Übungen zur Thermodynamik (PBT) WS 2004/05

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Thermodynamik (PBT) WS 2004/05"

Transkript

1 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines Gases, wenn die Temperatur von 0 C um 1 C und der Druck von 1013 hpa um 1 hpa erhöht wird? 2. Berechnen Sie die Längenänderung einer Eisenbrücke von 50 m Länge für Temperaturänderungen von -20 C bis +40 C. Ausdehnungskoeffizient von Eisen: α = 11, K Berechnen Sie die Dichte von Eisen bei einer Temperatur von 100 C aus der Dichte bei 0 C: ρ 0 = 7, kg/m 3. Der lineare Ausdehnungskoeffizient von Eisen beträgt α = 11, K Ein Thermometer besteht aus einer Kapillare, an derem unteren Ende sich ein kugelförmiges Reservoir anschließt. Das Reservoir ist vollständig mit Quecksilber gefüllt. Der Füllstand in der Kapillare beträgt 100 mm über ihrem unteren Ende. Der Innenradius der Kapillare beträgt 0,1 mm, der Innenradius des Reservoirs beträgt 4 mm. Berechnen Sie den Abstand der Teilstriche der Temperaturskala für Θ = 1 C. Der Volumenausdehnungsausdehnungskoeffizient von Quecksilber beträgt γ Hg = 0, K 1. Wie groß ist der Fehler, der sich durch die Ausdehnung des Glases (α = K 1 ) ergibt? 5. Eine He-Flasche mit einem Inhalt von V = 200 l und einem Fülldruck von 200 bar wird zum Füllen von Luftballons verwendet. Jeder Luftballon hat ein Volumen von 10 l. Der Überdruck in den Ballons gegenüber dem Außendruck von 1013 mbar sei vernachlässigbar. Wieviele Ballons lassen sich bei konstanter Temperatur von 20 C mit dem Inhalt der Flasche füllen? 6. Eine 50 l Gasflasche ist mit N 2 gefüllt. Bei Zimmertemperatur (20 C) beträgt der Druck 200 bar. Die Flasche hält einen maximalen Druck von 500 bar aus. Bei welcher Temperatur explodiert die Flasche?

2 2. Übungsblatt 7. Eine Eisenkugel habe eine Masse von 300 g und eine Temperatur von 80 C. Auf welche Temperatur kühlt sich die Kugel ab, wenn sie in ein Thermosgefäß mit 1 Liter Wasser mit 20 C gelegt wird? Spezifische Wärmekapazitäten: c Eisen = 0, 449 kj/kgk, c Wasser = 4, 18 kj/kgk. 8. Ein Heißluftballon besitzt ein Volumen von 500 m 3. Der Ballon ist unten offen. Die Luft wird durch einen Brenner erhitzt. Auf welche Temperatur muß das Gas erhizt werden, damit der Ballon eine Last von insgesamt 100 kg heben kann? (Außendruck: 1013 mbar, Außentemperatur: 20 C, Zusammensetzung der Luft: 79% N 2, 21% O 2 ) 9. Berechnen Sie die Zeit, die ein Tauchsieder mit einer Leistung von 2000 W benötigt, um 2 l Wasser von 20 C zum Kochen zu bringen. 10. Welche Menge an kochendem Wasser benötigt man, um in einem Thermosgefäß 1 kg Eis (0 C) aufzutauen? 11. Ein Stahlblock mit einer Masse von 100 kg soll von 100 C auf 600 C erhitzt werden. Welche Energie wird hierfür benötigt? Mittlere spezifische Wärmekapazität von Stahl in kj/(kg K): Temperatur Θ [ C] c m (0 C bis Θ) Ein Brenner einer Hausheizung besitzt eine thermische Leistung von 10 kw. Die Wärme wird durch einen wassergefüllten Heizungskreislauf abgeführt. Welchen Volumenstrom muß die Umlaufpumpe leisten, wenn die Vorlauftemperatur 60 C und die Rücklauftemperatur 30 C beträgt? Nehmen sie eine konstante Dichte des Wasser von 1 kg/l an. 13. Welche Temperatur stellt sich ein, wenn zu 3 Liter kochendem Wasser 1 kg Eis mit einer Temperatur von -20 C gegeben wird?

