8. Quadratische Reste. Reziprozitätsgesetz

Save this PDF as:

Größe: px
Ab Seite anzeigen:

Download "8. Quadratische Reste. Reziprozitätsgesetz"

Transkript

1 O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung x Z besitzt Andernfalls heißt a uadratischer Nichtrest odulo (Abkürzung NR Dies lässt sich auch so ausdrücken: a ist genau dann uadratischer Rest odulo, wenn die Klasse von a i Ring Z/ ein Quadrat ist Wegen des Chinesischen Restsatzes kann an den allgeeinen Fall darauf zurückführen, dass der Modul eine Prizahlotenz ist, k Wir beschäftigen uns in dieser Vorlesung hautsächlich it de Fall k 1, dh uadratischen Resten odulo einer Prizahl Der Fall 2 ist trivial (jede ganze Zahl ist Quadrat odulo 2 Sei daher jetzt eine ungerade Prizahl Die Frage nach den uadratischen Resten odulo ist dann gleichbedeutend it der Frage nach den Quadraten i Körer Z/ Da 0 stets ein Quadrat ist, kann an sich auf (Z/ beschränken Betrachten wir zunächst ein Beisiel 11 x x od 11 Es sind also die Restklassen von 1,3,4,5,9 Quadrate in (Z/11, die Restklassen von 2,6,7,8,11 sind Nicht-Quadrate Es sind also genau die Hälfte der Eleente von (Z/11 Quadrate Wir werden sehen, dass dies auch für beliebige ungerade Prizahlen gilt Dies gilt nicht ehr für zusaengesetzte Moduln ZB haben wir für für 15 folgende Quadrate-Tafel für (Z/15 1, 2, 4, 7, 8, 11, 13, 14} x x od 15 Hier gibt es also nur zwei Quadrate Dies lässt sich so erklären: Nach de Chinesischen Restsatz gilt (Z/15 (Z/3 (Z/5 In (Z/3 gibt es nur ein Quadrat und in (Z/5 zwei Quadrate, also i Produkt auch nur zwei Quadrate 82 Definition (Legendre-Sybol Sei a Z und eine ungerade Prizahl Dann wird das Legendre-Sybol wie folgt definiert: 0, falls a, : +1, falls a und a ist QR od, 1, falls a und a ist NR od Ka 8 zuletzt geändert a:

2 8 Quadratische Reste Rezirozitätsgesetz Die Gleichung x 2 a od ist also genau dann lösbar, wenn 0 Offenbar gilt a b od ( b 83 Satz (Euler-Kriteriu Sei eine ungerade Prizahl Dann gilt für jede ganze Zahl a a ( 1/2 od Beweis Falls a, sind beide Seiten 0 od Wir können also i folgenden voraussetzen, dass a 1 Fall: a ist uadratischer Rest odulo Dann gibt es eine ganze Zahl b it a b 2 od Natürlich gilt auch b Daher folgt aus de kleinen Satz von Ferat a ( 1/2 b 1 1 od b 2 Fall: a ist uadratischer Nichtrest Sei g eine Priitivwurzel odulo Dann ist a g it einer ungeraden Zahl 2k + 1 Dait folgt a ( 1/2 g (2k+1( 1/2 g k( 1 g ( 1/2 g ( 1/2 1 od b Beerkung Wegen des schnellen Potenzierungs-Algorithus liefert Satz 83 eine effiziente Methode, das Legendre-Sybol zu berechnen Wir werden aber säter sehen, dass an ittels des uadratischen Rezirozitätsgesetzes das Legendre-Sybol noch schneller berechnen kann 84 Corollar Für jede ungerade Prizahl und alle ganzen Zahlen a, b gilt ( b b Aus der Multilikativität des Legendre-Sybols folgt zb dass das Produkt zweier uadratischer Nichtreste ein uadratischer Rest ist Das Corollar bedeutet, dass die Abbildung ( ( x : (Z/ ±1}, x ein Gruen-Hooorhisus ist Dieser Hooorhisus ist surjektiv, da eine Priitivwurzel g odulo sicher ein uadratischer Nichtrest ist Der Kern dieser Abbildung ist die Menge der Quadrate in (Z/ Dies ist eine Untergrue vo Index 2 Es gibt also ebenso viele Quadrate wie Nichtuadrate in (Z/ 82

