V301. Regelung von Wirk- und Blindleistung in elektrischen Netzen

Größe: px
Ab Seite anzeigen:

Download "V301. Regelung von Wirk- und Blindleistung in elektrischen Netzen"

Transkript

1 Fakultät für Elektrotechnik und Informationstechnik Institut für Energiesysteme, Energieeffizienz und Energiewirtschaft V301 Regelung von Wirk- und Blindleistung in elektrischen Netzen letzte Überarbeitung: Das Verhalten einer Synchronmaschine im Netzparallelbetrieb wird mithilfe eines Maschinenprüfstands, der Antriebs- und Bremseinheit sowie Erreger- und Synchronisiereinrichtung beinhaltet, untersucht. Neben dem stationären Verhalten im Vierquadrantenbetrieb wird auch das dynamische Verhalten beim Zuschalten und an der Stabilitätsgrenze beleuchtet. Dadurch wird das für die elektrische Energieerzeugung wichtigste Betriebsmittel und sein Zusammenwirken mit dem Netz veranschaulicht. Der Aspekt Modellierung und theoretische Analyse wird mit praktischer Betriebsführung und Messung verknüpft. Die Anleitung ist von jedem Teilnehmer vor Versuchsbeginn gewissenhaft durchzuarbeiten. Insbesondere sind die Aufgaben in Kapitel 6 im Vorfeld zu lösen. Das erfolgreiche Bestehen des Versuchs erfordert ein testiertes Protokoll, das innerhalb von 2 Wochen nach der Teilnahme am Versuch einzureichen ist. Beachten Sie bei der Anfertigung die Richtlinien in Anhang C und nehmen Sie die Vorlage in Anhang D als Grundlage für die Ausarbeitung. Versuchsauswertungen, die nicht die Struktur der Vorlage aufweisen, werden nicht akzeptiert.

2 V301 Regelung von Wirk- und Blindleistung Seite 2 1 Einleitung Konventionen bei Zählpfeilsystemen Wesentliche Größen der Dreiphasensysteme Spannungssymmetrische Dreiphasensysteme Leistungen und Verbraucher des Drehstromsystems Einphasige Ersatzdarstellung symmetrischer Dreiphasensysteme Leistungsmessung in symmetrischen Drehstromsystemen Betriebsverhalten der Synchronmaschine Aufbau der Synchronmaschine Ersatzschaltbild und Leistungsgleichungen des Synchrongenerators Statische Stabilität des Synchrongenerators am starren Netz Betriebsdiagramm der Synchronmaschine Versuchsaufbau Aufgabenstellung (theoretischer Teil) Aufgabenstellung (messtechnischer Teil) Inbetriebnahme des Maschinenprüfstands Aufnahme der Erreger-Leerlaufkennlinie Betriebsdiagramm der Synchronmaschine Dynamische Vorgänge beim Zuschalten der Synchronmaschine Betriebsarten der Synchronmaschine Bestimmung der Kippleistung im Generatorbetrieb Anhang A Lösungsblätter Anhang B Kenndaten der Synchronmaschine Anhang C Richtlinien für die schriftliche Ausarbeitung Anhang D Inhalte der schriftlichen Ausarbeitung... 32

3 V301 Regelung von Wirk- und Blindleistung Seite 3 1 Einleitung Der weitaus größte Teil der elektrischen Energie wird heute dreiphasig zum Verbraucher geleitet. Hierzu werden symmetrische Dreiphasensysteme verwendet. Gegenüber dem einfachen Wechselstromsystem besitzen Sie folgende Vorzüge: Einfache Möglichkeit zur Drehfelderzeugung (deshalb auch Drehstromsysteme genannt). Beim vollständigen System (Null-Leiter vorhanden) hat man die Wahl zwischen zwei Spannungen verschiedener Größe. Bei symmetrischer Belastung ist der Augenblickswert der Leistung konstant. Der Bedarf an Leitermaterial und die Übertragungsverluste sind in Bezug auf die übertragene Leistung geringer. Die Frequenz beträgt allgemein 50 Hz. Die USA und ein Teil Japans verwenden 60 Hz. Zur Betrachtung der prinzipiellen Eigenschaften von Dreiphasensystemen spielt aber die Frequenz keine Rolle.

4 V301 Regelung von Wirk- und Blindleistung Seite 4 2 Konventionen bei Zählpfeilsystemen Bei der Ersatzdarstellung elektrischer Netzwerke unterscheidet man im Prinzip zwei Zählpfeildarstellungen: das Erzeugerzählpfeilsystem (EZS) und das Verbraucherzählpfeilsystem (VZS) Der Unterschied zwischen beiden besteht in der Richtungsdefinition von Strom- und Spannungspfeil. Das EZS definiert die Wirkleistungsabgabe positiv, d.h. Strom- und Spannungspfeil sind an Quellen und Senken gleichgerichtet. Dadurch wird erzeugte Leistung, sei es Wirk- oder Blindleistung, positiv gezählt. Das VZS definiert die Wirkleistungsaufnahme positiv, d.h. Strom- und Spannungspfeil sind an Quellen und Senken entgegen gerichtet. Dadurch werden sowohl aufgenommene Wirkleistung als auch induktive (=aufgenommene) Blindleistung positiv gezählt. Abbildung 1: Zählpfeilsysteme im Vergleich Es ist unerheblich nach welchem System die Zählpfeile angeordnet werden, da auch die Kombination beider Systeme in einem Netzwerk möglich ist. Zu beachten ist lediglich, dass bei der Definition der Vorzeichen des Leistungsflusses die Strom- und Spannungszählpfeile des entsprechenden Elementes herangezogen werden müssen, da bei Kombination beider Systeme z.b. die Wirkleistungsabgabe nicht an allen Elementen das gleiche Vorzeichen aufweist!

5 V301 Regelung von Wirk- und Blindleistung Seite 5 3 Wesentliche Größen der Dreiphasensysteme 3.1 Spannungssymmetrische Dreiphasensysteme Spannungssymmetrische Dreiphasensysteme (Drehstromsysteme) sind dadurch charakterisiert, dass zum einen die Phasenverschiebung zwischen den einzelnen Phasen 120 beträgt und zum anderen die Spannungsbeträge aller Phasen gleich groß sind. Derartige Spannungssysteme können daher in folgender komplexer Schreibweise dargestellt werden: j 0 Phase L1: U 1 U e (1) j120 Phase L2 : U 2 U e (2) Phase L : o j U 3 U e (3) Die Größe U ist der Spannungsbetrag der einzelnen Phase gegen Erdpotential, die sogenannte Leiter-Erdspannung, die natürlich in symmetrischen Drehstromsystemen für alle Phasen gleich groß ist. Weiterhin kann in einem Drehstromsystem aber auch die Spannung zwischen zwei Phasen, die sogenannte verkettete Spannung oder Dreieckspannung abgegriffen werden. Für diese Spannung gilt ersichtlich: U 0 0 j 0 j U 1 U 2 U e U e 3 U e 0 j30 (4) U j 240 j 0 j U 3 U 1 U e U e 3U e (5) U j120 j 240 j90 23 U 2 U 3 U e U e 3 U e (6) Die verkettete Spannung des symmetrischen Drehstromsystems ist also um den Faktor 3 größer als die Leiter-Erdspannung. Die Phasenverschiebung zwischen den einzelnen Phasenspannungen beträgt 120, während die beiden Drehstromsysteme um 30 gegeneinander verschoben sind. Die Lage aller Spannungszeiger in der komplexen Ebene zeigt Abbildung 2.

6 V301 Regelung von Wirk- und Blindleistung Seite 6 In der elektrischen Energieversorgung kommen, abgesehen von einigen Sonderformen wie Hochspannungsgleichstromübertragung (HGÜ), praktisch nur spannungssymmetrische Drehstromsysteme für die Energieübertragung zum Einsatz. Im Rahmen dieses Versuchs wird ebenfalls ein dreiphasiges symmetrisches Spannungssystem vorausgesetzt. U 31 U 3 U 12 L 1 U U 1 U 3 U U 2 U 12 L 3 U 23 L 2 U 2 Abbildung 2: Spannungszeiger im Drehstromsystem U Leistungen und Verbraucher des Drehstromsystems Verbraucher können im Drehstromsystem grundsätzlich auf zwei unterschiedliche Arten angeschlossen werden, nämlich in Sternschaltung resp. Dreieckschaltung. Beide Anschlussformen sind für einen Verbraucher in Abbildung 3 dargestellt. Für einen symmetrischen Verbraucher ergeben sich keine nennenswerten Unterschiede in beiden Anschlussarten, es kann von außen nicht einmal festgestellt werden, ob der Verbraucher im Stern oder Dreieck geschaltet ist. Die Summe aller drei Phasenströme ist in diesem Falle Null, weshalb der Neutralleiter der Sternschaltung stromlos bleibt und entfallen kann (Hochspannungsnetze werden in guter Näherung symmetrisch betrieben, so dass kein vierter Leiter benötigt wird).

7 V301 Regelung von Wirk- und Blindleistung Seite 7 Verbraucher in Sternschaltung Für einen Verbraucher in Sternschaltung nach Abbildung 3 a) gilt mit der Verbraucherimpedanz Z und dem Lastwinkel L: U i Phasenstrom : I i ; i 1, Z 2, 3 (7) 1 Scheinleistung : S U I 1 U 2 I 2 U 3 I 3 3U I e j L (8) Wirkleistung: P Re{ S } 3U I cos (9) L Blindleistung : Q Im{ S } 3U I sin (10) L Verbraucher in Dreieckschaltung Für einen Verbraucher in Dreieckschaltung nach Abbildung 3 b) gilt mit der Verbraucherimpedanz Z und dem Lastwinkel L: Aufgrund des symmetrischen Verbrauchers sind die Ströme in den Verbraucherzweigen (I12, I23, I31) gleich groß, der Betrag dieser Dreieckströme sei I. Aus der Beziehung: I 1 I 12 I 31 (11) ergibt sich dann, dass der Dreieckstrom I um 3 kleiner als der Phasenstrom I ist. Mit diesen Überlegungen lassen sich die Leistungen des Verbrauchers errechnen zu: Scheinleis tung : S U 12 I 12 U 23 I 23 j L 3 U I e 3 U U 31 I I e 31 j L (12) Wirkleistung : P 3 U I cos 3U I cos (13) L L Blindleistung : Q 3 U I sin 3U I sin (14) L L

8 V301 Regelung von Wirk- und Blindleistung Seite 8 Für symmetrischen Betrieb gilt demnach ganz allgemein: Die Leistungsbestimmung aus den Phasengrößen ist unabhängig von der Schaltungsart der Verbraucher. An den Verbraucherelementen liegt bei Dreieckschaltung die um 3 größere verkettete Spannung an. Dagegen ist der Strom durch die Verbraucherelemente um 3 kleiner als bei entsprechender Sternschaltung gleicher Leistung. I 1 L1 L1 I 2 L 2 I 3 L 3 Z Z Z L 2 L 3 I 1 I 3 I 2 Z Z Z N I 0 a) Sternschaltung b) Dreieckschaltung Abbildung 3: Anschlussarten eines Verbrauchers im Dreiphasensystem 3.3 Einphasige Ersatzdarstellung symmetrischer Dreiphasensysteme Bei symmetrischem Betrieb eines Dreiphasensystems genügen die Größen einer Phase zur vollständigen Beschreibung des Systemzustandes. Dementsprechend kann ein symmetrisches Drehstromsystem durch eine einphasige Ersatzschaltung dargestellt werden. Diese Ersatzschaltung wird beschrieben durch die Leiter- Erdspannung U, den Phasenstrom I sowie die Impedanzen einer Phase gegen Erde. Die verkettete Spannung tritt in der einphasigen Ersatzdarstellung natürlich nicht mehr auf und in Dreieckschaltung angeschlossene Verbraucher sind in eine äquivalente Sternschaltung (mittels Dreieck-Stern-Umwandlung) umzurechnen. Zu beachten ist außerdem, dass die Leistung der einphasigen Ersatzschaltung nur 1/3 der dreiphasigen Leistung beträgt, so dass Leistungsangaben entsprechend umgerechnet werden müssen!

9 V301 Regelung von Wirk- und Blindleistung Seite Leistungsmessung in symmetrischen Drehstromsystemen Wirkleistungsmessung Es genügt, die Leistung einer Phase zu messen, da das Netz symmetrisch betrieben wird. Besitzt das System einen Null-Leiter, so erfolgt die Messung wie in Abbildung 4 a gezeigt. In diesem Fall ergibt sich die gemessene Wirkleistung des Verbrauchers zu: P mes U Iw mit : Iw Wirkstromder gemessenenphase (15) und damit die dreiphasige Wirkleistung zu: P ges 3 P 3U I (16) mes w Besitzt das System keinen Null-Leiter, gestaltet sich die Messung schwieriger. Entweder kann über einen sogenannten Sternpunktbildner (das ist ein sehr hochohmiger Verbraucher in Sternschaltung) ein künstlicher Sternpunkt geschaffen werden, gegen den wiederum die Leiter-Erdspannung abgegriffen werden kann, oder es wird eine Messung nach Abbildung 4 b (sogenannte Aron-Schaltung ) mit zwei Wattmetern durchgeführt. Hier ergibt sich ersichtlich: 0 1mes Re{ U 31 I 1 } U I cos ( 210 L P ) (17) P 0 2mes Re { U 23 I 2 } U I cos ( 30 L ) (18) Dabei sei L der Phasenwinkel der Verbraucherimpedanz. Die dreiphasige Leistung des Verbrauchers bestimmt sich damit dann zu: P ges P U I (19) 2mes P1 mes 3U I cos L 3 w

10 V301 Regelung von Wirk- und Blindleistung Seite 10 Zu beachten ist, dass diese Schaltung auch bei unsymmetrischen Verbrauchern angewendet werden kann, sofern kein Null-Leiter vorhanden ist. L 1 P mes L 1 P 1mes L 2 L 3 Sym. Last L 2 L 3 P 2mes Sym. Last N a) Messung mit Null-Leiter b) Messung ohne Null-Leiter Abbildung 4: Wirkleistungsmessung bei einem symm. Drehstromverbraucher L 1 Q mes L 2 L 3 Sym. Last N Abbildung 5: Blindleistungsmessung bei einem symm. Drehstromverbraucher Blindleistungsmessung Für die Messung der Blindleistung ist es unerheblich, ob der Null-Leiter vorhanden ist oder nicht. Es wird hier die Tatsache ausgenutzt, dass jeweils eine verkettete Spannung um 90 phasenverschoben zu einer Phasenspannung ist (Abbildung 2), so dass bei der Schaltung des Wattmeters nach Abbildung 5 gerade die Blindleistung in Phase 1 gemessen wird. Es ergibt sich:

11 V301 Regelung von Wirk- und Blindleistung Seite 11 Re { U 0 23 I 1 } U I cos ( L 90 ) 3 U I sin L ˆ Q (20) mes und damit die dreiphasige Blindleistung: Q ges 3 Q 3U I sin (21) mes L

12 V301 Regelung von Wirk- und Blindleistung Seite 12 4 Betriebsverhalten der Synchronmaschine 4.1 Aufbau der Synchronmaschine Synchronmaschinen sind elektromechanische Energiewandler, die sowohl im Motorals auch im Generatorbetrieb eingesetzt werden können. Das Betriebsverhalten im Motor- und Generatorbetrieb unterscheidet sich abgesehen von der Wirkleistungsflussrichtung nicht, so dass hier nur der praktisch bedeutsamere Generatorbetrieb beschrieben ist. Wesentliches Merkmal der Synchronmaschine ist die belastungsunabhängige Drehzahl im stationären Betrieb, was bedeutet, dass Stator- und Rotordrehfeld synchron laufen. Die Drehzahl n ist dabei mit der Polpaarzahl p der Maschine und Netzfrequenz f gegeben zu: n f p (22) Man unterscheidet zum einen zwei- und vierpolige Maschinen, sogenannte Turbogeneratoren, deren Erregerwicklung praktisch über den gesamten Rotorumfang verteilt ist, so dass der Rotor einen nahezu homogenen Zylinder bildet. Derartige Maschinen sind mit einer Drehzahl von U/min resp U/min (bezogen auf 50 Hz) geeignet als Generatoren für Dampf- und Gasturbinen. Zum anderen sind die hochpoligen Maschinen zu erwähnen (z.b. 16-, 24-, 48-polige Maschinen), sogenannte Schenkelpolmaschinen, deren Erregerwicklung in ausgeprägten Polen untergebracht ist, so dass hier der Rotor keinen homogenen Zylinder bildet. Derartige langsam laufende Maschinen werden vorwiegend als Wasserkraftgeneratoren eingesetzt. Aufgrund des inhomogenen Rotorzylinders der Schenkelpolmaschinen ist die mathematische Behandlung dieses Maschinentyps ungleich schwieriger, so dass im Rahmen dieses Versuchs nur die einfacher zu behandelnden Turbogeneratoren berücksichtigt werden. 4.2 Ersatzschaltbild und Leistungsgleichungen des Synchrongenerators Der symmetrisch betriebene Synchrongenerator kann in einem einphasigen Ersatzschaltbild als eine komplexe Spannungsquelle E mit dem Innenwiderstand R + jx dargestellt werden. Der ohmsche Anteil R des Innenwiderstandes kann dabei für die meisten stationären Rechnungen vernachlässigt werden, so dass sich das in Abbildung 6 gezeigte Ersatzschaltbild ergibt.