3 3. Übungsblatt 14. Ein Heißluftföhn soll bei einem Luftausstoß von 20 m 3 /h die angesaugte Luft von 20 C auf 500 C erhitzen. Welche Heizleistung muß der Föhn besitzen? (Luftdruck 1013 mbar=1,013*10 5 Pa) 15. Ein Kühlturm (Naßkühlturm) eines Kraftwerkes muß eine Leistung von 500 MW abführen, wieviel Wasser (Ausgangstemperatur 15 C) muß hierfür pro Sekunde verdampft werden, wenn die sonstige Wärmeabgabe z.b. an die Luft vernachlässigt wird? 16. Bei einem Elektrolyseversuch wird ein Liter Wasser in Wasserstoff und Sauerstoff zerlegt. Welche Volumina haben jeweils die beiden Gase O 2 und H 2 bei 20 C und 1013 mbar? 17. In Jules Verne s Roman Fünf Wochen im Ballon wird ein Gasballon mit Wasserstoff (H 2 ) gefüllt, der durch Elektrolyse aus Wasser hergestellt wird (2H 2 O 2H 2 + O 2 ). Wieviel Liter Wasser werden benötigt, um auf diese Weise einen Ballon von 1000 m 3 mit einem druck von 1013 mbar zu füllen? (Temperatur 20 C) 18. In einem Kohleofen werden pro Stunde 3 kg Koks verbrannt. Die Abgastemperatur beträgt 150 C. Welche Strömungsgeschwindigkeit herrscht im Ofenrohr, das einen Durchmesser von 10 cm hat. Betrachten Sie den Brennstoff als reinen Kohlenstoff und nehmen Sie an, dass die Zufuhr an Verbrennungsluft gerade für eine vollständige Verbrennung des Brennstoffs ausreicht. 19. Vergleichen Sie die spezifische Wärmekapazität von Fe, Pb und Al mit dem entsprechenden Wert nach dem Dulong-Petit schen Gesetz (c molar = 3R). spezifische Wärmekapazität Al Fe Pb Cu Ag Au [kj/(kg K)] T=298,15 K 0,897 0,449 0,129 0,385 0,235 0,129 T=100 K 0,016 0,020 0,021

4 4. Übungsblatt 20. In einem geschlossenen Behälter mit einem Volumen von 1 m 3 befindet sich Helium (He) bei einer Ausgangstemperatur von 20 C und einem Ausgangsdruck von 1013 hpa. Welche Temperatur und welcher Druck ergibt sich, wenn über einen elektrischen Heizstab dem Gas eine Wärmemenge 20 kj zugeführt wird. Wie groß ist der Druck und die Temperatur, wenn statt He N 2 verwendet wird? Betrachten Sie die Gase als ideale Gase! 21. Schätzen Sie die mittlere Geschwingigkeit eines N 2 -Moleküls bei 20 C ab. Nähern Sie die Geschwindigkeit durch v Ein Behälter enthält Stickstoff unter Normalbedingungen (T = 20 C, p = 1013 hpa). Schätzen sie die Anzahl der Stöße auf eine Fläche von 1 mm 2 der Behälterwand in einer Sekunde ab. 23. Der Innendruck im Luftdrucktank (100 l) einer Druckluftanlage einer Werkstatt beträgt 5 bar = Pa. Der Kompressor ist abgeschaltet und fördert keine weitere Luft in den Drucklufttank. Welche Arbeit kann maximal unter idealen Bedingungen bei konstanter Temperatur von der gespeicherten Druckluft an die angeschlossenen Arbeitsgeräte abgegeben werden, bis der Druck im Tank auf den Außendruck von 1, Pa abgefallen ist? (Temperatur: 20 C) 24. In einem Dampferzeuger eines Kraftwerkes werden bei einem Druck von 100 bar stündlich 50 t Dampf erzeugt. Die Eingangstemperatur des Wassers beträgt 300 C (spezifische Enthalpie h 1 = 1343, 4 kj/kg, spezifisches Volumen 0,00139 m 3 /kg), Der Rohrdurchmesser am Eintritt und Austritt beträgt 100 mm. Die Temperatur am Austritt beträgt 311 C (spezifische Enthalpie h 2 = 2727, 7 kj/kg, spezifisches Volumen 0,018 m 3 /kg). Die Höhendifferenz zwischen Ein- und Auslass beträgt 20 m. Welche Heizleistung muss dem Dampferzeuger zugeführt werden? Wie groß sind die Anteile der potentiellen und kinetischen Energie an der Energiezunahme des Stoffstroms. Vernachlässigen Sie die kinetische Energie des einströmenden Wassers.