3 O Forster: Prizahlen 85 Quadratisches Rezirozitätsgesetz Das uadratische Rezirozitätsgesetz acht eine Aussage darüber, wie sich die Legendresybole ( und ( zueinander verhalten, wobei zwei ungerade Prizahlen sind Es stellt sich heraus, dass beide Sybole denselben Wert haben, falls wenigstens eine der beiden Prizahlen 1 od 4 ist; dagegen sind die Sybole entgegengesetzt gleich, falls 3 od 4 Das Rezirozitätsgesetz wurde zuerst von Gauß bewiesen, nachde sich vorher schon ua Legendre und Euler vergeblich daru beüht hatten Gauß selbst hat 8 Beweise gegeben und bis heute wurden rund 200 Beweise veröffentlicht, wenn auch die eisten nur Varianten von vorherigen sind Wir bringen hier einen eleentaren, auf Gauß zurückgehenden Beweis Dazu brauchen wir einige Vorbereitungen Sei eine ungerade Prizahl Wir bezeichnen it H( das Halbsyste odulo, H( : 1, 2,, 1 2 } Für jede ganze Zahl n, die nicht durch teilbar ist, lässt sich ihre Restklasse odulo eindeutig schreiben als n ε u od it ε ±1} und u H( Man nennt εu den absolut kleinsten Rest von n odulo Sei nun eine Zahl a Z it a vorgegeben Für x H( definieren definieren wir ε a (x ±1} und σ a (x H( durch die Bedingung ax ε a (xσ a (x od Es ist leicht zu sehen, dass die Abbildung σ a : H( H( bijektiv, dh eine Perutation von H( ist 86 Satz (Gaußsches Lea Sei eine ungerade Prizahl und a eine zu teilerfrede ganze Zahl Dann gilt ε a (x x H( Dies ist äuivalent it folgender Aussage: Sei die Anzahl der Eleente von a,, 3a,, 1 2 a }, deren absolut kleinster Rest odulo negativ ist Dann ist 1, wenn gerade, und 1, wenn ungerade ist Beweis Es gilt (ax x H( x H( ε a (x x H( σ a (x 83 x H( ε a (x x H( x,

4 8 Quadratische Reste Rezirozitätsgesetz denn durchläuft x alle Eleente von H(, so durchläuft auch σ a (x alle Eleente von H( Andrerseits ist (ax a ( 1/2 x, x H( x H( also folgt it de Euler-Kriteriu ε a (x a ( 1/2, ed x H( Beisiel Sei 7 Dann ist H( 1, 2, 3} Für a 2 haben wir 2 1 2, , , also ε 2 (1 1, ε 2 (2 1, ε 2 (3 1, woraus folgt 1, dh 2 ist uadratischer 7 Rest odulo 7 In der Tat ist od 7 Für die Anwendung des Gaußschen Leas ist eine Uforulierung nützlich Sei weiter eine ungerade Prizahl und a eine ositive, zu teilerfrede ganze Zahl Für ν 1,, a betrachten wir die Intervalle I ν : x R : (ν 1 2 < x < ν 2 Offenbar ist für k H( 1,, ( 1/2} der absolut kleinste Rest von ka odulo genau dann negativ, dh ε a (k 1, wenn ka in eine Intervall I ν it gerade Index ν liegt Wir bezeichnen it r ν die Anzahl der ka, k H, die in I ν liegen Da kein ka auf eine Randunkt eines der I ν liegt, folgt r ν ν (ν 1, wobei x für eine reelle Zahl x die größte ganze Zahl x bezeichnet Nach de Gaußschen Lea ist ( 1 it Soit folgt 0<2ν a r 2ν 87 Corollar Sei eine ungerade Prizahl und a eine ositive, zu teilerfrede ganze Zahl Dann gilt } ( a/2 a ( ( 1 it k a k1 (k 1 2 a Als erste Anwendung beweisen wir die sog Ergänzungssätze zu Rezirozitätsgesetz 84