13 V301 Regelung von Wirk- und Blindleistung Seite 13 jx I G E U G Abbildung 6: Ersatzschaltbild des symm. betriebenen Synchrongenerators Die Spannungsquelle E, auch Polradspannung genannt, entsteht durch Induktion des Rotorfeldes im Stator. Bezieht man nun die Spannungsgleichungen der Maschine auf die Klemmenspannung UG des Generators, so erhält man unter Berücksichtigung des Polradwinkels (Phasenwinkel zwischen E und UG) sowie des Lastwinkels (Phasenwinkel zwischen UG und IG) die Beziehung: E e U j X I e (23) j j G G Daraus ergeben sich die Leistungsgleichungen: P G 3U G E X G sin (24) 2 3U G EG 3U G QG cos (25) X X Die Polradspannung E ist dabei abhängig vom Erregerstrom ir, während der Polradwinkel durch das mechanische Moment der Antriebsmaschine beeinflusst werden kann. Für einen beliebigen Arbeitspunkt im Generatorbetrieb zeigt Abbildung 7 das Zeigerdiagramm der Maschine zu dem Ersatzschaltbild nach Abbildung 6.

14 V301 Regelung von Wirk- und Blindleistung Seite 14 E jx I G U G I G Abbildung 7: Zeigerdiagramm (übererregter Synchrongenerator) 4.3 Statische Stabilität des Synchrongenerators am starren Netz Die Leistungsgleichungen für Turbogeneratoren (Vollpolläufer): Q G P G P P sin K K 3U cos X 2 G mit P K 3UG E X (26) Dabei ist PK die maximal abgebbare Wirkleistung des Generators, die auch Kippleistung genannt wird. Da der Polradwinkel durch das mechanische Antriebsmoment beeinflusst wird, kann die Wirkleistungsabgabe der Maschine in Abhängigkeit von der Antriebsleistung als Funktion von dargestellt werden. Dies ist ersichtlich für den Turbogenerator eine sin-funktion, wobei für 0 die Wirkleistungsabgabe negativ wird. Das entspricht demnach einer Wirkleistungsaufnahme, so dass die Maschine als Motor betrieben wird. Das Leistungsverhalten ist aber im Motor- und Generatorbetrieb wie anfangs bereits erwähnt identisch. Abbildung 8 zeigt die Wirkleistungsabgabe der Synchronmaschine als Funktion des Polradwinkels.

15 V301 Regelung von Wirk- und Blindleistung Seite 15 P Motorbetrieb P K instabil 2 P mech stabil A stabil 2 B instabil Generatorbetrieb P K Abbildung 8: Wirkleistungskennlinie für einen Vollpolläufer Im stationären Betriebszustand sind mechanische und elektrische Leistung im Gleichgewicht. Es ergeben sich zwei potentielle Arbeitspunkte (Punkt A und B, Abbildung 8). Für den Arbeitspunkt A gilt: Wird durch eine externe Störung (z.b. Laständerung) größer, steigt die elektrische Wirkleistung PG, so dass die Maschine gebremst wird und wieder in den Arbeitspunkt A läuft. Dies gilt sinngemäß für eine Verkleinerung von. Für den Arbeitspunkt B gilt: Bei Zunahme von durch eine externe Störung nimmt die elektrische Leistung ab, so dass die Maschine beschleunigt wird und aus dem Arbeitspunkt B herausläuft. Die Maschine wird instabil und fällt außer Tritt, d.h. Rotor und Statordrehfeld laufen nicht mehr synchron. Gleiche Betrachtungen gelten für den Motorbetrieb. Damit ist die Synchronmaschine am starren Netz statisch stabil für / 2 / 2 Bei Schenkelpolmaschinen ist die Betrachtung der statischen Stabilität nicht so einfach durchführbar. Genauere Angaben dazu finden sich in der im Anhang aufgeführten Literatur. (27)

16 V301 Regelung von Wirk- und Blindleistung Seite 16 Bei konstanter Antriebsleistung ( = konst.) und starrer Netzspannung (UG = konst.) hängt die Blindleistung nur vom Erregerstrom ir ab. Durch entsprechende Wahl des Erregerstromes kann die Blindleistung QG daher negativ, null oder positiv werden. D.h. durch Steuerung des Erregerstromes kann die Maschine Blindleistung abgeben oder aufnehmen, was bei der Spannungsregelung im elektrischen Netz aber auch im Phasenschieberbetrieb älterer Kompensationsanlagen ausgenutzt wird. In diesem Zusammenhang sind zwei Begriffe definiert, die unabhängig vom Wirkleistungsarbeitspunkt die Blindleistungsverhältnisse der Maschine beschreiben: übererregter Betrieb QG 0; die Maschine gibt Blindleistung an das Netz ab. Sie wirkt für das Netz wie eine Kapazität. untererregter Betrieb QG 0; die Maschine nimmt Blindleistung aus dem Netz auf. Sie wirkt für das Netz wie eine Induktivität.

17 V301 Regelung von Wirk- und Blindleistung Seite Betriebsdiagramm der Synchronmaschine Die Belastbarkeit einer Synchronmaschine wird durch ihre Baugröße und die Konstruktion der Maschine bestimmt (Kühlung der Rotor- und Statorwicklung, Eisensättigung, Auslegung der Erregung etc.). Daher sind vorgegebene technische Grenzwerte zuverlässig einzuhalten. Die Forderung, dass der Synchrongenerator nicht mehr als seine maximale Scheinleistung Smax, für die die Maschine gebaut ist, abgeben darf, wird im Diagramm durch einen Halbkreis dargestellt. Smax wird durch die maximal zulässige Erwärmung der Statorwicklung vorgegeben. Die minimal und maximal abgebbare (Generator-)Wirkleistung PG,min und PG,max wird durch die Turbine begrenzt. Bei Wasserkraftgeneratoren ist PG,min=0, PG,max wird durch die maximale Durchflussmenge des Wassers bestimmt. Bei thermischen Kraftwerken werden diese Grenzwerte durch den minimalen und maximalen Dampfstrom durch die Turbine festgelegt. Sie sind als horizontale Geraden in Abbildung 9 dargestellt. Abbildung 9 Betriebsdiagramm der Synchronmaschine

18 V301 Regelung von Wirk- und Blindleistung Seite 18 Aus den Leistungsgleichungen (26) folgt: tan ² tan (28) Für PG=0 folgt daher für Punkt A, der die Blindleistung darstellt, die im untererregten Betrieb maximal aufgenommen werden kann: ² (29) Wird ein Generator ohne Abgabe von Wirkleistung betrieben befindet er sich Phasenschieberbetrieb. Zur Erzeugung von Blindleistung muss von der Turbine keine Arbeit geleistet werden. Bei alleiniger Erzeugung bzw. Aufnahme von Blindleistung befindet sich der Generator im Phasenschieberbetrieb. Die meisten der sich am Netz befindlichen Generatoren verfügen über eine Spannungsregelung, die die minimale Polradspannung Emin vorgibt. Die maximale Polradspannung Emax ist durch die maximal zulässige Erwärmung der Statorwicklung vorgegeben. Diese Grenzwerte lassen sich im Betriebsdiagramm durch zwei Kreise mit dem Radius darstellen, wobei für die Polradspannung die jeweiligen Extremwerte eingesetzt werden. (30) Eine weitere Grenze des Betriebsdiagramms ist die Stabilitätsgrenze im untererregten Stabilitätsbereich. Der theoretische Wert dieser Grenze liegt bei 90.Im Allgemeinen wird jedoch 70 gewählt. Somit entsteht eine Gerade im Punkt A mit der Steigung. Das vollständige Betriebsdiagramm und der daraus resultierende Betriebsbereich sind in Abbildung 9 dargestellt.

19 V301 Regelung von Wirk- und Blindleistung Seite 19 5 Versuchsaufbau Das Verhalten der Synchronmaschine wird mittels des in Abbildung 10 skizzierten Versuchsaufbaus untersucht. Es werden dabei die folgenden Komponenten verwendet: (1) Servomotor als Antrieb oder Bremse für die Synchronmaschine (2) Synchronmaschine (3) Antriebs- oder Bremseinheit für den Servomotor. Diese kann Momenten- oder Drehzahlgeführt betrieben werden (4) Trenntransformator. Dieser entkoppelt die Generatorklemmen- von der Netzspannung. (5) Erregereinrichtung für die Synchronmaschine. Diese wird ausschließlich open-loop betrieben, d.h. sie regelt den Erregerstrom und nicht die Klemmenspannung des Generators. (6) Synchronisiereinrichtung. Diese zeigt Spannungsbetrags-, Frequenz- und Phasenwinkelabweichungen an. (7) Trennschalter. Dieser wird im Rahmen des manuellen Synchronisierens betätigt. (8) Multifunktionales Leistungsmessgerät. (9) Versorgungseinheit der Versuchstafel (nicht relevant für den prinzipiellen Aufbau). (10) Netznachbildung. Hier werden Leitungen durch konzentrierte Elemente nachgebildet (findet in diesem Versuch keine Verwendung).

20 V301 Regelung von Wirk- und Blindleistung Seite 20 (6) (1) (2) M SM F, U, φ (7) (8) U, I, P, Q (10) (3) (5) (4) M soll, n soll I e,soll Starres Netz 0,4kV, 50Hz Abbildung 10: Prinzipschaltbild des Versuchsaufbaus Die Komponenten des Maschinenprüfstands gliedern sich in einen Maschinensatz, der Prüftafel und Antriebseinheit sowie Trenntransformator (Abbildung 11). 5, 6, 7, 8, Abbildung 11: Maschinenprüfstand

21 V301 Regelung von Wirk- und Blindleistung Seite 21 Erreger- und Synchronisiereinrichtung mit Netzkuppelschalter sind neben einem multifunktionalen Messgerät und der Netznachbildung in Form eines Tafelaufbaus zusammengefügt (Abbildung 12). Die Inbetriebnahme des Maschinenstands erfolgt in folgenden Schritten: 1. Trenntrafo und Drehstromversorgung einschalten (Entriegelung Not-AUS; FI ein; Schlüsselschalter ein; Motorschutzrelais ein); Drehspulmessinstrument des Doppelspannungsmessgerätes zeigt netzseitige Leiter-Erd-Spannung an 2. Digitalmultimeter einschalten und Messbereichseinstellung DC wählen 3. Digitales Steuergerät für Servoantrieb/-bremse einschalten 4. Gleichstromversorgung aktivieren (Poti in Nullstellung drehen; Einschalten; Start-Taster drücken) Abbildung 12: Tafel des Maschinenprüfstands

22 V301 Regelung von Wirk- und Blindleistung Seite 22 Abbildung 13: Antriebseinheit des Servomotors Nun erfolgt das eigentliche Hochfahren der Synchronmaschine (Typ A): Digitales Steuergerät mit "Set-Mode"-Taste in "Speed Control"-Modus schalten Zur Aktivierung des Steuergerätes die Taste "RUN" drücken und über die Tasten bzw. bei "Speed" auf die synchrone Drehzahl erhöhen (aktuelle Drehzahl im Menü 0051) Die Erregerspannung über das Poti der Gleichstromversorgung langsam erhöhen, bis der Spannungsbetrag des zweiten Zeigers des Doppelzeigerspannungsmessgerätes mit der Netzspannung übereinstimmt. Befindet sich das Synchronoskop in der "12-Uhr-Stellung", wird die Maschine an das Netz geschaltet Die Maschine läuft nun synchron am Netz und die eigentlichen Versuche (Leerlauf, Generator- und Motorbetrieb) können durchgeführt werden.

23 V301 Regelung von Wirk- und Blindleistung Seite 23 Ein neuerer Versuchsstand verfügt über eine automatische Umschaltung zwischen Drehzahl- und Momentenregelung und wird dementsprechend wie folgt hochgefahren (Typ B): Digitales Steuergerät mi der Set-Mode -Taste in den Modus Synchronization schalten Das Steuergerät mit der Taste RUN aktivieren Mithilfe des Drehimpulsgebers den Maschinensatz auf die synchrone Drehzahl bringen Die Erregerspannung über das Poti der Gleichstromversorgung langsam erhöhen, bis der Spannungsbetrag des zweiten Zeigers des Doppelzeigerspannungsmessgerätes mit der Netzspannung übereinstimmt. Befindet sich das Synchronoskop in der "12-Uhr-Stellung", wird die Maschine an das Netz geschaltet Der Wechsel zum momentengeführten Betrieb wird automatisch durchgeführt. Das Soll-Moment kann anschließend über den Drehimpulsgeber gewählt werden.

24 V301 Regelung von Wirk- und Blindleistung Seite 24 6 Aufgabenstellung (theoretischer Teil) Dieser Teil ist vor Versuchsbeginn schriftlich vorzubereiten! Der Synchrongenerator eines Kraftwerks speist in ein starres 20-kV-Netz. Er hat die folgenden Kennwerte: Ug=20kV Emax=30kV Emin=10kV δmax=70 Smax=20MVA Pmin=2MW Pmax=18MW x d =22Ω a) Warum vereinfacht die Modellierung des Netzanschlusspunktes als starres Netz die Betrachtung des gegebenen Falles erheblich? b) Konstruieren Sie das zugehörige einphasige Ersatzschaltbild (ESB) im EZS. c) Konstruieren Sie das Betriebsdiagramm des Generators. Hinweise dazu finden sie in den Vorlesungsunterlagen. d) Der Generator speist mit 15 MVA bei einem Verschiebungsfaktor cos(φ) von 0,8 (kapazitiv) ein. Konstruieren Sie das zugehörige Zeigerdiagramm. e) Bestimmen Sie die theoretische Kippleistung des Generators

25 V301 Regelung von Wirk- und Blindleistung Seite 25 7 Aufgabenstellung (messtechnischer Teil) 7.1 Inbetriebnahme des Maschinenprüfstands Identifizieren Sie zunächst die vorliegenden Komponenten anhand der Abbildungen in der Versuchsanleitung und verschalten Sie sie gemäß Abbildung 10. Die Wicklungen der Synchronmaschine werden dabei im Stern verschaltet. Lassen Sie ihren Aufbau vom Versuchsbetreuer kontrollieren, bevor Sie den Maschinensatz in Betrieb nehmen. Anfahren des Maschinensatzes: Schalten Sie den Prüfstand ein und verwenden Sie das multifunktionale Messgerät, um das Anliegen der Netzspannung hinter dem Netzschalter zu prüfen. Kontrollieren Sie die Hilfsspannungsversorgung der Antriebseinheit für den Servo sowie der Erregereinrichtung. Fahren Sie Anschließend den Maschinensatz über den Servomotor hoch bis auf Nenndrehzahl. Die Bedienung des Servomotors ist in Kapitel 5 beschrieben. Wie viele Pole hat die Synchronmaschine? Synchronisierung: Um eine Wechselwirkung zwischen Rotor und Stator einer Synchronmaschine zu erreichen, muss der Rotor erregt werden. Stellen Sie den Soll-Erregerstrom auf Null und schalten Sie die Erregereinrichtung zu. Erhöhen Sie langsam den Erregerstrom bis an den Statorklemmen der Synchronmaschine Nennspannung anliegt. Synchronisieren Sie die Maschine auf das Netz. Korrigieren Sie Abweichungen in Spannungsbetrag und frequenz. Kuppeln Sie Synchronmaschine und Netz über den Kuppelschalter, sobald das Synchronoskop die Zwölf-Uhr-Stellung anzeigt. Generator- und Motorbetrieb der Synchronmaschine: Schalten Sie die Antriebseinheit des Servomotors ab. Betreiben Sie den Servomotor momentengeführt und wechseln Sie dabei zwischen Generator- und Motorbetrieb der Synchronmaschine. Erhöhen Sie das Moment dabei jeweils vorsichtig, um instabile Betriebszustände zu vermeiden. Warum ist ein drehzahlgeführter Betrieb des Servos bei Betrieb am Netz nicht sinnvoll? Deaktivieren Sie den Erregerstrom der Synchronmaschine, wenn sie sich nicht dreht, indem Sie zunächst den Sollwert langsam reduzieren und anschließend die Erregung abschalten.

26 V301 Regelung von Wirk- und Blindleistung Seite Aufnahme der Erreger-Leerlaufkennlinie Betreiben Sie die Synchronmaschine im Leerlauf bei Nenndrehzahl, d.h. bei geöffnetem Kuppelschalter. Welcher Spannung im ESB entspricht bei dieser Betriebsart die Klemmenspannung? Tragen Sie Erregerstrom gegen Klemmenspannung anhand von zehn Messpunkten auf (s. entsprechende Tabelle in Anhang A). Ermitteln Sie anhand einer Ausgleichsgeraden den Faktor kierr, der in vereinfachender Weise einen proportionalen Zusammenhang zwischen Klemmenspannung und Erregerstrom im Leerlauf angibt. 7.3 Betriebsdiagramm der Synchronmaschine Konstruieren Sie das Betriebsdiagramm der Synchronmaschine für den Generatorbetrieb. Entnehmen Sie die Grenzen den Kenndaten der Synchronmaschine (Anhang B) und der Erreger-Leerlauf-Kennlinie. Um der Stabilitätsgrenze nicht zu nah zu kommen, wird, wie bei Kraftwerksgeneratoren üblich, der Polradwinkel auf 70 begrenzt. Tragen Sie die berechneten Grenzen in das entsprechende Lösungsblatt ein und konstruieren Sie das Betriebsdiagramm unter Wahl eines sinnvollen Maßstabs. 7.4 Dynamische Vorgänge beim Zuschalten der Synchronmaschine Schalten Sie die Synchronmaschine bei unterschiedlichen Phasenwinkeldifferenzen auf das Netz. Beginnen Sie mit einer ideal synchronen Zuschaltung (Synchronoskop auf zwölf-uhr ). Trennen Sie die Maschine wieder vom Netz und schalten Sie sie bei einer größeren Phasenwinkeldifferenz zu. Achten Sie auf Geräusche und Vibrationen. Wiederholen Sie den Vorgang bis maximal der neun-uhr, bzw. drei-uhr- Stellung. Erläutern Sie ihre subjektiven Eindrücke. 7.5 Betriebsarten der Synchronmaschine Phasenschieberbetrieb der Synchronmaschine Fahren Sie die Maschine hoch, synchronisieren und schalten Sie sie aufs Netz und betreiben Sie sie als Phasenschieber, d.h. mit deaktivierter Servo-Antriebseinheit. Wählen Sie zwei sinnvolle, stabile Arbeitspunkte für die zwei Betriebsarten untererregter Phasenschieber übererregter Phasenschieber Tragen Sie die Messergebnisse auf dem entsprechenden Lösungsblatt ein und konstruieren Sie die zugehörigen Zeigerdiagramme. (Hinweis: Ziehen Sie die Erreger- Leerlaufkennlinie heran, um die Polradspannung zu bestimmen). Vernachlässigen Sie dabei die Wirkleistungsaufnahme des Maschinensatzes. Tragen Sie die Betriebspunkte in das Betriebsdiagramm ein. Ist ein Phasenschieber sinnvoll, auch wenn er keine Wirkleistung umsetzt?

27 V301 Regelung von Wirk- und Blindleistung Seite 27 Generatorbetrieb der Synchronmaschine Fahren Sie die Maschine hoch, synchronisieren und schalten Sie sie aufs Netz und betreiben Sie sie als Generator. Wählen Sie zwei sinnvolle, stabile Arbeitspunkte für die zwei Betriebsarten Untererregter Generator Übererregter Generator Tragen Sie die Messergebnisse auf dem entsprechenden Lösungsblatt ein und konstruieren Sie die zugehörigen Zeigerdiagramme. (Hinweis: Ziehen Sie die Erreger- Leerlaufkennlinie heran, um die Polradspannung zu bestimmen). Tragen Sie die Betriebspunkte in das Betriebsdiagramm ein. Im untererregten Betrieb gerät die Synchronmaschine leicht in den instabilen Zustand. Erhöhen Sie in diesem Fall entweder die Erregung oder verringern Sie das Antriebsmoment. Motorbetrieb der Synchronmaschine Fahren Sie die Maschine hoch, synchronisieren und schalten Sie sie aufs Netz und betreiben Sie sie als Motor. Wählen Sie zwei sinnvolle, stabile Arbeitspunkte für die zwei Betriebsarten Untererregter Motor Übererregter Motor Tragen Sie die Messergebnisse auf dem entsprechenden Lösungsblatt ein und konstruieren Sie die zugehörigen Zeigerdiagramme. (Hinweis: Ziehen Sie die Erreger- Leerlaufkennlinie heran, um die Polradspannung zu bestimmen). Tragen Sie die Betriebspunkte in das Betriebsdiagramm ein. Im untererregten Betrieb gerät die Synchronmaschine leicht in den instabilen Zustand. Erhöhen Sie in diesem Fall entweder die Erregung oder verringern Sie das Bremsmoment. 7.6 Bestimmung der Kippleistung im Generatorbetrieb Die maximale Wirkleistung einer Synchronmaschine, die sog. Kippleistung, wird auf der Stabilitätsgrenze erreicht. Welchem Polradwinkel entspricht das? Warum wird dieser Arbeitspunkt in der Realität nicht (gewollt) angefahren. Bestimmen Sie für den Synchrongenerator die Kippleistung bei einem Erregerstrom von 0,2 A, 0,5 A, 1 A sowie 1,2 A und tragen Sie diese gegen den Erregerstrom auf. Wie groß ist dabei die jeweilige Blindleistungsaufnahme resp. abgabe? Erläutern Sie Ihre Ergebnisse. Tragen Sie die vier Betriebspunkte in das Betriebsdiagramm ein und erläutern Sie, warum sie im unzulässigen Betriebsbereich liegen.

28 V301 Regelung von Wirk- und Blindleistung Seite 28 Anhang A Lösungsblätter Tabelle 1: Wertetabelle für die Erreger-Leerlaufkennlinie (0) Ierr [A] UG [V] kierr = V/A Tabelle 2: Grenzen im Betriebsdiagramm (7.3) Grenze Smax Pmax Pmin δmax Emin Emax Wert 70 Tabelle 3: Messwerte für die Betriebsarten der Synchronmaschine (7.5) Untererregter Phasenschieber U in V I in A Ierr in A E in V P in W Q in Var 0 Übererregter Phasenschieber U in V I in A Ierr in A E in V P in W Q in Var 0 Untererregeter Generator U in V I in A Ierr in A E in V P in W Q in Var Übererregter Generator U in V I in A Ierr in A E in V P in W Q in Var Untererregter Motor U in V I in A Ierr in A E in V P in W Q in Var Übererregter Motor U in V I in A Ierr in A E in V P in W Q in Var

29 V301 Regelung von Wirk- und Blindleistung Seite 29 Tabelle 4: Kippleistung der Synchronmaschine (7.6) Erregerstrom Ierr in A 0,2 0,5 1,0 1,2 Kippleistung Pk in W (3-phasig) Blindleistung Q in Var (3-phasig)

30 V301 Regelung von Wirk- und Blindleistung Seite 30 Anhang B Kenndaten der Synchronmaschine Xd nnenn Ierr,max Imax Pmax 360 Ω /min 1,6 A 2,66 A 0,8 kw

31 V301 Regelung von Wirk- und Blindleistung Seite 31 Anhang C Richtlinien für die schriftliche Ausarbeitung Verfassen Sie einen zusammenhängenden Text, der die in der Vorlage (Anhang D) angegebenen Punkte enthält und Fragen beantwortet. Frage-Antwort-Strukturen werden nicht akzeptiert! Halten Sie sich an die vorgegebene Gliederung. Beachten sie folgende Richtlinien: Umfang: mind. 10 DIN A4 Seiten Schriftgröße 12; Zeilenabstand: 1,5 zusätzlich die ausgefüllte Lösungsblätter (Anhang A) Zum Inhalt: Der Bericht sollte auf Wiederholungen der Aufgabenstellung verzichten und die wesentlichen Ergebnisse des Versuches diskutieren. Zur Sprache: Wissenschaftlich neutral/objektiv und aktuell d.h. keine persönlichen Formulierungen (kein ich, wir, man ), im Präsens schreiben (keine Vergangenheit)! Abgabe: Spätestens vier Wochen nach Versuchsdurchführung digital als PDF an jonas.von-haebler@tu-dortmund.de (die Ausarbeitung wird auf Plagiate geprüft)

32 V301 Regelung von Wirk- und Blindleistung Seite 32 Anhang D Inhalte der schriftlichen Ausarbeitung 1. Einleitung (1) Aufbau und Funktion der Synchronmaschine (2) Vor- und Nachteile von Synchronmaschinen im Einsatzgebiet der Stromerzeugung in Großkraftwerken 2. Allgemeines zur vorliegenden Synchronmaschine (1) Wie viele Pole hat die Synchronmaschine? (2) Warum ist ein drehzahlgeführter Betrieb des Servos beim Betrieb der Synchronmaschine am Netz nicht sinnvoll? (3) Warum müssen reale Synchrongeneratoren in Großkraftwerken synchronisiert werden? (4) Welche Synchronisationsmöglichkeiten gibt es und wie funktionieren sie? 3. Aufnahme der Erreger-Leerlaufkennlinie (1) Welcher Spannung im ESB entspricht bei dieser Betriebsart die Klemmenspannung? (2) Tabelle 1: Wertetabelle für die Erreger-Leerlaufkennlinie (3) UG-IERR-Kennlinie, kerr über eine Ausgleichsgerade bestimmen. Erläutern und bewerten Sie die Kennlinie! 4. Betriebsarten der Synchronmaschine (1) Vorgehensweise beim Erstellen von Zeigerdiagrammen (2) Phasenschieberbetrieb: 2 Zeigerdiagramme: übererregt Untererregt (3) Ist ein Phasenschieber sinnvoll, obwohl er keine Wirkleistung umsetzt? (4) Generatorbetrieb: 2 Zeigerdiagramme: übererregt Untererregt (5) Was ist die übliche/häufigste Betriebsart eines großen Synchrongenerators? (6) Motorbetrieb: 2 Zeigerdiagramme: übererregt untererregt (7) Erläuterung der Zeigerdiagramme (8) Wie kann die Wirk -und Blindleistungsaufnahme bzw. abgabe Beeinflusst werden?

33 V301 Regelung von Wirk- und Blindleistung Seite 33 (9) In welchen Bereich läuft die Maschine stabil und warum? (statische Stabilität) Gehen Sie dabei speziell auf die Wirkleistungskennlinie eines Vollpolläufers ein! 5. Bestimmung der Kippleistung im Generatorbetrieb (1) Bei welchem Polradwinkel ist die Kippleistung erreicht? (2) PK(IERR)-Diagramm anhand Tab.4 (3) Erläutern Sie ihre Ergebnisse. 6. Betriebsdiagramm der Synchronmaschine (1) Grenzen im Betriebsdiagramm und Begründung der jeweiligen Grenzen. Erläutern Sie dabei was die Grenzen aussagen und woraus sie folgen. (2) Betriebsdiagramm im Generatorbetrieb (3) folgende Betriebspunkte in das Betriebsdiagramm eintragen: a. 2 mal Generator (über/untererregt aus 7.5) b. 2 mal Phasenschieber (über/untererregt aus 7.5) c. 4 Kippleistungspunkte aus 7.6 (4) Erläutern Sie, warum die Betriebspunkte an der Kippleistungsgrenze im unzulässigen Betriebsbereich liegen. (5) Bewerten Sie das Betriebsdiagramm!

6. Synchronmaschine. EM1, Kovalev/Novender/Kern (Fachbereich IEM)

6. Synchronmaschine. EM1, Kovalev/Novender/Kern (Fachbereich IEM) 1 Prinzipielle Wirkungsweise Außenpolgenerator: Erregung außen; fest Spannungsinduktion innen; rotiert Energieübertragung mittels Schleifringe 2 Prinzipielle Wirkungsweise Außenpolmaschine: Erregung hier

Mehr

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3

Mehr

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig)

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig) Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6 1 2 3 4 5 6 Summe Matr.-Nr.: Nachname: 1 (5 Punkte) Drei identische Glühlampen sind wie im Schaltbild

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

Zusammenfassung elektrische Maschinen Gleichstrommaschine

Zusammenfassung elektrische Maschinen Gleichstrommaschine Gleichstrommaschine i F F F F U = R I + Ui U F = RF IF Gleichstrommaschine Induzierte Spannung: Ursache: Änderung des magnetischen Flusses in der Leiterschleife Ui = c φf Erzeugung des magnetischen Flusses:

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

TRAVEL POWER 230 V AC, 32 A, 50 Hz (991 00 12-01) Travel Power 7.0 + 5.0

TRAVEL POWER 230 V AC, 32 A, 50 Hz (991 00 12-01) Travel Power 7.0 + 5.0 Einbau und Bedienungsanleitung TRAVEL POWER 230 V AC, 32 A, 50 Hz (991 00 12-01) Travel Power 7.0 + 5.0 1 Allgemeine Informationen 1.1 SICHERHEITSHINWEISE Travel Power darf nicht für den Betrieb von lebenserhaltenen

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

6 Wechselstrom-Schaltungen

6 Wechselstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert

Mehr

1 Wiederholung einiger Grundlagen

1 Wiederholung einiger Grundlagen TUTORIAL MODELLEIGENSCHAFTEN Im vorliegenden Tutorial werden einige der bisher eingeführten Begriffe mit dem in der Elektrotechnik üblichen Modell für elektrische Netzwerke formalisiert. Außerdem soll

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

Einführung in Elektrische Maschinen - Asynchronmaschine. Studenten: Name Vorname Unterschrift. Datum: Sichtvermerk des Dozenten: 3.

Einführung in Elektrische Maschinen - Asynchronmaschine. Studenten: Name Vorname Unterschrift. Datum: Sichtvermerk des Dozenten: 3. Fachbereich 3 : Informations- und Elektrotechnik Semester: Fach: Dozent: Elektrische Maschinen Prof. Dr. Bernd Aschendorf Datum: Versuch Nr. 6 Thema: Einführung in Elektrische Maschinen - Asynchronmaschine

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Wechselspannung. Zeigerdiagramme

Wechselspannung. Zeigerdiagramme niversity of Applied Sciences ologne ampus Gummersbach Dipl.-ng. (FH Dipl.-Wirt. ng. (FH D-0 Stand: 9.03.006; 0 Wie bereits im Kapitel an,, beschrieben, ist die Darstellung von Wechselgrößen in reellen

Mehr

Kennlinienaufnahme elektronische Bauelemente

Kennlinienaufnahme elektronische Bauelemente Messtechnik-Praktikum 06.05.08 Kennlinienaufnahme elektronische Bauelemente Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie eine Schaltung zur Aufnahme einer Strom-Spannungs-Kennlinie eines

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen m eistungsbereich oberhalb 0,75 kw ("integral horsepower") sind etwa 7% der gefertigten elektrischen Maschinen Gleichstrommaschinen. Haupteinsatzgebiete sind Hüttenund Walzwerke,

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Dauermagnetgeneratoren (DMG)

Dauermagnetgeneratoren (DMG) Dauermagnetgeneratoren (DMG) Was ist ein DMG? B e i e i n e m Dauermagnetgenerator handelt es sich um einen Synchrongenerator, bei dem die normalerweise im Rotor stattfindende Erregerwicklung durch e i

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik raktikum Grundlagen der Elektrotechnik Kondensatoren und Spulen m Wechselstromkreis (ersuch 10) Fachhochschule Fulda Fachbereich Elektrotechnik durchgeführt von (rotokollführer) zusammen mit Matrikel-Nr.

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Einführung in die Motormesstechnik. Einleitung

Einführung in die Motormesstechnik. Einleitung Einleitung Ziel des Laborversuchs ist es, das Zusammenspiel zwischen Verbrennungsmotoren und Leistungsbremsen zu ermitteln und zu dokumentieren. Die Dokumentationen sollen zur späteren Ermittlung der Motorkennlinien

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 4 10 am 14.03.1997

Aufg. P max 1 10 Klausur Elektrotechnik 2 14 3 8 4 10 am 14.03.1997 Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 6141 4 10 am 14.03.1997 5 18 6 11 Σ 71 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene Hilfsmittel

Mehr

Jedes Umfeld hat seinen perfekten Antrieb. Individuelle Antriebslösungen für Windenergieanlagen.

Jedes Umfeld hat seinen perfekten Antrieb. Individuelle Antriebslösungen für Windenergieanlagen. Jedes Umfeld hat seinen perfekten Antrieb. Individuelle Antriebslösungen für Windenergieanlagen. 1 2 3 3 4 1 2 3 4 Generator Elektromechanische Bremse Azimutantriebe Rotorlock-Antrieb (im Bild nicht sichtbar)

Mehr

Messung elektrischer Größen Bestimmung von ohmschen Widerständen

Messung elektrischer Größen Bestimmung von ohmschen Widerständen Messtechnik-Praktikum 22.04.08 Messung elektrischer Größen Bestimmung von ohmschen Widerständen Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. Bestimmen Sie die Größen von zwei ohmschen Widerständen

Mehr

Komplexpraktikum Elektrotechnik II Versuch EE2: Ein- und dreiphasige Strom- und Spannungswandler 9/2012

Komplexpraktikum Elektrotechnik II Versuch EE2: Ein- und dreiphasige Strom- und Spannungswandler 9/2012 Praktikum Schutzrechnik Komplexpraktikum Elektrotechnik II Versuch EE2: Ein- und dreiphasige Strom- und Spannungswandler 9/2012 Versuchsteilnehmer: Praktikumsgr.: Abgabetermin: Protokollant: Eingangsdat.:

Mehr

Experimentiersatz Elektromotor

Experimentiersatz Elektromotor Experimentiersatz Elektromotor Demonstration der Erzeugung von elektrischem Stromfluss durch Umwandlung von mechanischer Energie (Windrad) in elektrische Energie. Einführung Historisch gesehen hat die

Mehr

Berechnung der Erhöhung der Durchschnittsprämien

Berechnung der Erhöhung der Durchschnittsprämien Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die

Mehr

Liegt an einem Widerstand R die Spannung U, so fließt durch den Widerstand R ein Strom I.

Liegt an einem Widerstand R die Spannung U, so fließt durch den Widerstand R ein Strom I. Einige elektrische Grössen Quelle : http://www.elektronik-kompendium.de Formeln des Ohmschen Gesetzes U = R x I Das Ohmsche Gesetz kennt drei Formeln zur Berechnung von Strom, Widerstand und Spannung.

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:...

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:... TP 6: Windenergie -TP 6.1- TP 6: Windenergie Zweck der ersuche: 1 ersuchsaufbau Der Aufbau des Windgenerators und des Windkanals (Abb.1) erfolgt mit Hilfe der Klemmreiter auf der Profilschiene. Dabei sind

Mehr

Wechselstromkreis mit verschiedenen Bauteilen

Wechselstromkreis mit verschiedenen Bauteilen Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Mathias Arbeiter 20. April 2006 Betreuer: Herr Bojarski Halbleiterbauelemente Statische und dynamische Eigenschaften von Dioden Untersuchung von Gleichrichterschaltungen Inhaltsverzeichnis 1 Schaltverhalten

Mehr

Praktikum Kleinventilator

Praktikum Kleinventilator Gesamtdruckerhöhung in HTW Dresden V-SM 3 Praktikum Kleinventilator Lehrgebiet Strömungsmaschinen 1. Kennlinien von Ventilatoren Ventilatoren haben unabhängig von ihrer Bauart einen bestimmten Volumenstrom

Mehr

Wichtige Informationen zum Einsatz von Personenschutzeinrichtungen (PRCD und PRCD-S)

Wichtige Informationen zum Einsatz von Personenschutzeinrichtungen (PRCD und PRCD-S) N:\Web\Personenschutzeinrichtungen\Personenschutzeinrichtungen.pdf Wichtige Informationen zum Einsatz von Personenschutzeinrichtungen (PRCD und PRCD-S) Ausgabe: Juni 2014 Michael Melioumis Urheberrechte:

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet. Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn

Mehr

Simulation LIF5000. Abbildung 1

Simulation LIF5000. Abbildung 1 Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles

Mehr

REGELUNG EINER PMSM (SPARK) FÜR EINE WINDKRAFTANLAGE

REGELUNG EINER PMSM (SPARK) FÜR EINE WINDKRAFTANLAGE Regelung einer PMSM (SPARK) für eine Windkraftanlage 1 REGELUNG EINER PMSM (SPARK) FÜR EINE WINDKRAFTANLAGE F. Turki 1 EINFÜHRUNG Alternative Stromversorgungen werden immer attraktiver und eine der saubersten

Mehr

Elektrische Messtechnik, Labor

Elektrische Messtechnik, Labor Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Messverstärker Studienassistentin/Studienassistent Gruppe Datum Note Nachname, Vorname Matrikelnummer Email

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Komplexpraktikum Elektrotechnik - Elektrische Antriebe. Umrichtergespeister Drehstromantrieb

Komplexpraktikum Elektrotechnik - Elektrische Antriebe. Umrichtergespeister Drehstromantrieb April 2012 Komplexpraktikum Elektrotechnik - Elektrische Antriebe Umrichtergespeister Drehstromantrieb für tudiengang CT/AT, Fakultät ET 1. Versuchsziel ie lernen das stationäre Betriebsverhalten eines

Mehr

INHALTSVERZEICHNIS. 10.1. Reihenschaltungen... 66

INHALTSVERZEICHNIS. 10.1. Reihenschaltungen... 66 INHALTSVERZEICHNIS 8. Einfiig in die Wecbselspainnungstechnik... 13 8.1. Beziehungen zur Gleichspannungstechnik... 13 8.2. Definition der Wechselspannung... 14 8.3. Arten der Wechselspannung... 15 8.3.1.

Mehr

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Untersuchen Sie das Übertragungsverhalten eines RC-Tiefpasses mit Hilfe der Oszilloskopmesstechnik 1.Es ist das Wechselstromverhalten

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4 1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung

Mehr

Aufgabe 1 2 3 4 5 6 Summe Note Mögliche Punkte 13 20 16 23 31 15 118 Erreichte Punkte

Aufgabe 1 2 3 4 5 6 Summe Note Mögliche Punkte 13 20 16 23 31 15 118 Erreichte Punkte Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 11. Oktober 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Oszillographenmessungen im Wechselstromkreis

Oszillographenmessungen im Wechselstromkreis Praktikum Grundlagen der Elektrotechnik Versuch: Oszillographenmessungen im Wechselstromkreis Versuchsanleitung. Allgemeines Eine sinnvolle Teilnahme am Praktikum ist nur durch eine gute Vorbereitung auf

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

3.5. Aufgaben zur Wechselstromtechnik

3.5. Aufgaben zur Wechselstromtechnik 3.5. Aufgaben zur Wechselstromtechnik Aufgabe : eigerdiagramme Formuliere die Gleichungen für die alteile von (t) sowie (t) und zeichne ein gemeinsames eigerdiagramm für Spannung sowie Stromstärke, wenn

Mehr

1 Einleitung. Lernziele. automatische Antworten bei Abwesenheit senden. Einstellungen für automatische Antworten Lerndauer. 4 Minuten.

1 Einleitung. Lernziele. automatische Antworten bei Abwesenheit senden. Einstellungen für automatische Antworten Lerndauer. 4 Minuten. 1 Einleitung Lernziele automatische Antworten bei Abwesenheit senden Einstellungen für automatische Antworten Lerndauer 4 Minuten Seite 1 von 18 2 Antworten bei Abwesenheit senden» Outlook kann während

Mehr

Filter zur frequenzselektiven Messung

Filter zur frequenzselektiven Messung Messtechnik-Praktikum 29. April 2008 Filter zur frequenzselektiven Messung Silvio Fuchs & Simon Stützer Augabenstellung. a) Bauen Sie die Schaltung eines RC-Hochpass (Abbildung 3.2, Seite 3) und eines

Mehr

Modellbildungssysteme: Pädagogische und didaktische Ziele

Modellbildungssysteme: Pädagogische und didaktische Ziele Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Alle Spannungsumwandler, die wir liefern, wandeln nur die Spannung um und nicht die Frequenz.

Alle Spannungsumwandler, die wir liefern, wandeln nur die Spannung um und nicht die Frequenz. SPANNUNGSUMWANDLER Fragen, die uns häufig gestellt werden Wandeln Spannungsumwandler auch die Frequenz um? -NEIN - Alle Spannungsumwandler, die wir liefern, wandeln nur die Spannung um und nicht die Frequenz.

Mehr

Stromortskurve Asynchronmaschine

Stromortskurve Asynchronmaschine Stromortskurve der Asynchronmaschine Prof. Dr.-Ing. Carsten Fräger Folie 1 von 61 Prof. Dr.-Ing. Stromortskurve Asynchronmaschine Stromortskurve der Drehstrom-Asynchronmaschine mit kurzgeschlossenem Rotor

Mehr

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E )

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Blatt 2 von 12 Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Solar-Zellen bestehen prinzipiell aus zwei Schichten mit unterschiedlichem elektrischen Verhalten.

Mehr

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Kondensator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T202 Welchen zeitlichen Verlauf hat die Spannung an einem entladenen Kondensator, wenn dieser über einen Widerstand an eine Gleichspannungsquelle

Mehr

IIE4. Modul Elektrizitätslehre II. Transformator

IIE4. Modul Elektrizitätslehre II. Transformator IIE4 Modul Elektrizitätslehre II Transformator Ziel dieses Versuches ist es, einerseits die Transformatorgesetze des unbelasteten Transformators experimentell zu überprüfen, anderseits soll das Verhalten

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

Dipl.-Ing. Herbert Schmolke, VdS Schadenverhütung

Dipl.-Ing. Herbert Schmolke, VdS Schadenverhütung 1. Problembeschreibung a) Ein Elektromonteur versetzt in einer überwachungsbedürftigen Anlage eine Leuchte von A nach B. b) Ein Elektromonteur verlegt eine zusätzliche Steckdose in einer überwachungsbedürftigen

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1 Laborskript für WP-14 WS 13/14 Zugversuch Zugversuch 1) Theoretische Grundlagen: Mit dem Zugversuch werden im Normalfall mechanische Kenngrößen der Werkstoffe unter einachsiger Beanspruchung bestimmt.

Mehr

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82)

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82) 3 Schaltungen mit frequenzselektiven Eigenschaften 35 a lg (8) a die Grenzkreisfrequenz ist Grenz a a (8) 3 esonanzkreise 3 eihenresonanzkreis i u u u u Bild 4 eihenresonanzkreis Die Schaltung nach Bild

Mehr

Elektronik- und Messtechniklabor, Messbrücken. A) Gleichstrom-Messbrücken. gespeist. Die Brücke heisst unbelastet, weil zwischen den Klemmen von U d

Elektronik- und Messtechniklabor, Messbrücken. A) Gleichstrom-Messbrücken. gespeist. Die Brücke heisst unbelastet, weil zwischen den Klemmen von U d A) Gleichstrom-Messbrücken 1/6 1 Anwendung und Eigenschaften Im Wesentlichen werden Gleichstrommessbrücken zur Messung von Widerständen eingesetzt. Damit können indirekt alle physikalischen Grössen erfasst

Mehr

Motorkennlinie messen

Motorkennlinie messen Aktoren kennlinie messen von Roland Steffen 3387259 2004 Aktoren, kennlinie messen Roland Steffen Seite 1/5 Aufgabenstellung: Von einer Elektromotor-Getriebe-Einheit ist eine vollständige kennlinienschar

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Bevor Sie mit dem Wechsel Ihres Sicherheitsmediums beginnen können, sollten Sie die folgenden Punkte beachten oder überprüfen:

Bevor Sie mit dem Wechsel Ihres Sicherheitsmediums beginnen können, sollten Sie die folgenden Punkte beachten oder überprüfen: Die personalisierte VR-NetWorld-Card wird mit einem festen Laufzeitende ausgeliefert. Am Ende der Laufzeit müssen Sie die bestehende VR-NetWorld-Card gegen eine neue Karte austauschen. Mit der begrenzten

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Inhaltsverzeichnis Physikalisches Praktikum Versuchsbericht M4 Stoßgesetze in einer Dimension Dozent: Prof. Dr. Hans-Ilja Rückmann email: irueckm@uni-bremen.de http: // www. praktikum. physik. uni-bremen.

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2 U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage

Mehr

Dynamische Methoden der Investitionsrechnung

Dynamische Methoden der Investitionsrechnung 4 Dynamische Methoden der Investitionsrechnung Lernziele Das Konzept des Gegenwartswertes erklären Den Überschuss oder Fehlbetrag einer Investition mit Hilfe der Gegenwartswertmethode berechnen Die Begriffe

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : von Messgeräten; Messungen mit Strom- und Spannungsmessgerät Klasse : Name : Datum : Will man mit einem analogen bzw. digitalen Messgeräte Ströme oder Spannungen (evtl. sogar Widerstände) messen, so muss

Mehr

Anleitung über den Umgang mit Schildern

Anleitung über den Umgang mit Schildern Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder

Mehr

4. BEZIEHUNGEN ZWISCHEN TABELLEN

4. BEZIEHUNGEN ZWISCHEN TABELLEN 4. BEZIEHUNGEN ZWISCHEN TABELLEN Zwischen Tabellen können in MS Access Beziehungen bestehen. Durch das Verwenden von Tabellen, die zueinander in Beziehung stehen, können Sie Folgendes erreichen: Die Größe

Mehr

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich André Grüneberg Janko Lötzsch Mario Apitz Friedemar Blohm Versuch: 19. Dezember 2001 Protokoll: 6. Januar

Mehr

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Mehr Informationen zum Titel 6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Bearbeitet von Manfred Grapentin 6.1 Arten und Eigenschaften von elektrischen Widerständen

Mehr

Fallbeispiel: Eintragen einer Behandlung

Fallbeispiel: Eintragen einer Behandlung Fallbeispiel: Eintragen einer Behandlung Im ersten Beispiel gelernt, wie man einen Patienten aus der Datenbank aussucht oder falls er noch nicht in der Datenbank ist neu anlegt. Im dritten Beispiel haben

Mehr

Strom in unserem Alltag

Strom in unserem Alltag Strom in unserem Alltag Kannst du dir ein Leben ohne Strom vorstellen? Wir verbrauchen jeden Tag eine Menge Energie: Noch vor dem Aufstehen klingelt der Radiowecker, dann schalten wir das Licht ein, wir

Mehr

Fachbereich Physik Dr. Wolfgang Bodenberger

Fachbereich Physik Dr. Wolfgang Bodenberger UniversitätÉOsnabrück Fachbereich Physik Dr. Wolfgang Bodenberger Der Transistor als Schalter. In vielen Anwendungen der Impuls- und Digital- lektronik wird ein Transistor als einfacher in- und Aus-Schalter

Mehr

RS-Flip Flop, D-Flip Flop, J-K-Flip Flop, Zählschaltungen

RS-Flip Flop, D-Flip Flop, J-K-Flip Flop, Zählschaltungen Elektronik Praktikum / Digitaler Teil Name: Jens Wiechula, Philipp Fischer Leitung: Prof. Dr. U. Lynen Protokoll: Philipp Fischer Versuch: 3 Datum: 24.06.01 RS-Flip Flop, D-Flip Flop, J-K-Flip Flop, Zählschaltungen

Mehr

Widerstände I (Elektrischer Widerstand, Reihen- und Parallelschaltung)

Widerstände I (Elektrischer Widerstand, Reihen- und Parallelschaltung) Übungsaufgaben Elektrizitätslehre Klassenstufe 8 Widerstände I (Elektrischer Widerstand, Reihen- und Parallelschaltung) 4 ufgaben mit ausführlichen Lösungen (3 Seiten Datei: E-Lehre_8_1_Lsg) Eckhard Gaede

Mehr

WinWerk. Prozess 6a Rabatt gemäss Vorjahresverbrauch. KMU Ratgeber AG. Inhaltsverzeichnis. Im Ifang 16 8307 Effretikon

WinWerk. Prozess 6a Rabatt gemäss Vorjahresverbrauch. KMU Ratgeber AG. Inhaltsverzeichnis. Im Ifang 16 8307 Effretikon WinWerk Prozess 6a Rabatt gemäss Vorjahresverbrauch 8307 Effretikon Telefon: 052-740 11 11 Telefax: 052-740 11 71 E-Mail info@kmuratgeber.ch Internet: www.winwerk.ch Inhaltsverzeichnis 1 Ablauf der Rabattverarbeitung...

Mehr

Messen mit Dehnmessstreifen (DMS)

Messen mit Dehnmessstreifen (DMS) Fachbereich Ingenieurwissenschaften II Labor Messtechnik Anleitung zur Laborübung Messen mit Dehnmessstreifen (DMS) Inhalt: 1 Ziel der Laborübung 2 Aufgaben zur Vorbereitung der Laborübung 3 Grundlagen

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Stationsunterricht im Physikunterricht der Klasse 10

Stationsunterricht im Physikunterricht der Klasse 10 Oranke-Oberschule Berlin (Gymnasium) Konrad-Wolf-Straße 11 13055 Berlin Frau Dr. D. Meyerhöfer Stationsunterricht im Physikunterricht der Klasse 10 Experimente zur spezifischen Wärmekapazität von Körpern

Mehr