5 5. Übungsblatt 25. An einer Wasserturbine wird im Eingangstutzen mit einem Durchmesser von 400 mm bei einem Überdruck vom 2,32 MPa eine Geschwindigkeit von 4,6 m/s gemessen. Im 4,2 m tiefer liegenden Abflussrohr strömt das Wasser mit einer Geschwindigkeit von 8,3 m/s ins Freie. Der Luftdruck beträgt 980 hpa. Die Temperaturdifferenz des Wassers zwischen Eingang und Ausgang wird mit 0,24 K bestimmt. Die Durchströmung der Turbine erfolgt adiabatisch. Welche Kupplungsleistung liefert die Turbine, wenn keine äußere Reibung auftritt? Wie groß ist die innere Reibungsleistung? 26. Welche Kraft wird benötigt, um eine vorne zugehaltene Fahrradpumpe (Durchmesser 2 cm) vom entspannten Zustand auf die halbe Länge zusammenzuschieben, wenn man den Wärmeaustausch mit der Umgebung vernachlässigt? Um wieviel erhöht sich die Temperatur in der Pumpe? Umgebungsdruck: 1013 mbar, Umgebungstemperatur: 20 C. 27. Ein Fallwind an einem Berghang bringt trockene Luft aus einer Höhe von 2000 m ü.m. auf Meereshöhe. Die Temperatur auf 2000 m Höhe beträgt 5 C, der Luftdruck 775 mbar. Auf Meereshöhe beträgt der Luftdruck 1013 mbar. Auf welche Temperatur erwärmt sich die absinkende Luft, wenn ein Wärmeaustausch mit der Umgebung vernachlässigbar ist? 28. Ein Kompressor saugt Gas bei einem Druck von 1 bar und einer Temperatur von 20 C an und erzeugt einen Druck von 5 bar. Das Gas strömt anschließend durch ein Drosselventil wieder in die Umgebung. Der Volumenstrom am Eingang beträgt 5m 3 /h. Das Gas sei ein ideales Gas mit zweiatomigen Molekülen. Der Wärmefluss durch die Rohrwände oder Pumpe sei vernachlässigbar. Welche Temperatur hat das ausströmende Gas? Welcher Volumenstrom herrscht am Ausgang? Welche Leistung muss die Pumpe mindestens haben?

6 6. Übungsblatt 29. Ein Kühlschrank mit einem Inhalt von 125 l und einer Oberfläche von 1,5 m 2 besitze an den Außenwänden einen Wärmedurchgangsskoeffizienten von k = 1 Wm 2 K 1. Man berechne den Wärmefluss in den Kühlschrank, wenn das Kühlaggregat bei einer Außentemperatur von 20 C ständig eine Innentemperatur von 4 C aufrechterhält. Wie groß ist die Leistungsaufnahme des Kühlaggregates, wenn es sich als ideale Carnot-Maschine auffassen lässt? 30. Wie groß ist das theoretisch maximale Leistungsverhältnis (Wirkungsgrad) einer Kältemaschine zur Erzeugung einer Temperatur von -40 C bei einer Außentemperatur von 20 C? 31. Eine Wärmepumpe soll den Brenner einer Heizungsanlage ersetzen und bei einer Außentemperatur von -10 C eine Heizwasservorlauftemperatur von 50 C erzeugen. Als Wärmequelle soll hierbei entweder a) die Außenluft oder b) das Erdreich mit einer Temperatur von 5 C dienen. Welche elektrische Leistung wird von der Wärmepumpe mindestens aufgenommen, wenn der Brenner hierfür eine Wärmeleistung von 10 kw benötigte? 32. Schätzen Sie ab, ob es sinnvoll wäre, flüssigen Stickstoff als Energiespeicher einzusetzen. Der flüssige Stickstoff müßte mit einer Kältemaschine erzeugt werden. Eine Wärmekraftmaschine könnte zwischen der Umgebungsluft als Wärmequelle (T 0 = 293 K) und einer mit dem flüssigen Stickstoff gekühlten Wärmesenke (T U = 77 K) betrieben werden. Wie groß ist der Wirkungsgrad des Speichers, wenn die verwendete Kältemaschine und die Wärmekraftmaschine ideale Carnot-Maschinen sind? Vergleichen Sie die Arbeit, die aus einem Liter flüssigen Stickstoff entnommen werden kann, mit der Arbeit, die ein Benzinmotor (Wirkungsgrad 30 %) aus einem Liter Benzin liefert. N 2 : Siedepunkt 77 K, Verdampfungswärme h verd = 198 kj/kg, Dichte ρ = 0, 8 kg/l. Benzin: Heizwert h = 42 MJ/kg, Dichte ρ Benzin = 0, 7 kg/l.