5 O Forster: Prizahlen 88 Satz Sei eine ungerade Prizahl Dann gilt: i (1 Ergänzungssatz ii (2 Ergänzungssatz ( 1 ( 1 ( 1/2 ( 1 (2 1/8 +1 für 1 od 4, 1 für 3 od 4 +1 für ±1 od 8, 1 für ±3 od 8 Beweis i Dies folgt aus de Gaußschen Lea, da ε 1 (x 1 für alle x H( Die Behautung ist aber auch eine direkte Anwendung des Euler-Kriterius 83 ii Für a 2 ergibt die Forel des Corollars 87 ( 1 it /2 /4 Wir werten dies durch Fallunterscheidung aus /2 /4 ( 1 8k + 1 4k 2k 2k +1 8k 1 4k 1 2k 1 2k +1 8k + 3 4k + 1 2k 2k k 3 4k 2 2k 1 2k 1 1 Daraus folgt die Behautung 89 Satz Sei eine ungerade Prizahl und a eine ositive, zu teilerfrede ganze Zahl Sei eine weitere Prizahl it ± od 4a Dann folgt Beweis Nach de Corollar 87 gilt ( 1 it a/2 (s 2ν s 2ν 1, wobei s k ν1 k und entsrechend ( 1 it a/2 (s 2ν s 2ν 1, wobei s k ν1 k 85

6 8 Quadratische Reste Rezirozitätsgesetz i Wir behandeln zunächst den Fall od 4a Dann ist + 4at it einer ganzen Zahl t Es folgt s k k + 4at k + 2kt k + 2kt s k + 2kt Also gilt od 2, woraus die Behautung folgt ii Sei jetzt od 4a, dh 4at it einer ganzen Zahl t Dann ist s k + s k k 4at + für 1 k a, da dann k k 2kt + k + k 2kt 1 keine ganze Zahl ist Es folgt (s 2ν s 2ν 1 + (s 2ν s 2ν 1 0 od 2 für 1 ν a/2, also od 2, ed 810 Satz (Quadratisches Rezirozitätsgesetz Seien zwei ungerade Prizahlen Dann gilt ( ( ( Dies lässt sich auch so aussrechen: Ist wenigstens eine der Prizahlen 1 od 4, so gilt ( ( ; falls aber 3 od 4, so folgt ( ( Beweis i Wir behandeln zuerst den Fall od 4 Dann ist + 4r it einer ganzen Zahl r, die wir als ositiv annehen können (sonst vertausche an die Rollen von und Außerde gilt r Nach Satz 89 ist Andrerseits ist ( 4r ( 4r + ( und unter Benutzung des 1 Ergänzungssatzes ( 4r ( ( ( ( 1 1 2, also ( (, falls 1 od 4 und ( (, falls 3 od 4 ii Falls od 4, gilt od 4, also + 4r it einer ganzen Zahl r Wieder gilt nach Satz 89 86

7 O Forster: Prizahlen und sowie ( 4r ( 4r ( 4r ( ( 4r (, also ( ( Dait ist das uadratische Rezirozitätsgesetz vollständig bewiesen Beerkung Wir haben hier das Rezirozitätsgesetz aus Satz 89 abgeleitet Ugekehrt lässt sich Satz 89 auch leicht ithilfe des Rezirozitätsgesetzes beweisen (Übung Als Anwendung der Ergänzungssätze zu uadratischen Rezirozitätsgesetz beweisen wir jetzt die Existenz von unendlich vielen Prizahlen in arithetischen Progressionen zu Modul Satz In jeder der arithetischen Progressionen 8k + 1, 8k + 3, 8k + 5, 8k + 7, (k N, gibt es unendlich viele Prizahlen Beweis Sei B > 0 eine vorgegebene Schranke und U das Produkt aller ungeraden natürlichen Zahlen B Wir definieren N 1 : (2U 4 + 1, N 3 : U 2 + 2, N 5 : U 2 + 4, N 7 : 8U 2 1 Da ein Quadrat einer ungeraden Zahl stets 1 od 8 ist, folgt U 2 1 od 8 und N k k od 8 für k 1, 3, 5, 7 Außerde besitzt N k keinen Priteiler < B Denn ein solcher Priteiler ist ungerade und teilt U Also kann nicht N k ohne Rest teilen Unser Satz wird deshalb bewiesen sein, wenn wir zeigen, dass N k einen Priteiler N k it k od 8 besitzt i Sei ein Priteiler von N 1 (2U Dann gilt (2U od, dh x 4 1 od it x : 2U Daraus folgt, dass das Eleent x in (Z/ die Ordnung 8 besitzt Daher ist 8 ein Teiler von #(Z/ 1, dh 1 od 8, ed 87

