x 3 mo 6 x 7 mo 10. Es gilt = ggt(6, 10) = = 2. Lösung existiert wegen 3 7 mo 2 un besitzt ie Form x ( 6) 27 mo 30. D.h. alle Lösungen sin von er Gestalt Z. Zahlentheorie - V06 Kleiner Satz von Fermat, lineare Gleichungen, Chinesischer Restsatz 56 / 231

9 Chinesischer Restsatz für mehr Gleichungen Satz Chinesischer Restsatz Die Lösungsmenge es Systems von simultanen Kongruenzen a i x b i mo n i für i = 1,...,n kann inuktiv berechnet weren. Löse zunächst alle linearen Gleichungen nach x auf. Dies liefert x c i mo n i für c i Z, n i N. Löse mittels Chinesischem Restsatz ie Kongruenzen x c 1 mo n 1 x c 2 mo n 2. Die Lösungen kombinieren wir mit x c 3 mo n 3, usw. D.h. wir fassen jeweils zwei Kongruenzen zusammen, bis nur noch eine Kongruenz verbleibt. Übung: Geben Sie eine explizite Formel für x falls n = 3. Zahlentheorie - V06 Kleiner Satz von Fermat, lineare Gleichungen, Chinesischer Restsatz 57 / 231

Binomische Formel mod p

Binomische Formel mod p Binomische Formel mo p Lemma Binomische Formel mo p Seien a, b Z un p P. Dann gilt (a+b) p a p + b p mo p. Nach Binomischer Formel gilt (a+b) p = p p ) i=0( i a i b p i = a p + b p + p 1( p ) i=1 i a i

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

Bsp. Euklidischer Algorithmus

Bsp. Euklidischer Algorithmus Bsp. Euklidischer Algorithmus Bsp: Berechne ggt(93, 42) mittels EUKLID. 93 2 42 = 9 42 4 9 = 6 9 1 6 = 3 6 2 3 = 0 D.h. ggt(93, 42) = 3. Durch Rücksubstitution erhalten wir die Bézout-Koeffizienten x,

Mehr

Kongruenz ist Äquivalenzrelation

Kongruenz ist Äquivalenzrelation Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b

Mehr

Primzahltest für Mersenne-Primzahlen

Primzahltest für Mersenne-Primzahlen Primzahltest für Mersenne-Primzahlen Satz Lucas-Lehmer Test Sei n = 2 p 1 N für p P\{2}. Wir definieren die Folge S k durch S 1 = 4 und S k = S 2 k 1 2. Falls n S p 1, dann ist n prim. Beweis: Seien ω

Mehr

Erweiterter Euklidischer Algorithmus

Erweiterter Euklidischer Algorithmus Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

WIEDERHOLUNG (BIS ZU BLATT 7)

WIEDERHOLUNG (BIS ZU BLATT 7) Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber

Mehr

Zahlentheorie, Arithmetik und Algebra

Zahlentheorie, Arithmetik und Algebra Zahlentheorie, Arithmetik und Algebra Seminar Hallo Welt für Fortgeschrittene 2008 Matthias Niessner June 20, 2008 Erlangen 1 von 29 Matthias Niessner Zahlentheorie, Arithmetik und Algebra Übersicht 1

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

15 Grundlagen der Idealtheorie

15 Grundlagen der Idealtheorie 15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946 Pro Dr-Ing hena Krawietz Beispiel ür ie Berechnung es Wärmeurchgangskoeizienten eines zusammengetzten Bauteiles nach DIN EN ISO 6946 DIN EN ISO 6946: Bauteile - Wärmeurchlasswierstan un Wärmeurchgangskoeizient

Mehr

Lösungen zu Kapitel 6

Lösungen zu Kapitel 6 Lösungen zu Kapitel 6 Lösung zu Aufgabe : Es ist T (a) = {b b 0, b a}. Wir erhalten Es folgt un amit T (54) = {, 2, 3, 6, 9, 8, 27, 54}, T (72) = {, 2, 3, 4, 6, 8, 9, 2, 8,.24, 36, 72}. T (54) T (72) =

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

7. Teile, und beherrsche den Rest

7. Teile, und beherrsche den Rest 7. Teile, un beherrsche en Rest 7.1. Division mit Rest Nicht alle natürlichen Zahlen sin urch 3 teilbar: Es lässt 17 en Rest 2 [17 = 5 3+2] 18 geht auf 1 lässt Rest 1 20 lässt Rest 2 21 geht auf 22 lässt

Mehr

Q(n) = n 0 +n 1 +n 2 +...+n k.

Q(n) = n 0 +n 1 +n 2 +...+n k. 25 2 Kongruenzen Mit Hilfe der hier definierten Kongruenz können Aussagen über Teilbarkeit einfacher formuliert und bewiesen werden, und man erhält eine Differenzierung der Zahlen, die bezüglich einer

Mehr

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen 621.242 Vorlesung mit Übung im WS 2015/16 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null) Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax:

Mehr

3. Der größte gemeinsame Teiler

3. Der größte gemeinsame Teiler Chr.Nelius: Zahlentheorie (SoSe 2016) 18 3. Der größte gemeinsame Teiler (3.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln...

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln... Kongruenzrechnung Inhaltsverzeichnis 1 Einführung und Definitionen 2 1.1 Einige Beispiele aus dem Alltag..................... 2 1.2 Kongruenzrechnung im Alltag und Rechenproben........... 3 1.3 Kongruenzen

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv ChrNelius: Zahlentheorie (WS 2006/07) 8 3 ggt und kgv Wir erinnern uns hoffentlich an die folgenden Definitionen des ggt s und des kgv s zweier ganzer Zahlen (31) DEF: Eine ganze Zahl g heißt größter gemeinsamer

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe 7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe und Homomorfismen Wir verallgemeinern den Übergang von Z zu Z/m. Sei im folgenden G eine (additiv geschriebene) abelsche Gruppe, H eine Untergruppe.

Mehr

5. Der größte gemeinsame Teiler

5. Der größte gemeinsame Teiler Chr.Nelius: Zahlentheorie (SoSe 2017) 22 5. Der größte gemeinsame Teiler (5.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

Form der Äquivalenzklassen

Form der Äquivalenzklassen Form der Äquivalenzklassen Anmerkung: Es gilt a = a ± m = a ± 2m =... = a + km mod m für alle k Z. Wir schreiben auch {x Z x = a + mk, k Z} = a + mz. Es gibt m verschiedene Äquivalenzklassen modulo m:

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein.

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Klausur zur Vorlesung Zahlentheorie 21. Juli 2010 12 Uhr 15 14 Uhr 00 Ruhr-Universität Bochum PD. Dr. Claus Mokler Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Name,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester vom 21. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester vom 21. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester 2005-06 vom 21. Januar 2006 1. Sei (N, v) Peano-Menge

Mehr

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren:

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrüc SS 2015 Elemente der Algebra Vorlesung 16 Der Chinesische Restsatz für Z Satz 16.1. Sei n eine positive natürliche Zahl mit anonischer Primfatorzerlegung 1 p r 2 2 p r (die

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Liften von Lösungen modulo 2

Liften von Lösungen modulo 2 Liften von Lösungen modulo 2 Übung: An welcher Stelle im vorigen Beweis benötigen wir p 2? Geben Sie ein Gegenbeispiel für voriges Lemma für p = 2, r = 3. Modifizieren Sie den Beweis, um das folgende Lemma

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrüc SS 2009 Einführung in die Algebra Vorlesung 15 Der Hauptsatz der elementaren Zahlentheorie Wir beweisen nun, dass sich jede natürliche Zahl in eindeutiger Weise als Produt

Mehr

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust! Chr.Nelius: Zahlentheorie (SoSe 2016) 1 14. Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor

Mehr

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null) Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen ohne die Null) 1.1 Teilbareit

Mehr

Lösungen zur Vorrundenprüfung 2006

Lösungen zur Vorrundenprüfung 2006 Lösungen zur Vorrundenprüfung 2006 Zuerst einige Bemerkungen zum Punkteschema. Eine vollständige und korrekte Lösung einer Aufgabe ist jeweils 7 Punkte wert. Für komplette Lösungen mit kleineren Fehlern

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests Probabilistische Primzahltests Daniel Tanke 11. Dezember 2007 In dieser Arbeit wird ein Verfahren vorgestellt, mit welchem man relativ schnell testen kann, ob eine ganze Zahl eine Primzahl ist. Für einen

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Der chinesische Restsatz mit Anwendung

Der chinesische Restsatz mit Anwendung Der chinesische Restsatz mit Anwendung Nike Garath n.garath@gmx.de Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 5 kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 6 kgv-berechnung

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2.

Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2. Schweizer Mathematik-Olympiade smo osm Zahlentheorie I Thomas Huber Aktualisiert: 1. August 2016 vers. 1.0.0 Inhaltsverzeichnis 1 Teilbarkeit 2 2 ggt und kgv 3 3 Abschätzungen 6 1 Teilbarkeit Im Folgenden

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.01.2014 Alexander Lytchak 1 / 9 Erinnerung: Zwei ganz wichtige Gruppen Für jede Gruppe (G, ) und jedes Element g

Mehr

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

Elementare Zahlentheorie II

Elementare Zahlentheorie II Schülerzirel Mathemati Faultät für Mathemati. Universität Regensburg Elementare Zahlentheorie II Der Satz von Euler-Fermat und die RSA-Verschlüsselung Die Mathemati ist die Königin der Wissenschaften,

Mehr

1. Modulare Arithmetik

1. Modulare Arithmetik 1. Modulare Arithmetik Dreizehn Jahre lang hatten die Briten und Franzosen geglaubt, die Enigma- Verschlüsselung sei nicht zu knacken, doch nun schöpften sie Hoffnung. Die polnischen Erfolge hatten bewiesen,

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

15 Differentialrechnung in R n

15 Differentialrechnung in R n 36 15 Differentialrechnung in R n 15.1 Lineare Abbilungen Eine Abbilung A : R n R m heißt linear falls A(αx + βy) = αa(x) + βa(y) für alle x, y R n un alle α, β R. Man schreibt oft Ax statt A(x) un spricht

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Diskrete Strukturen. Wilfried Buchholz. Skriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München

Diskrete Strukturen. Wilfried Buchholz. Skriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München Disrete Struturen Wilfried Buchholz Sriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München 1 Vollständige Indution Wir setzen hier das System Z = {..., 2,

Mehr