7 7. Übungsblatt kg Luft wird bei p =konst von 1 bar und 15 C auf 150 C erwärmt. Wie viel Wärme wird benötigt? Welches spezifische Volumen wird erreicht? Wie groß ist die Volumenänderungsarbeit? Wie groß ist die Entropieänderung? 34. Berechnen Sie die Entropieänderung, die auftritt, wenn 50 g Wasser der Temperatur 80 C mit 100 g Wasser der Temperatur 10 C zusammengegossen werden. Die Vermischung soll in einem isolierten Gefäß stattfinden. Die spezifische Wärmekapazität des Wassers beträgt 4,19 kj/kgk. 35. Ein Eisblock mit 0 C wird durch Zuführen der Schmelzwärme von 334 kj/kg zu Wasser aufgetaut. Wie groß ist der spezifische Entropieunterschied zwischen Eis und Wasser? 36. An einem Drosselventil in einer Druckluftanlage fällt der Druck von p 1 = 3 bar auf p 2 = 1 bar ab. Wie groß ist die spezifische Entropiezunahme der Druckluft? Betrachten Sie für die Berechnung die Luft als ideales Gas und nehmen Sie an, dass die Temperatur bei der Expansion konstant bleibt.

Übungen zur Vorlesung. Energiesysteme

Übungen zur Vorlesung. Energiesysteme Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur

Mehr

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle Zustandsformen der Materie hermische Eigenschaften der Materie Aggregatzustände: fest flüssig suprafluide gasförmig überkritisch emperatur skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind:

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind: Was ist Physikalische Chemie? Die klassischen eilgebiete der Physikalischen Chemie sind: 1) hermodynamik (z. B. Energetik chemischer Reaktionen, Lage von Gleichgewichten). 2) Kinetik chemischer Reaktionen

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 010 10. 14. Mai 010 Physik für Bauingenieure Übungsblatt 4 1. Wie viele Luftmoleküle befinden sich im Hörsaal Gruppenübungen

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH 3 Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Wärme 5 Themen Begriffsklärung Anwendungen Temperaturskalen Modellvorstellung Wärmeausdehnung Thermische Ausdehnung Phasenübergänge

Mehr

Übungen. Vorlesung. Energietechnik

Übungen. Vorlesung. Energietechnik Fachhochschule Münster Fachbereich Maschinenbau Motoren- und Energietechnik-Labor Prof. Dr. R. Ullrich Übungen zur Vorlesung Energietechnik Version 1/99 - 2 - Übung 1 1.) Die wirtschaftlich gewinnbaren

Mehr

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau. Formen Sie die Größengleichung P = in eine Zahlenwertgleichung t /kj P /= α um und bestimmen Sie die Zahl α! t /h. Drücken Sie die Einheit V durch

Mehr

Thermodynamik 1 Klausur 01. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 01. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 01. März 2013 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple Übungssunterlagen Energiesysteme I Prof. Dr.-Ing. Bernd Epple 1 1. Allgemeine Informationen Zum Bearbeiten der Übungen können die Formelsammlungen aus den Fächern Technische Thermodynamik 1, Technische

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 25. August 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

Kalorimetrie (Wärmelehre)

Kalorimetrie (Wärmelehre) Thermische Molekularbewegung Phasenübergänge Reaktionswärme Kalorimetrie (Wärmelehre) Gase Flüssigkeiten/Festkörper Ideales Gasgesetz Dulong-Petit-Gesetz 1 Thermodynamik Beschreibung der Zustände und deren

Mehr

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig W 10 Wärmepumpe Aufgaben 1 Nehmen Sie die Temperatur- und Druckverläufe einer Wasser-Wasser-Wärmepumpe auf!

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Dampfkraftprozess Dampfturbine

Dampfkraftprozess Dampfturbine Fachgebiet für Energiesysteme und Energietechnik Prof. Dr.-Ing. B. Epple Musterlösung Übung Energie und Klimaschutz Sommersemester 0 Dampfkraftprozess Dampfturbine Aufgabe : Stellen Sie den Dampfkraftprozess

Mehr

Vorlesung #7. M.Büscher, Physik für Mediziner

Vorlesung #7. M.Büscher, Physik für Mediziner Vorlesung #7 Zustandsänderungen Ideale Gase Luftfeuchtigkeit Reale Gase Phasenumwandlungen Schmelzwärme Verdampfungswärme Dampfdruck van-der-waals Gleichung Zustandsdiagramme realer Gase Allgem. Gasgleichung

Mehr

0tto-von-Guericke-Universität Magdeburg

0tto-von-Guericke-Universität Magdeburg 0tto-von-Guericke-Universität Magdeburg Institut für Strömungstechnik und Thermodynamik, Lehrstuhl Strömungsmechanik und Strömungstechnik Übungsaufgaben Fluidenergiemaschinen Aufgabe 1.01 In einer Bewässerungsanlage

Mehr

Thermodynamik 2 Klausur 11. März 2011

Thermodynamik 2 Klausur 11. März 2011 Thermodynamik 2 Klausur 11. März 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 4 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

Thermodynamik 2 Klausur 15. September 2010

Thermodynamik 2 Klausur 15. September 2010 Thermodynamik 2 Klausur 15. September 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

b) Welche Optimierungsprobleme ergeben sich hinsichtlich der Auslegung des Wärmeübertragers (Heat-eXchanger HX)?

b) Welche Optimierungsprobleme ergeben sich hinsichtlich der Auslegung des Wärmeübertragers (Heat-eXchanger HX)? Übung 8 Aufgabe 5.3: Carnot-Schiff In der Region des Nordmeeres liegt die Wassertemperatur zumeist über der Temperatur der Umgebungsluft. Ein Schiff soll die Temperaturdifferenz zwischen diesen beiden

Mehr

Übungsblatt 3 (10.06.2011)

Übungsblatt 3 (10.06.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt (0.06.0 Wärmedämmung Ein Verbundfenster der Fläche A =.0 m besteht aus zwei Glasscheiben der Dicke d =.5 mm, zwischen

Mehr

Ein Braunkohle-Kraftwerk arbeitet nach dem Clausius-Rankine-Prozess mit einfacher Zwischenüberhitzung

Ein Braunkohle-Kraftwerk arbeitet nach dem Clausius-Rankine-Prozess mit einfacher Zwischenüberhitzung Klausuraufgaben Thermodynamik (F 0 A) BRAUNKOHLE-KRAFTWERK Ein Braunkohle-Kraftwerk arbeitet nach dem Clausius-Rankine-Prozess mit einfacher Zwischenüberhitzung und Anzapf-Vorwärmung. Dabei wird der Wassermassenstrom

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm Energie bei chemischen Reaktionen Chemische Reaktionen sind Stoffumwandlungen bei denen Teilchen umgeordnet und chemische Bindungen gespalten und neu geknüpft werden, wodurch neue Stoffe mit neuen Eigenschaften

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

Übungsaufgaben Physikalische Chemie

Übungsaufgaben Physikalische Chemie Übungsaufgaben Physikalische Chemie A1. Welchen Druck übt gasförmiger Stickstoff mit einer Masse von 2,045 g bei 21 C in einem Gefäß mit einem Volumen von 2,00 l aus? A2. In Haushaltgeräten zur Erzeugung

Mehr

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ;

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ; 4.11. Innere Energie (ideals. Gas): U =!! nr Erhöhung der inneren Energie durch emperaturerhöhung um Δ: bei konstanten olumen (isochor): ΔU = C! Δ Differentiell: du = C v d δq=du=c d => d=δq/c 1. Hauptsatz

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Prüfung: Thermodynamik II (Prof. Adam)

Prüfung: Thermodynamik II (Prof. Adam) Prüfung: Thermodynamik II (Prof. Adam) 18.09.2008 Erreichbare Gesamtpunktzahl: 48 Punkte Aufgabe 1 (30 Punkte): In einem Heizkraftwerk (siehe Skizze) wird dem Arbeitsmedium Wasser im Dampferzeuger 75 MW

Mehr

Längen-, Flächen- und Volumendehnung von festen Körpern

Längen-, Flächen- und Volumendehnung von festen Körpern Längen-, Flächen- und Volumendehnung von festen Körpern. Ein Kunststoffrohr (aus PVC) hat bei Zimmertemperatur (20 C) einen äußeren Durchmesser von 3,6 mm. Welcher Durchmesser stellt sich ein, wenn durch

Mehr

MOL - Bestimmung der Molaren Masse nach Dumas

MOL - Bestimmung der Molaren Masse nach Dumas MOL - Bestimmung der Molaren Masse nach Dumas Anfängerpraktikum 2, 2006 Janina Fiehl Daniel Flassig Gruppe 129 Einleitung Das Mol ist, vor allem in der Chemie, als Einheit für die Basisgröße der Stoffmenge

Mehr

Betriebsfeld und Energiebilanz eines Ottomotors

Betriebsfeld und Energiebilanz eines Ottomotors Fachbereich Maschinenbau Fachgebiet Kraft- u. Arbeitsmaschinen Fachgebietsleiter Prof. Dr.-Ing. B. Spessert März 2013 Praktikum Kraft- und Arbeitsmaschinen Versuch 1 Betriebsfeld und Energiebilanz eines

Mehr

SI-Handbuch Naturwissenschaftliche Grundlagen

SI-Handbuch Naturwissenschaftliche Grundlagen .1 Physikalische Eigenschaften 3.2 Wasserdichte 6.3 Viskosität 7.4 h, x-diagramm für feuchte Luft 8 Dieses Kapitel wurde erstellt unter Mitwirkung von: 5. Auflage: Otto Fux, Masch. Ing. SIA, dipl. Sanitärplaner,

Mehr

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess:

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Aufgabe 12: Eine offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Der Verdichter V η s,v 0,75) saugt Luft im Zustand 1 1 bar, T 1 288 K) an und verdichtet sie adiabat auf den Druck p 2 3,7

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

Fachhochschule Flensburg. Institut für Physik

Fachhochschule Flensburg. Institut für Physik Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung

Mehr

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2 Leseprobe Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer PHYSIK in Aufgaben und Lösungen ISBN Buch: 978-3-446-4335- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-4335-

Mehr

Thermodynamik 2 Klausur 17. Februar 2015

Thermodynamik 2 Klausur 17. Februar 2015 Thermodynamik 2 Klausur 17. Februar 2015 Bearbeitungszeit: Umfang der Aufgabenstellung: 120 Minuten 5 nummerierte Seiten 2 Diagramme Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner

Mehr

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10. Inhalt 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.4 Wärmekapazität Aufgabe: - Temperaturverhalten von Gasen, Flüssigkeiten, Festkörpern

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann.

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann. Aufgabe 33 Aus einer Druckluftflasche V 50 dm 3 ) mit einem Anfangsdruck p 0 60 bar strömt solange Luft in die Umgebung p U bar, T U 300 K), bis der Druck in der Flasche auf 0 bar gefallen ist. Dabei soll

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

tgt HP 2007/08-2: Heizungsanlage

tgt HP 2007/08-2: Heizungsanlage tgt HP 007/08-: Heizungsanlage Ein Wohngebäude wird durch eine Warmwasserheizung beheizt und erfordert eine maximale Wärmeleistung von 50 kw. Wärmepumpe Anlagenschema Stoffwerte für leichtes Heizöl: Dichte:

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

Projekt Aufgabensammlung Thermodynamik

Projekt Aufgabensammlung Thermodynamik Projekt Aufgabensammlung Thermodynamik Nr. Quelle Lösungssicherheit Lösung durch abgetippt durch 1 Klausur 1 (1) OK Navid Matthes 2 Probekl. WS06 (1) / Kl.SS04 (1) 100% Prof. Seidel. (Nav.) Matthes (Nav)

Mehr

Wärmepumpen. Mit der Wärme aus der Natur zukunftssicher heizen. Wärmepumpen. Vorlage 1 08/2005 Viessmann Werke

Wärmepumpen. Mit der Wärme aus der Natur zukunftssicher heizen. Wärmepumpen. Vorlage 1 08/2005 Viessmann Werke Mit der Wärme aus der Natur zukunftssicher heizen Vorlage 1 Mit der Wärme aus der Natur zukunftssicher heizen nutzen erneuerbare Energien aus der Umwelt. Die gespeicherte Sonnenwärme im Erdreich, Grundwasser

Mehr

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt 9 8. Wärmelehre 8. emperatursala Wärmeenergie: emperatur: inetische und potentielle Energie, die ein System bei emperaturänderung aunimmt oder abgibt Maß ür mittlere inetische Energie eines Systems (im

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Temperatur Wärme Thermodynamik

Temperatur Wärme Thermodynamik Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten

Mehr

Wasserstoff. Helium. Bor. Kohlenstoff. Standort: Name: Ordnungszahl: Standort: Name: Ordnungszahl: 18. Gruppe. Standort: Ordnungszahl: Name:

Wasserstoff. Helium. Bor. Kohlenstoff. Standort: Name: Ordnungszahl: Standort: Name: Ordnungszahl: 18. Gruppe. Standort: Ordnungszahl: Name: H Wasserstoff 1 1. Gruppe 1. Periode He Helium 2 18. Gruppe 1. Periode B Bor 5 13. Gruppe C Kohlenstoff 6 14. Gruppe N Stickstoff 7 15. Gruppe O Sauerstoff 8 16. Gruppe Ne Neon 10 18. Gruppe Na Natrium

Mehr

Thermodynamik 1 Klausur 12. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 12. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 12. März 2014 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung:

Mehr

Wärmepumpe DT400-1P. NTL-Schriftenreihe Versuchsanleitung - Wärmepumpe

Wärmepumpe DT400-1P. NTL-Schriftenreihe Versuchsanleitung - Wärmepumpe Wärmepumpe DT400-1P NTL-Schriftenreihe Versuchsanleitung - Wärmepumpe Wärmepumpe Allgemein Eine Wärmepumpe ist eine Wärmekraftmaschine. Sie hebt Wärme von einem Körper tieferer Temperatur T 1 auf einen

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Stöchiometrie. (Chemisches Rechnen)

Stöchiometrie. (Chemisches Rechnen) Ausgabe 2007-10 Stöchiometrie (Chemisches Rechnen) ist die Lehre von der mengenmäßigen Zusammensetzung chemischer Verbindungen sowie der Mengenverhältnisse der beteiligten Stoffe bei chemischen Reaktionen

Mehr

Thermodynamik 1 Klausur, 3. August Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur, 3. August Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur, 3. August 2009 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Thermodynamik I Klausur SS 2010

Thermodynamik I Klausur SS 2010 Thermodynamik I Klausur 00 Prof. Dr. J. Kuck, Prof. Dr. G. Wilhelms Aufgabenteil / 00 Minuten/eite Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

Tutorium Physik 2. Fluide

Tutorium Physik 2. Fluide 1 Tutorium Physik 2. Fluide SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 7. FLUIDE 7.1 Modellvorstellung Fluide:

Mehr

Klausur Thermische Kraftwerke (Energieanlagentechnik I)

Klausur Thermische Kraftwerke (Energieanlagentechnik I) Klausur Thermische Kraftwerke (Energieanlagentechnik I) Datum: 09.03.2009 Dauer: 1,5 Std. Der Gebrauch von nicht-programmierbaren Taschenrechnern und schriftlichen Unterlagen ist erlaubt. Aufgabe 1 2 3

Mehr

Thermodynamik 1 Klausur 02. August 2010

Thermodynamik 1 Klausur 02. August 2010 Thermodynamik 1 Klausur 02. August 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 6 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

c~åüüçåüëåüìäé=açêíãìåç== = = = k~ãéw=

c~åüüçåüëåüìäé=açêíãìåç== = = = k~ãéw= c~åüüçåüëåüìäéaçêíãìåç k~ãéw mêçñkaêkjfåökdk_~äáéä c_p j~íêkjkêkw Klausur: Bordnetze 14.7.2004 Aufgabe 1: Es sollen zwei massive Cu-Leiter auf Ihre Stromtragfähigkeit untersucht werden. Der eine hat einen

Mehr

Kann man Wärme pumpen? Die Wärmepumpe

Kann man Wärme pumpen? Die Wärmepumpe Kann man Wärme pumpen? Die Wärmepumpe Inhalt 1. Was ist eine Wärmepumpe? Wie funktioniert sie? 2. Experimente 2.1 Welchen Wirkungsgrad hat die Wärmepumpe? (Experiment 1) 2.2 Wie groß ist die spezifische

Mehr

wobei L die Länge der Wärmeübertragung und U der Umfang des Rohres oder Kanals Temperaturverläufe bei einem elektrisch beheizten Rohr

wobei L die Länge der Wärmeübertragung und U der Umfang des Rohres oder Kanals Temperaturverläufe bei einem elektrisch beheizten Rohr 5 5 Wärmeübertrager Wärmeübertrager sind Apparate, in denen ein Fluid erwärmt oder abgekühlt wird Das Heiz- oder Kühlmedium ist in der Regel ein anderes Fluid Verdampft oder kondensiert ein Fluid dabei,

Mehr

Thermodynamik II Klausur SS 2006

Thermodynamik II Klausur SS 2006 Thermodynamik II Klausur SS 0 Prof. Dr. G. Wilhelms Aufgabenteil / 00 Minuten / Blatt Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern

Mehr

Thermodynamik Hauptsatz

Thermodynamik Hauptsatz Thermodynamik. Hauptsatz Inhalt Wärmekraftmaschinen / Kälteprozesse. Hauptsatz der Thermodynamik Reversibilität Carnot Prozess Thermodynamische Temperatur Entropie Entropiebilanzen Anergie und Exergie

Mehr

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Klausur H2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Wie wirkt sich eine

Mehr

Thermodynamik I Klausur WS 2010/2011

Thermodynamik I Klausur WS 2010/2011 Thermodynamik I Klausur WS 010/011 Aufgabenteil / Blatt 1-50 Minuten Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe Die Stichworte: Thermische Maschinen; 1. und. Hauptsatz; Wirkungsgrad und Leistungsziffer 1 Einführung und Themenstellung Mit einer wird - entgegen der natürlichen Richtung eines Wärmestroms - Wärme von

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 04.11.2011 Lösung Übung 2

Übungen zur VL Chemie für Biologen und Humanbiologen 04.11.2011 Lösung Übung 2 Übungen zur VL Chemie für Biologen und Humanbiologen 04.11.2011 Lösung Übung 2 1. Wie viel mol Eisen sind in 12 x 10 23 Molekülen enthalten? ca. 2 Mol 2. Welches Volumen Litern ergibt sich wenn ich 3 mol

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 26. 30. April 2010 Physik für Bauingenieure Übungsblatt 2 Gruppenübungen 1. Springende Kugeln Die nebenstehende

Mehr

Orientierungstest für angehende Industriemeister. Vorbereitungskurs Physik

Orientierungstest für angehende Industriemeister. Vorbereitungskurs Physik Orientierungstest für angehende Industriemeister Vorbereitungskurs Physik Production Technologies Erlaubte Hilfsmittel: Formelsammlung Taschenrechner Maximale Bearbeitungszeit: 1 Stunde Provadis Partner

Mehr

Tutorium Hydromechanik I + II. S. Mohammad Hosseiny Sohi Dezember 2015

Tutorium Hydromechanik I + II. S. Mohammad Hosseiny Sohi Dezember 2015 Tutorium Hydromechanik I + II S. Mohammad Hosseiny Sohi Dezember 2015 FB14/Geohydraulik und Ingenieurhydrologie/ Tutorium Hydromechanik/ Mohammad Hosseiny Sohi 14.12.2015 In einer hessischen Wetterstation

Mehr

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung Institut für Energiesysteme und Energietechnik Vorlesungsübung 1 Musterlösung 3.1 Kohlekraftwerk Aufgabe 1 Gesucht: Aufgrund der Vernachlässigung des Temperaturunterschiedes des Luft-, Rauchgas- und Brennstoffstromes

Mehr

Übung Nummer 1.0. Schätzen Sie den ca. Strom- und Gasverbrauch eines Ein- Zwei-, Dreiund Vierpersonenhaushaltes ab.

Übung Nummer 1.0. Schätzen Sie den ca. Strom- und Gasverbrauch eines Ein- Zwei-, Dreiund Vierpersonenhaushaltes ab. Übung Nummer 1.0 Schätzen Sie den ca. Strom- und Gasverbrauch eines Ein- Zwei-, Dreiund Vierpersonenhaushaltes ab. Übung Nummer 1.0 Haushalt Jahresstrombedarf Jahresgasbedarf Personen kwh/a kwh/a 1 1.500

Mehr

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: /

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / Schriftliche Prüfung aus VO Kraftwerke am 23.01.2017 KW 01/2017 Name/Vorname: / Matr.-Nr./Knz.: / 1. CO 2 Vergleich (25 Punkte) Zur Erzeugung von elektrischer Energie stehen zwei Kraftwerkstypen zur Auswahl:

Mehr

Was haben wir gelernt?

Was haben wir gelernt? Was haben wir gelernt? - Gesetze chemischer Reaktionen - Atommodell von Dalton - Elementsymbole - Die atomare Masseneinheit u - Die Avogadro-Zahl und deren Umkehrung - Von Massenverhältnissen zu Teilchenverhältnissen

Mehr

Die Avogadro-Konstante N A

Die Avogadro-Konstante N A Die Avogadro-Konstante N A Das Ziel der folgenden Seiten ist es, festzustellen, wie viele Atome pro cm³ oder pro g in einem Stoff enthalten sind. Chemische Reaktionen zwischen Gasen (z.b. 2H 2 + O 2 2

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs A 2.1 Bei - 10 o C beträgt der Dampfdruck des Kohlendioxids 26,47 bar, die Dichte der Flüssigkeit 980,8 kg/m 3 und die Dichte des Dampfes 70,5 kg/m 3. Bei - 7,5 o C beträgt der Dampfdruck 28,44 bar. Man

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 8. September 2015 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

1. Klausur zur Vorlesung Physikalische Chemie I

1. Klausur zur Vorlesung Physikalische Chemie I 1. Klausur zur Vorlesung Physikalische Chemie I Sommersemester 2006 8. Juni 2006 Angaben zur Person (BITTE LESERLICH UND IN DRUCKBUCHSTABEN) Name, Vorname... Geburtsdatum und -ort... Matrikelnummer...

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

a.) Wie beeinflussen in einer Verbrennungsreaktion Brennstoffe in fester bzw. flüssiger Phase das chemische Gleichgewicht? Begründung!

a.) Wie beeinflussen in einer Verbrennungsreaktion Brennstoffe in fester bzw. flüssiger Phase das chemische Gleichgewicht? Begründung! Klausur F2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) ( 2 Punkte) Wie beeinflussen in einer Verbrennungsreaktion Brennstoffe in fester bzw. flüssiger Phase das chemische Gleichgewicht? Begründung!

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015. Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015. Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015 Physik-Institut der Universität Zürich Inhaltsverzeichnis 5 Absoluter Nullpunkt der Temperaturskala

Mehr