8 8 Quadratische Reste Rezirozitätsgesetz ii Sei ein Priteiler von N 3 U Dann folgt U 2 2 od ( 2 1 Aus den Ergänzungssätzen zu uadratischen Rezirozitäts-Gesetz folgt dann 1 od 8 oder 3 od 8 Es können aber nicht alle Priteiler von N 3 kongruent 1 od 8 sein, denn dann wäre N 3 1 od 8 Es gibt also indestens einen Priteiler N 3 it 3 od 8 iii Sei ein Priteiler von N 5 U Dann folgt U 2 4 od ( 1 1 Daraus folgt 1 od 4, dh 1 od 8 oder 5 od 8 Es können aber nicht alle Priteiler von N 5 kongruent 1 od 8 sein, denn dann wäre N 5 1 od 8 Es gibt also indestens einen Priteiler N 5 it 5 od 8 iv Sei ein Priteiler von N 7 8U 2 1 Dann folgt 8U od, also nach Multilikation it 2 (4U 2 2 od 1 Nach de 2 Ergänzungssatz zu uadratischen Rezirozitäts-Gesetz ist daher ±1 od 8 Es können aber nicht alle Priteiler von N 7 kongruent 1 od 8 sein, denn dann wäre N 7 1 od 8 Es gibt also indestens einen Priteiler N 7 it 1 7 od 8, ed 812 Das Jacobi-Sybol Es ist für anche Zwecke nützlich, das Legendre-Sybol auf den Fall zu verallgeeinern, dass der Nenner keine Prizahl ehr ist Sei 3 eine ungerade Zahl und 1 2 r die Prifaktor-Zerlegung von (die j sind nicht notwendig aarweise verschieden Dann definiert an für eine ganze Zahl a das Jacobi-Sybol durch : r j j1 Das Jacobi-Sybol genügt folgenden Rechenregeln: 1 ( b, falls a b od, 2 b, 88

9 O Forster: Prizahlen 3 4 für ungerade, k 3, k k 0 gcd(a, 1 Diese Regeln folgen unittelbar aus der Definition und den entsrechenden Regeln für das Legendre-Sybol Man beachte jedoch folgenden Unterschied zu Legendre-Sybol: Ist a uadratischer Rest odulo und gcd(a, 1, so folgt zwar 1, aber ugekehrt kann an aus 1 nicht schließen, dass a uadratischer Rest odulo ist ZB ist 2 weder uadratischer Rest od 3 noch od 5, also auch nicht uadratischer Rest od 15, aber ( 1 ( Satz (Quadratisches Rezirozitätsgesetz für das Jacobi-Sybol Sei 3 eine ungerade Zahl (1 1 Ergänzungssatz: (2 2 Ergänzungssatz: ( 1 ( 1 ( 1/2 ( 1 (2 1/8 +1 für 1 od 4, 1 für 3 od 4 +1 für ±1 od 8, 1 für ±3 od 8 (3 Ist k 3 eine weitere, zu teilerfrede ungerade Zahl, so gilt ( k ( k dh ( k und ( k ( k 1 2, ( k, falls 1 od 4 oder k 1 od 4 (, falls k 3 od 4 k Beweis (Zurückführung auf die entsrechenden Aussagen für das Legendre-Sybol 814 Effiziente Berechnung des Jacobi-Sybols Mit de Rezirozitätsgesetz kann an einen effizienten Algorithus zur Berechnung des Jacobi-Sybols herleiten: Es sei, a, Z, 3 ungerade, zu berechnen 89

10 8 Quadratische Reste Rezirozitätsgesetz (1 Zunächst reduziere an a od, dh an bestie ein a it a a od und 0 a < Natürlich ist Falls a 0 oder a 1 ist an fertig (2 Falls a gerade, schreibe an a 2 ν b it b ungerade (Falls a ungerade, ist b a und ν 0 Dann ist ν ( b, und ±1 kann nach de zweiten Ergänzungssatz berechnet werden Falls b 1, ist an fertig (3 Auf ( b kann jetzt das Rezirozitätsgesetz angewendet werden: ( b ( 1 b 1 2 ( 1 2 b Dies gilt auch, wenn b und nicht teilerfred sind, denn dann sind beide Seiten 0 Auf ( kann an jetzt wieder (1 anwenden Da die Nenner des Jacobi-Sybols b ier kleiner werden, ist an nach endlich vielen Schritten fertig Die Anzahl der Schritte ist vergleichbar it den bei Euklidischen Algorithus für die Berechnung von gcd(a, nötigen Schritte, wächst also nur linear it der Stellenzahl von Man beachte: Selbst wenn an nur ein Legendre-Sybol it einer Prizahl it dieser Methode ausrechnet, kann an zwischenzeitlich auf die allgeeineren Jacobi- Sybole stoßen Beisiel ( ( 85 ( ( ( 85 ( 3 (

16. Das Quadratische Reziprozitätsgesetz

16. Das Quadratische Reziprozitätsgesetz O Forster: Einführung in die Zahlentheorie 16 Das Quadratische Rezirozitätsgesetz 161 Das uadratische Rezirozitätsgesetz acht eine Aussage darüber, wie sich die Legendresybole ( und ( zueinander verhalten,

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Beispiellösungen zu Blatt 111

Beispiellösungen zu Blatt 111 µ κ Mathematisches Institut Georg-August-Universität Göttingen Beispiellösungen zu Blatt 111 Aufgabe 1 Ludwigshafen hat einen Bahnhof in Dreiecksform. Markus, Sabine und Wilhelm beobachten den Zugverkehr

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen. R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Programmentwicklungen, Webseitenerstellung, Zeiterfassung, Zutrittskontrolle

Programmentwicklungen, Webseitenerstellung, Zeiterfassung, Zutrittskontrolle Version LG-TIME /Office A 8.3 und höher Inhalt 1. Allgemeines S. 1 2. Installation S. 1 3. Erweiterungen bei den Zeitplänen S. 1;2 4. Einrichtung eines Schichtplanes S. 2 5. Einrichtung einer Wechselschicht

Mehr

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 schlechte@zib.de Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick

Mehr

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 6

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.

!(0) + o 1(). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen. Bifurkationen an geschlossenen Orbits 5.4 167 der Schnittabbldung konstruiert. Die Periode T (") der zugehörigen periodischen Lösungen ergibt sich aus =! + o 1 (") beziehungsweise Es ist also t 0 = T (")

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Serienbrieferstellung in Word mit Kunden-Datenimport aus Excel

Serienbrieferstellung in Word mit Kunden-Datenimport aus Excel Sehr vielen Mitarbeitern fällt es schwer, Serienbriefe an Kunden zu verschicken, wenn sie die Serienbrieffunktion von Word nicht beherrschen. Wenn die Kunden mit Excel verwaltet werden, genügen nur ein

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1 Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Win-Digipet V 9.2 Premium Edition Wie bastele ich mir steuerbare Kontakte. Wie bastele ich mir steuerbare Kontakte? -Quick-And-Dirty-Lösung-

Win-Digipet V 9.2 Premium Edition Wie bastele ich mir steuerbare Kontakte. Wie bastele ich mir steuerbare Kontakte? -Quick-And-Dirty-Lösung- ? -Quick-And-Dirty-Lösung- Vorwort Nach Anfragen aus dem Win-Digipet-Forum möchte ich folgende Quick-And-Dirty-Lösung vorstellen mit der man sich mal eben virtuelle Kontakte erstellen kann. Vorweg muß

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Alle Schlüssel-Karten (blaue Rückseite) werden den Schlüssel-Farben nach sortiert und in vier getrennte Stapel mit der Bildseite nach oben gelegt.

Alle Schlüssel-Karten (blaue Rückseite) werden den Schlüssel-Farben nach sortiert und in vier getrennte Stapel mit der Bildseite nach oben gelegt. Gentlemen", bitte zur Kasse! Ravensburger Spiele Nr. 01 264 0 Autoren: Wolfgang Kramer und Jürgen P. K. Grunau Grafik: Erhard Dietl Ein Gaunerspiel für 3-6 Gentlemen" ab 10 Jahren Inhalt: 35 Tresor-Karten

Mehr

4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz"

4.4 AnonymeMärkteunddasGleichgewichtdervollständigen Konkurrenz 4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz" Wir haben bisher nachvollziehen können, wie zwei Personen für sich den Anreiz zum TauschentdeckenundwiemitwachsenderBevölkerungdieMengederAllokationensinkt,

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

EINFACHES HAUSHALT- KASSABUCH

EINFACHES HAUSHALT- KASSABUCH EINFACHES HAUSHALT- KASSABUCH Arbeiten mit Excel Wir erstellen ein einfaches Kassabuch zur Führung einer Haushalts- oder Portokasse Roland Liebing, im November 2012 Eine einfache Haushalt-Buchhaltung (Kassabuch)

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673. Flachglasbranche.

Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673. Flachglasbranche. Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673 Ug-Werte für die Flachglasbranche Einleitung Die vorliegende Broschüre enthält die Werte für

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr