Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation

Größe: px
Ab Seite anzeigen:

Download "Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation"

Transkript

1 Bildtransformationen Geometrische Transformationen Grauwert-Interpolation

2 Transformation Transformation zwei Schritte geometrische Transformation (Trafo der Koordinaten) Neuberechnung der Pielwerte an transformierter Position

3 Geometrische Transformation Koordinaten im Ursprungsbild (,y) Koordinaten im Transformierten Bild (u,v) Transformation der einzelnen Komponenten Zusammenfassung beider Komponenten zu einer Vektorfunktion Rücktransformation durch Inversion der Transformation T ), ( ), ( y T v y T u v u ), ( y T v u r ), ( v u T y r

4

5 Grundlegende Transformationen Translation Rotation Skalierung Scherung

6 Translation Translation (o,o y ) Jedem Punkt wird komponentenweise der Translationsvektor o addiert. u v r u y r r + o + o o y

7 Rotation eines Punktes Punkt wird gegen den Uhrzeigersinn um den Winkel α gedreht Äquivalent: Darstellung des Punktes in gegengleich gedrehtem Koordinatensystem y P r y y r P P α α r

8 Koordinaten α a a 2 e r 2 e r 2 a 2 0 ) cos( a a a e a e a a i i i α r r r r Koordinaten eines Punktes entsprechen den Normalprojektionen auf die Basisvektoren, die das Achsensystem bilden i a i e i e a e a e a a r r r r r

9 Rotation y v u ) cos( ) sin( ) sin( ) cos( α α α α y u v T T - T u r r

10 Skalierung und Scherung Parameter s, sy Skalierung in und y Richtung < Verkleinerung, > Vergrößerung t Scherung <0 nach links, >0 nach rechts y s t s v u y 0

11 Homogene Koordinaten Alle geometrischen Operation werden durch Matrizenoperationen ausgedrückt. Ausnahme: Translation! Durch Einführen einer Hilfsdimension kann die Translation integriert werden Übergang zu homogenen Koordinaten y y cos( α) sin( α) 0 sin( α) cos( α) 0 o oy

12 Kamera-Kalibration Abbildungen durch Kamerasysteme (Video, Photo) unterliegen Verzerrungen bedingt durch perspektivische Projektion Abbildungsfehler der Linsen z.b. achsenferne Strahlen werden stärker gebrochen als achsennahe Kalibration der Kamera für: eakte Datenerhebung aus Abbildungssystemen, z.b. forensische Auswertung von Unfallsphotos Normalisierung von Portraitdatenbanken... Algorithmus nach Tsai

13 Beispiel Beispiel für Verzerrung durch die Kamera Ein Paralleler Schienenstrang scheint auf einem Photo auf einen gemeinsamen Punkt zusammenzulaufen. -> Ursache: Zentralprojektion in der Kamera und auch im menschlichen Auge entfernte Objekte werden kleiner abgebildet.

14 Verzerrungen

15 Koordinatensysteme optical ais z w y w scene point X X w X c z c euclidean camera cs t euclidean world cs w focal point y c z i euclidean image cs affine image cs c f v y i image point U i u principal point

16 Objekt und Bildpunkt in verschiedenen Koordinaten ( t) X R z y X w c c c c f z y f z f U c c c c c v u U a Weltkoordinaten sind mit Kamerakoordinaten durch eine Rotation R und eine Verschiebung um den Vektor t gegeben. Kamerakoordinaten sind mit den Euklidschen Bildkoordinaten durch eine Zentralprojektion verknüpft. Der principal point in den affinen Bildkoordinaten.

17 Abbildung in affinen Bildkoordinaten ~ c c c c c c c c z y z v fc u fb fa z y f z f v c u b a w v u u ) ( ~ 0 0 t X KR z y v fc u fb fa w v u u z w c c c c Skalierung (a,b) und Scherung (c ) in affinen Bildkoordinaten Innere und äußere Parameter in der Abbildungsgleichung

18 Abbildungsfehler Die Abbildungsfehler der Linse drücken sich in einer polsterförmigen tonnenförmigen Verzerrung des Bildes aus. Die Abbildungsfehler werden radialsymmetrisch angenommen und mit geradzahligen Polynomen modelliert (Symmetrie). u v u~ [ ± κ( u ~ v~ [ ± κ( u ~ v~ + v~ 2 2 )] )] k> tonnenförmig k< kissenförmig

19 Kalibrierung nach Tsai Trennung in innere und äußere Parameter äußere Parameter (6) 3 Rotationswinkel, 3 Translationskomponenten innere Parameter (5+) 2 Skalierung, Scherung, 2 Offset Bildverzerrung Tsai R.Y., A versatile camera calibration technique for high accuracay 3D machine vision metrology using of-the-shelf cameras and lenses. IEE Journal of Robotics and Automation, RA-3(4):323-44, August 987

20 Testmuster zur Kamerakalibrierung Testmuster, die zur Kalibrierung der Kamera verwendet werden. Punkte werden segmentiert und die Mittelpunkte und Konturen zur Kalibrierung verwendet Die Punkte liegen auch auf verschiedenen Ebenen

21 Resultate originale Bilder Kalibrierung und radiale Verzerrungskorrektur

22 Warum Interpolation Piel sind auf regelmäßigem Raster definiert Berechnung von Grauwerten zwischen den Pieln Wo? Vergrößern, Verkleinern Rotieren Dehnen und Stauchen

23 Transformation (,y) (u,v) Transformierter Punkt (u,v) im Allgemeinen nicht auf einer Rasterposition -> Interpolation

24 Methoden Nächste Nachbar Interpolation Lineare Interpolation Kubische Interpolation Faltung, Splines Sinc-Interpolation Eigenschaften: Qualität, Performance

25 NN-Interpolation

26 Lineare-Interpolation

27 Kubische-Interpolation

28 Vergleich Lin Cub Qualität NN Rechenaufwand

29 NN-Interpolation N N2 (,y) Maske N4 N3 Nächster Nachbar: diese Piel wird ersetzt

30 NN: Eigenschaften Vorteil: einfache Berechnung (schnell) Nachteil: schlechte Qualität Blockbildung Aliasing

31 NN: Probleme Horizonale Skalierung 2: Löcher

32 NN: Probleme Mehrfachbesetzung bei Verkleinerung

33 Mapping

34 Lösung: backward mapping Pielposition wird im Ausgangsbild bestimmt und dort berechnet

35 Lineare-Interpolation N N2 (,y) N4 N3 Lineare Interpolation: alle Nachbarn tragen zum Piel bei

36 Prinzip der Bi-Linearen-Interpolation Pielwert G wird in Abhängigkeit der vier Nachbarpiel berechnet

37 Bi-Lineare Interpolation Schnell zu berechnen gute Bildqualität sehr häufig verwendetes Verfahren NN vs. Lin

38 Interpolation als Maskenoperation Erweitern der Maske Zwischenstellen Null setzen Maske berechnen linear: Dreiecks-Funktion Maske über das Bild schieben.

39 Vergrößern der Matri Füllen der Zwischenräume mit Nullen, Berechnung der neuen Positionen mittels Maskenoperation

40 Interpolation-Masken Funktion *, + Maske interp. Funktion

41 Interpolations-Kerne Lineare Interpolation: Dreiecksfunktion Kubische Interpolation: < + > 3) ( 2) ( ) ( a a a a a a k

42 Sinc-Interpolation Funktion: sinc()sin(pi*)/(pi*) Ideale Interpolation Glatt, kein Aliasing, langsam Reduktion der Maskengröße: Cubic ist abgeschnittener sinc

43 Splineinterpolation-Problemstellung Polynome definiert auf Teilintervalle I n Polynome stetig N Teilintervalle, N+ unregelmäßige Stützstellen y y 2 y N y N+ y N N+ I I 2 I 3 I 4... I N- I N

44 Spline-Interpolation Polynome 3.Grades stückweise zwischen den Stützstellen stetig in den Stützstellen erste und zweite Ableitung stetig in den Stützstellen Formel: p ( ) a + b + c + n n 3 n 2 n d n

45 Bedingungen N+ Anzahl der Stützstellen N Polynome 4*N unbekannte Parameter ) ''( ) ''( ) '( ) '( ) ( ) ( ) ( ) ( n n n n n n n n n n n n n n p p p p f p f p 4 Bedingungen für jedes Intervall, außer Randintervalle!!!

46 Randbedingungen 4*N Unbekannte reguläre Intervalle -> 4*(N-2) Gleichungen Randintervalle 2*3 Gleichungen 2 Gleichungen fehlen Natürliche Randbedingungen p ( )0 p N ( N+ )0 Zyklische Randbedingungen p ( ) p N ( N+ ) Eine der beiden Bedingungen muß erfüllt sein!

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 6 Endliche Kameras Die Lochkamera Die Projektive Kamera Die projektive Kamera Spalten von P Zeilen von P Hauptpunkt und Hauptachse

Mehr

Vorgehen zur Kalibrierung von Kamerabildern

Vorgehen zur Kalibrierung von Kamerabildern Vorgehen r Kalibrierng von Kamerabildern Prof. Dr.-Ing. Bernhard Lang, 06.04.2013 3 Kalibrierng von Kamerabildern 3.1 Hintergrnd Eine reale Kamera lässt sich geometrisch drch eine Lochkamera modellieren.

Mehr

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 6. Januar 2004

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 6. Januar 2004 zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis Kalibrierung einer Kamera: Grundkonzept...............344

Mehr

Symplifying the Reconstruction of 3D Models using Parameter Elimination

Symplifying the Reconstruction of 3D Models using Parameter Elimination Seminar 3D Rekonstruktion, Priehn, Hannes Priehn, Jens Symplifying the Reconstruction of 3D Models using Parameter Elimination SS2011 Hannes Priehn Jens Priehn Koordinatensysteme Titel, Datum,... 2 Weltkoordinaten

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

2.2 Projektionen und Kameramodelle

2.2 Projektionen und Kameramodelle Graphikprog. GRUNDLEGENDE VERFAHREN UND TECHNIKEN. Projektionen und Kameramodelle Nachdem alle Objekte einer Szenerie mittels der besprochenen Transformationen im D-Weltkoordinatensystem platziert sind,

Mehr

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen )

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) Geometrische Optik Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) k - Vektoren zeigen zu Wellenfronten für Ausdehnung D von Strukturen, die zu geometrischer Eingrenzung führen

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Computer-Graphik I Transformationen & Viewing

Computer-Graphik I Transformationen & Viewing lausthal Motivation omputer-raphik I Transformationen & Viewing Man möchte die virtuelle 3D Welt auf einem 2D Display darstellen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann

Mehr

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung Kapitel 6 2D-Transformationen Mit Hilfe von Transformationen ist es möglich, die Position, die Orientierung, die Form und die Größe der grafischen Objekte zu manipulieren. Transformationen eines Objekts

Mehr

Grundlagen der digitalen Bildverarbeitung / Fortsetzung

Grundlagen der digitalen Bildverarbeitung / Fortsetzung Grundlagen der digitalen Bildverarbeitung / Fortsetzung Wir haben bereits zwei Beispiele digitaler Bildfilter gesehen. Es gibt eine große Menge von Filtern mit ganz unterschiedlicher Auswirkung auf das

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Thema: Kameramodelle und Kamerakalibrierung Proseminar: Grundlagen Bildverstehen/Bildgestaltung Michaela

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Literatur Richard Hartle and Andrew Zisserman. Multiple View Geometr in computer vision, Cambridge Universit Press, 2 nd Ed., 23. O.D.

Mehr

geschlossene Schachtel mit einem kleinen Loch

geschlossene Schachtel mit einem kleinen Loch Kameramodellierung Lochkamera Kamerakonstante Kamerazentrum geschlossene Schachtel mit einem kleinen Loch ideale Kamera: Loch hat keine Ausdehnung die Strahlen sind ein Büschel von Geraden Abbildung erfolgt

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München WS /3 Institut für Informatik Prof Dr Hans-Joachim Bungartz Dipl-Inf Christoph Riesinger Dipl-Inf Dipl-Math Jürgen Bräckle Numerisches Programmieren Programmieraufgabe: Polnominterpolation,

Mehr

Bildrekonstruktion & Multiresolution

Bildrekonstruktion & Multiresolution Bildrekonstruktion & Multiresolution Verkleinern von Bildern? Was ist zu beachten? Es kann aliasing auftreten! Das Abtasttheorem sagt wie man es vermeidet? ===> Page 1 Verkleinern von Bildern (2) Vor dem

Mehr

Praktikumsversuch. Kamerakalibrierung. S. Rahmann und H. Burkhardt

Praktikumsversuch. Kamerakalibrierung. S. Rahmann und H. Burkhardt Praktikumsversuch Kamerakalibrierung S. Rahmann und H. Burkhardt . Inhaltsverzeichnis 1 Kamerakalibrierung 5 1.1 Einleitung............................... 5 1.2 Projektive Geometrie.........................

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

bilinear interpoliert ideal interpoliert

bilinear interpoliert ideal interpoliert Bildverarbeitung und Objekterkennung Privatdozent (PD) Dr.-Ing. habil. K.-H. Franke Technische Universität Ilmenau Fakultät für Informatik und Automatisierung Institut für Prakt. Inf. und Medieninf. Fachgebiet

Mehr

in-situ visio n & se nso r system s

in-situ visio n & se nso r system s , 28.07.2009 3D-CarScan Bildverarbeitung zur Bestimmung optimierter Laufwege in Autowaschanlagen erhält Innovationspreis 3D-PKW-Konturbestimmung durch Laser-Lichtschnittverfahren. Rainer Obergrußberger,

Mehr

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 16. Dezember 2003

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 16. Dezember 2003 zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 5. Sichtsysteme in der Robotik....................307 Industrielle

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

3.6 Drehungen in der Ebene

3.6 Drehungen in der Ebene 3.6-1 3.6 Drehungen in der Ebene 3.6.1 Die Drehmatrix Gelegentlich müssen wir die Lage eines Teilchens in einem ebenen Koordinatensystem beschreiben, das gegenüber einem festen System um φ gedreht ist.

Mehr

Technische Universität

Technische Universität Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Stereo Vision: Epipolargeometrie Proseminar: Grundlagen Bildverarbeitung/Bildverstehen Alexander Sahm Betreuer:

Mehr

EVC Repetitorium Blender

EVC Repetitorium Blender EVC Repetitorium Blender Michael Hecher Felix Kreuzer Institute of Computer Graphics and Algorithms Vienna University of Technology INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Filter Transformationen

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 7 Projektionen und Rückprojektionen Der Punkt Die Gerade Die Quadrik Die Ebene Zusammenhang Kalibriermatrix - Bild des absoluten

Mehr

MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE. Marko HeRBERTZ

MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE. Marko HeRBERTZ MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE Marko HeRBERTZ Wiederholung: Objekt-, Welt- und Kamerakoordinaten Kugelkoordinaten in kartesische Mögliche Schwierigkeiten Kameralinse Lage der Festung Lagerichtige

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Softwareprojekt Spieleentwicklung

Softwareprojekt Spieleentwicklung Softwareprojekt Spieleentwicklung Prototyp I (2D) Prototyp II (3D) Softwareprojekt 12.04. 19.04. 26.04. 03.05. 31.05. Meilenstein I 28.06. Meilenstein II Prof. Holger Theisel, Tobias Günther, OvGU Magdeburg

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Computergrafik 1. 2D Rendering

Computergrafik 1. 2D Rendering Computergrafik 2D Rendering Hearn/Baker 32., 3.4-3.6,5. 5.8, 6. 6.8, 6. Based on material b Werner Purgathofer, Gerhard Reitmar and Dieter Schmalstieg 2D Racasting Inhalt Einfaches Rendering Model 2D Transformationen

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Projektive Invarianz und das kanonische Kamerapaar Kanonisches Kamerapaar aus gegebener Fundamentalmatrix Freiheitsgrade

Mehr

Fitting 3D Models to Images

Fitting 3D Models to Images Proseminar "Aufgabenstellungen der Bildanalyse und Mustererkennung" Fitting 3D Models to Images WS 08/09 Gliederung Einleitung Pose Consistency perspective Camera affine/projective Camera Linearkombinationen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Fakultät für Physik und Astronomie

Fakultät für Physik und Astronomie Fakultät für Physik und Astronomie Ruprecht-Karls-Universität Heidelberg Diplomarbeit im Studiengang Physik vorgelegt von Christoph Sebastian Garbe aus Bochum September 1998 Entwicklung eines Systems

Mehr

3D-Model Reconstruction using Vanishing Points

3D-Model Reconstruction using Vanishing Points 3D-Model Reconstruction using Vanishing Points Seminar: Ausgewä hlte Themen zu "Bildverstehen und Mustererkennung" Dozenten: Prof. Dr. Xiaoyi Jiang, Dr. Da-Chuan Cheng, Steffen Wachenfeld, Kai Rothaus

Mehr

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( )

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( ) 23 4 Abbildungen von Funktionsgraphen Der Graph zu einer gegebenen Funktion f ist die Menge aller ( ) sind. Für einen einzelnen Punkte, deren Koordinaten ; f () Punkt des Graphen gibt man einen Wert aus

Mehr

Inhalt Phototechnik 24.4.07

Inhalt Phototechnik 24.4.07 Inhalt Phototechnik 24.4.07 4.2.1.5 Abbildungsfehler Klassifikation der Abbildungsfehler Ursachen Fehlerbilder Versuch Projektion Ursachen für Abbildungsfehler Korrekturmaßnahmen 1 Paraxialgebiet Bisher:

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

Implementierung und Evaluierung von Video Feature Tracking auf moderner Grafik Hardware

Implementierung und Evaluierung von Video Feature Tracking auf moderner Grafik Hardware Implementierung und Evaluierung von Video Feature Tracking auf moderner Diplomarbeit vorgelegt von Sebastian Heymann Betreut von Prof. Dr. Bernd Fröhlich Bauhaus Universität t Dr. Aljoscha Smolic Fraunhofer

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Computer Graphik. Mitschrift von www.kuertz.name

Computer Graphik. Mitschrift von www.kuertz.name Computer Graphik Mitschrift von www.kuertz.name Hinweis: Dies ist kein offizielles Script, sondern nur eine private Mitschrift. Die Mitschriften sind teweilse unvollständig, falsch oder inaktuell, da sie

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

Passerellen Prüfungen 2009 Mathematik

Passerellen Prüfungen 2009 Mathematik Passerellen Prüfungen 2009 Mathematik 1. Analysis: Polynom und Potenzfunktionen Gegeben sind die beiden Funktionen 21 und 32. a) Bestimmen Sie die Null, Extremal und Wendepunkte der beiden Funktionen.

Mehr

Kapitel 3. Transformationen

Kapitel 3. Transformationen Oyun Namdag Am 08.11.2007 WS 07/08 Proseminar Numerik: Mathematics for 3D game programming & computer graphics Dozenten: Prof. Dr. V. Schulz, C. Schillings Universität Trier Kapitel 3 Transformationen

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Industrielle Bildverarbeitung mit OpenCV

Industrielle Bildverarbeitung mit OpenCV Industrielle Bildverarbeitung mit OpenCV Zhang,Duoyi 6.7.2 Gliederung. Einführung für OpenCV 2. Die Struktur von OpenCV Überblick Funktionsumfang in Ausschnitten mit Beispielen 3. Industrielles Anwendungsbeispiel

Mehr

(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU

(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU (7) Normal Mapping Vorlesung Computergraphik II S. Müller Dank an Stefan Rilling Einleitung Die Welt ist voller Details Viele Details treten in Form von Oberflächendetails auf S. Müller - 3 - Darstellung

Mehr

Hintergrundsubtraktion mit PTZ-Kameras

Hintergrundsubtraktion mit PTZ-Kameras Institut für Visualisierung und Interaktive Systeme Universität Stuttgart Universitätsstraße 38 D 70569 Stuttgart Diplomarbeit Nr. 3114 Hintergrundsubtraktion mit PTZ-Kameras Davaadorj Tsendragchaa Studiengang:

Mehr

Transformationen im 3D-Raum

Transformationen im 3D-Raum Thomas Jung Repräsentation von 3D-Oberflächen Aufbau von Szenen Transformationen im 3D-Raum Projektionstranformationen Anwendung in OpenGL Geometrietransformationen bilden die Basis für die Computergrafik

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

'Visual Hull' mit Hilfe von Spiegeln

'Visual Hull' mit Hilfe von Spiegeln 'Visual Hull' mit Hilfe von Spiegeln hwww.dip.ee.uct.ac.za/~kforbes/doublemirror/doublemirror.html Dreidimensionales Computersehen Dr.-Ing. Simon Winkelbach www.rob.cs.tu-bs.de/teaching/courses/cs 1 Zur

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Andreas Aigner email: andreasa@sbox.tu-graz.ac.at. Januar 00 Inhaltsverzeichnis Theorie. Stromfunktion...........................

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Projektive Geometrie

Projektive Geometrie Projektive Geometrie Einleitung Was ist projektive Geometrie? eine alternative algebraische Repräsentation von geometrischen Objekten (Punkt, Gerade,...) und Transformationen (Translation, Rotation,...)

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen V. Die Rendering-Pipeline Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Der Begriff Rendering 2. Die Rendering-Pipeline Geometrische Modellierung

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Versuch 50. Brennweite von Linsen

Versuch 50. Brennweite von Linsen Physikalisches Praktikum für Anfänger Versuch 50 Brennweite von Linsen Aufgabe Bestimmung der Brennweite durch die Bessel-Methode, durch Messung von Gegenstandsweite und Bildweite, durch Messung des Vergrößerungsmaßstabs

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Vorlesung an der Hochschule Heilbronn (Stand: 7 Mai ) Prof Dr V Stahl Copyright 6 by Volker Stahl All rights reserved Inhaltsverzeichnis Vektoren 4 Vektoren und Skalare

Mehr

Digitale Bildverarbeitung

Digitale Bildverarbeitung Digitale Bildverarbeitung Thorsten Hermes Eine praktische Einführung ISBN 3-446-22969-8 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-22969-8 sowie im Buchhandel Kapitel

Mehr

Versuch 17: Geometrische Optik/ Mikroskop

Versuch 17: Geometrische Optik/ Mikroskop Versuch 17: Geometrische Optik/ Mikroskop Mit diesem Versuch soll die Funktionsweise von Linsen und Linsensystemen und deren Eigenschaften untersucht werden. Dabei werden das Mikroskop und Abbildungsfehler

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen IV. Koordinatensysteme und geometrische Transformationen Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Skalare Punkte und Vektoren 2.

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

Zusammenfassung Digitale Bildverarbeitung By Fabian Flohrmann

Zusammenfassung Digitale Bildverarbeitung By Fabian Flohrmann Zusammenfassung Digitale Bildverarbeitung By Fabian Flohrmann VL01 Stufen der Bildverarbeitung Bildgewinnung => Bildbearbeitung => Bilderkennung Bildgewinnung: Bildaufnahme Bilddiskretisierung Bildbearbeitung:

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000)

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000) Planare Projektionen und Betrachtungstransformation Quelle: Angel (2) Gliederung Einführung Parallelprojektionen Perspektivische Projektionen Kameramodell und Betrachtungstransformationen Mathematische

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Augmented Reality - Grundlagen

Augmented Reality - Grundlagen Augmented Reality - Grundlagen Intelligente Mensch-Maschine-Interaktion - IMMI SS 2011 Prof. Didier Stricker Didier.Stricker@dfki.de Die Vorlesung am 07.06 findet im Raum Zuse am DFKI statt 2 Übersicht

Mehr

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 )

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 ) Geraden und Ebenen Thérèse Tomiska 2. Oktober 2008 1 Geraden 1.1 Parameterdarstellung (R 2 und R 3 ) a... Richtungsvektor der Geraden g t... Parameter X = P + t P Q P Q... Richtungsvektor der Geraden g

Mehr

(12) Wiederholung. Vorlesung Computergrafik T. Grosch

(12) Wiederholung. Vorlesung Computergrafik T. Grosch (12) Wiederholung Vorlesung Computergrafik T. Grosch Klausur 18.7. 14 16 Uhr, Hörsaal 5 (Physik) 2 Zeitstunden 8 Aufgaben Drei Aufgabentypen Übungsaufgaben Wissensfragen zur Vorlesung Transferfragen Unterschiedlicher

Mehr

Übungen zu Splines Lösungen zu Übung 20

Übungen zu Splines Lösungen zu Übung 20 Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 5.06.04). Name Matr.

Mehr

Dynamically Reparameterized Light Fields

Dynamically Reparameterized Light Fields Dynamically Reparameterized Light ields Aaron Isaksen Leonard McMillan Steven J. Gortler MIT LCS Computer Graphics Group GDV Seminar 2000 Präsentation: Simon Schirm Betreuer: Stephan Würmlin Übersicht

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Ansichten über krumme Kurven oder der Einsatz der Spline-Interpolation in einer CNC-Steuerung

Ansichten über krumme Kurven oder der Einsatz der Spline-Interpolation in einer CNC-Steuerung CNC Power Engineering - Always on the move Ansichten über krumme Kurven oder der Einsatz der Spline-Interpolation in einer CNC-Steuerung Amazing ideas and freaky challenges in software development Klaus,

Mehr

1 Analytische Geometrie

1 Analytische Geometrie Analytische Geometrie. Grundlagen, Begriffe, Schreibweisen Achsenkreuz Die Achsen heißen in dieser Darstellung x und -Achse. Punkte Punkte werden weiterhin mit großen, lateinischen Buchstaben bezeichnet

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

Fotografie * Informatik * Mathematik * Computer-Algebra * Handreichung für Lehrer

Fotografie * Informatik * Mathematik * Computer-Algebra * Handreichung für Lehrer BIKUBISCHE INTERPOLATION AM BEISPIEL DER DIGITALEN BILDBEARBEITUNG - AUFGABENSTELLUNG FÜR SCHÜLER Problem Bei Veränderung der Größe eines Digitalbildes sind entweder zuviel Pixel (Verkleinerung) oder zuwenig

Mehr

Kamerakalibrierung. Messen in Videobildern, Leobots-Projekt Version 1.0. Matthias Jauernig, 03INB, HTWK Leipzig

Kamerakalibrierung. Messen in Videobildern, Leobots-Projekt Version 1.0. Matthias Jauernig, 03INB, HTWK Leipzig Kamerakalibrierung Messen in Videobildern, Leobots-Projekt 2006 Version 1.0 Matthias Jauernig, 03INB, HTWK Leipzig Copyright (c) 2006, Matthias Jauernig Kamerakalibrierung, Matthias Jauernig 3 Begriffe

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Software in der Industriellen Bildverarbeitung

Software in der Industriellen Bildverarbeitung Software in der Industriellen Bildverarbeitung Technologieentwicklung am Beispiel Pattern Matching Dr. Olaf Munkelt MVTec Software GmbH MVTec Software GmbH Firma konzentriert sich auf Building Vision for

Mehr

Externe Kamerakalibration eines Infrarottrackingsystems. Volker Wiendl Lehrstuhl für Multimediakonzepte und Anwendungen Universität Augsburg

Externe Kamerakalibration eines Infrarottrackingsystems. Volker Wiendl Lehrstuhl für Multimediakonzepte und Anwendungen Universität Augsburg Externe Kamerakalibration eines Infrarottrackingsystems Volker Wiendl Lehrstuhl für Multimediakonzepte und Anwendungen Universität Augsburg 18. April 2005 Kurzfassung Für viele Anwendungen im Bereich Augmented

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr