Ausbildung zum Passagement-Consultant

Größe: px
Ab Seite anzeigen:

Download "Ausbildung zum Passagement-Consultant"

Transkript

1 M & MAICONSULTING Mngementbertung Akdemie M MAICONSULTING Mngementbertung & Akdemie MAICONSULTING GmbH & Co. KG Hndschuhsheimer Lndstrße 60 D Heidelberg Telefon +49 (0) Telefx +49 (0) Ausbildung zum Pssgement-Consultnt

2 Berten lernen? Berterusbildungen mchen niemnden zum Berter! Aber sie können helfen: beim Verstehen von Orgnistionen, sie ermutigen ufzubrechen, sie zeigen, wie ndere es tun und wie mn es selbst tun könnte. Sie bereiten uf Scheitern vor, ber bewhren vor dem Schlimmsten. Sie mchen Freude und sind Entdeckungstouren. Eine gute Berterusbildung hilft, ds Berterhndwerk zu erlernen oder umzulernen, ein eigenes Bertungsprofil zu entwickeln und zu schärfen. Wir wollen Sie einlden, ds mit uns zu tun. Den Weg mitgehen, Übergänge gestlten Pssgement-Bertung ls integrierter Anstz Orgnistionen sind mehr ls sozile Systeme mit Effizienznspruch. Sie sind uch Lebenswelten von Menschen. Menschen in Orgnistionen stehen vor der Herusforderung, die Ziele ihrer Strtegie mit der Logik der Struktur und dem Selbstverständnis der Kultur zu verbinden. Berter rbeiten deshlb zwischen Lebenswelt und System vermittelnd und verknüpfend. Übergänge gestlten mit Strtegie, Kultur und Struktur inmitten voltiler Ansprüche von ußen ds nennen wir Pssgement. Nch unserer Erfhrung mcht ds WER einen größeren Unterschied. Wirksmes Lernen geschieht vor llem in der Zusmmenrbeit mit Ausbildern, die selbst ls Berter erfolgreich sind. Wir begreifen uns ls Ausbilder selbst ls reflexiv Lernende. In den unterschiedlichen Ausbildungssettings (Cmpus,, Coching) geben wir theoretischen und prktischen Input und Feedbck, reflektieren Lernen und Lernende, dienen ls Vorbild und zur Abgrenzung. Ds WIE ber entscheidet In den vielen Jhren, in denen wir Berter usbilden, hben wir erfhren, dss ds WIE der Ausbildung den größten Unterschied mcht: Die Art und Weise des Lernens von Bertung steht für unsere eigene Bertungsrbeit. Die kleine und der größere Cmpus ermöglichen differenzierte Inhlte und unterschiedliche Intensitäten. Sie spiegeln uch die unterschiedlichen Bertungssettings und -ufgben in Unternehmen. Für uns ist gute Bertung mehr ls systemische Thesenbildung us reflexiver Distnz oder feldspezifische Vermittlung von Best Prctices. Pssgement-Bertung integriert beides. Wir geben notwendiges Wissen in die Orgnistion hinein, vermitteln Lernerfhrungen und geben Hilfe zur Selbsthilfe. Pssgement-Bertung ist somit immer uch ktive Unterstützung bei der Umsetzung in Cochings, Workshops, Großvernstltungen, Medienrbeit usw. Pssgement-Consultnts verstehen, ohne zu verständnisvoll zu sein, integrieren, ohne zu vermischen, dynmisieren, ohne zu überdrehen. Sie gieren dbei in verschiedenen Rollen: ls Klrtexter, Dilogdesigner, Mngementcoch, Führungsbildner und Kulturwndler. Die Orgnistionsentwicklung verfügt heute über verschiedene theoretische Modelle. Ds Bild von der Orgnistion bestimmt dbei die Interventionsform. Diese Interventionsformen sind methodische Hndwerkszeuge. Die Ausbildung wird solche Modelle zeigen, einige präferieren und pssende Methoden lehren. Diese Modelle und Hndwerkszeuge sind vielfältig verfügbr und sich recht leicht nzueignen. Dieses WAS ist wichtig, ber nicht entscheidend.

3 Berter-Bildung ist im Zusmmenspiel mit nderen in unterschiedlichen Formen zu lernen und n der eigenen Entwicklung zu rbeiten. Ds Reflektieren dieses Prozesses modelliert den eigenen Bertungsstil, der zur eigenen Person psst, den ber uch Kunden hilfreich finden. Unsere Hltung und unser Bertungsstil sind geprägt von einem humnistischen Menschenbild. Wir verstehen Berten und Verändern ls respektvolle Hilfe bei der Entwicklung des Gegebenen. Ds ht Konsequenzen für die Formte der Ausbildung zum Pssgement-Consultnt der MAICONSULTING. Vom Teil-Nehmer zum Teil-Geber Angehende Psssgement-Consultnts lernen von komplexer Workshopmodertion bis zur Trnsformtionsbegleitung, indem sie ktive Teil-Geber im Prozess sind, indem sie einen Fokus wählen, sich in konstruktive Lernbeziehungen begeben, utonom hndeln und drin einzigrtige Lernerfhrungen mchen. Dbei erhlten sie gezielt Feedbck und pssgenuen Input. Bsiskompetenz Coching Auch unbhängig von der Gesmtusbildung buchbr: Für ngehende Coches gibt es eine prllel lufendende Coching-Gruppe mit drei Terminen und einem Abschlusskolloquium, in der eine solide Bsis zur Coching-Kompetenz gelegt wird. Lernen in n und in Cmpus Pssgement-n sind Gruppen von drei bis sechs Personen, in denen dieses Denken, Hndeln und Lernen individulisiert möglich wird. Die n bilden lle zu Pssgement- Bertern us, unterscheiden sich ber in ihren Schwerpunkten: z. B. Kulturentwicklung, Strtegiebertung, Innovtion, Prozessoptimierung, Next-Chnge, Kommuniktionsdesigns, Führungsbildung usw. n werden von uns begleitet und themenbezogen individuell gestltet. n lernen vom Berter, ls Gruppe und m selbst gesteuerten Prxisprojekt. Auf dem Lernweg besuchen die n jeweils drei Pssgement-Cmpus. Ein Pssgement-Cmpus ist eine Lernwerksttt für lle n. Die n treffen dort zusmmen mit demselben Ziel: berterisch in Orgnistionen hndlungsfähig zu werden. In reflexiven und ktiven Formen rbeitet die Cmpus-Großgruppe n sich, mit sich und zu dem gegebenen Fokus:»Konflikte lösen«,»gruppen steuern«,»kommuniktion gestlten«. Nch dem ersten Cmpus rbeitet die wieder weiter bis zum nächsten Cmpus. Nch Abschluss einer ist je nch Neigung ber uch ein Wechsel zu einer nderen möglich. D die lernende Community der n voneinnder weiß, ist eine direkte Interktion uch zwischen den n möglich und sinnvoll. Eine virtuelle Onlineplttform unterstützt dbei. Nch insgesmt 18 Ausbildungstgen, ds heißt: sechs n-terminen à 1,5 Tgen, drei Cmpus-Terminen à n und einer prxisbezogenen Abschlussrbeit, sind die Teilnehmer Pssgement-Consultnts und erhlten ein Zertifikt. D ds Ausbildungsngebot zum Pssgement-Consultnt bzw. Coch ber wie ein Fluss stetig existiert, knn mn uch nch einer bsolvierten und Cmpus ussteigen und später (im Jhr) wieder einsteigen. Wer im Sinne des Pssgements berten will, geht den Weg selbst mit. Er oder sie ist mehr ls nur Wegweiser. Dher ist die Ausbildung ein Entwicklungsweg uf einem günstigen Terrin: Mit erfhrenen Begleitern uf herusfordernden Wegen in einer spnnenden Expeditionsgruppe.

4 MAICONSULTING GmbH und Co. KG Mngementbertung und Akdemie Die MAICONSULTING berät und unterstützt Unternehmen und Orgnistionen bei komplexen Entwicklungsufgben. Mit ihrer Erfhrung, ihrem Wissen und der kretiven Lust m sinnvollen Tun bieten die Berter der MAICONSULTING Unterstützung und Umsetzungsbegleitung überll dort n, wo neue Lösungen gesucht werden oder bewährte Lösungen lebendige Impulse bruchen. Die MAIAKADEMIE ist die Bildungsplttform der MAICONSULTING. Sie steht für hochwertige ngewndte Ausbildungs- und Bildungsngebote und richtet sich n Menschen, die sich weiterentwickeln möchten. Die Berter der MAICONSULTING in dieser Ausbildung zum Pssgement-Consultnt sind seit vielen Jhren in Konzernen, in mittelständischen Unternehmen, in Verwltungen und Non-Profit- Orgnistionen ls Prozess- und Fchberter ktiv. In dieser Ausbildung teilen wir unser Können und Wissen mit Ihnen, begleiten persönliche Entfltung, integrieren Bertungsnsätze us Prozess- und Fchbertung, erschließen mit Ihnen Erprobungsräume. Wir tun ds, ws wir m besten können: Menschen in ihrer professionellen Entwicklung unterstützen. Kosten Ausbildung zum Pssgement-Consultnt 1. Teilnhme n 2 n = 9 Tge (2 n à 3 x 1,5 Tge) 2. Teilnhme n 3 Pssgement-Cmpus = 9 Tge (3 x 3 Tge) inkl. Unterlgen = 7920 Euro zzgl. Mwst. Zusätzlich oder uch unbhängig dvon zu belegen: Coching-Bsiskompetenz in Bertung und Führung = 3 x 2,5 Tge + 1,5 Tge Abschlusskolloquium = 9 Tge = 2900 Euro zzgl. Mwst. Anmeldung Miconsulting GmbH und Co. KG

5 Ausbildung zum Pssgement-Consultnt Orgnistionsentwicklung Prozessbertung von Gruppen n-phse n-phse n-phse Pssgement- Cmpus zum Them: Gruppendynmik yz Pssgement- Cmpus zum Them: Konflikt yz yz Pssgement- Cmpus zum Them: Kommuniktion b b b d d d c c c xy xy xy Der Abluf In der Ausbildung zum Pssgement-Consultnt finden sich gleichgesinnte Personen zusmmen, um gemeinsm in Lerngruppen (»n«) ihre Lernfelder zu berbeiten. Die Ausbildung findet im Wechsel von n-terminen und Cmpus- Terminen sttt. Die n-termine (6 x 1,5 Tge) finden vor und zwischen den drei Cmpus-Terminen sttt. Die Ausbildung schließt mit einer prxisbezogenen Abschlussrbeit und dem Zertifikt ls Pssgement-Consultnt. n n sind themtisch oder lokl orientierte Teilnehmergruppen, die us drei bis sechs Personen bestehen. In den n werden die Teilnehmer von erfhrenen Bertern der MAICONSULTING im Lernen ngeleitet und unterstützt. Orientierung n den Interessen der Lernenden ist für uns selbstverständlich. Die ktuellen n-themen der lufenden Ausbildung finden Sie unter usbildung. Pssgement-Cmpus In den Pssgement-Cmpus kommen die Teilnehmer der unterschiedlichen n für eine duernde Werksttt-Vernstltung zusmmen. Ds Werksttt-Konzept sieht eine umfngreiche Auswhl von Plenums- und Kleingruppenvernstltungen vor. Hier lernen sie von den Bertern der MAICONSULTING, gemeinsm in und n der Gruppe und sie probieren in den n erfhrenes Wissen us. So entsteht eine dichte und vielfältige Lerntmosphäre.

6 Ihre Whl Sie entscheiden sich für eine Strt-. Diese schließen Sie b und wählen einen neuen themtischen Schwerpunkt oder führen Ihre Strtclique fort. So gelingt beides: individuelle Schwerpunktsetzung und konstnte Arbeit in festen Gruppen. Fortführung Abschluss Strt Pssgement- Cmpus Strt yz Pssgement- Cmpus Abschluss yz Pssgement- Cmpus Bsiskompetenz Coching in Bertung und Führung Prllel zur Ausbildung zum Pssgement-Consultnt bieten wir uch eine Coching-Ausbildung n. In dieser Ausbildung wird mit erfhrenen Ausbildern in drei ml 2,5 Tgen und einem nschließenden Abschlusskolloquium die Grundlge zur Coching-Kompetenz gelegt. Die Coching-Ausbildung knn begleitend oder uch ls seprte Ausbildung gebucht werden. Die Coching-Ausbildung endet mit einer Selbstreflexion und dem Zertifikt»Bsiskompetenz Coching«. Informtionen zu ktuellen Terminen finden Sie unter Coching-Gruppe Coching-Gruppe Zertifikt»Bsiskompetenz Coching in Strt neue 2,5 2,5 2,5 2,5 2,5 2,5 1,5 Bertung und Führung«Coching-gruppe

REGSAM-Handbuch. für neue Facharbeitskreissprecherinnen und -sprecher

REGSAM-Handbuch. für neue Facharbeitskreissprecherinnen und -sprecher REGSAM-Hndbuch für neue Fchrbeitskreissprecherinnen und -sprecher Inhlte Vorwort. 2 Über REGSAM. o Wozu REGSAM? o REGSAM holt lle Hndelnden n einen Tisch o Wie wird gerbeitet? Oder: Die Gremien o Zentrler

Mehr

Der beste Umzug, den wir je hatten. Privatumzüge Überseeumzüge Senioenumzüge Kunsttransporte Lagerung ERWIN WEDMANN

Der beste Umzug, den wir je hatten. Privatumzüge Überseeumzüge Senioenumzüge Kunsttransporte Lagerung ERWIN WEDMANN Der beste Umzug, den wir je htten. Privtumzüge Überseeumzüge Senioenumzüge Kunsttrnsporte Lgerung ERWIN WEDMANN Erwin Wedmnn Euromovers erfolgreiche Koopertion seit über 20 Jhren Heute zählt die EUROMOVERS

Mehr

123 Familienausgleichskasse

123 Familienausgleichskasse 1 Fmilienzulgen: Anmeldung für Arbeitnehmende eines nicht beitrgspflichtigen Arbeitgebers (Anobg) Antrgstellerin / Antrgsteller Abrechnungsnummer (xxx.xxx) 123 Fmilienusgleichsksse Sozilversicherungsnstlt

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin Dokument Dtum (Version) Gültig für 200 / 0 Seite von 7 Unterrichts- und Prüfungsplnung M306 Modulverntwortlicher: Bet Kündig Modulprtner: R. Rubin Lernschritt-Nr. Hndlungsziele Zielsetzung unter Berücksichtigung

Mehr

Diplom-Lehrgang Lebens- und Sozialberatung

Diplom-Lehrgang Lebens- und Sozialberatung Ausbildungsktlog Diplom-Lehrgng Lebens- und Sozilbertung Sttlich-Zertifiziert Akdemie des Österreichischen Instituts für Gnzheitliche Therpie - ÖIGT Inhlt ÖIGT-Akdemie für Bertungs- und Gesundheitsberufe...

Mehr

Elternberater/in Frühe Kindheit

Elternberater/in Frühe Kindheit Elternberter/in Frühe Kindheit usbildung in stuttgrt kurs 2011/2012 In Teilen einzeln belegbr! überblick überblick Elternberter/in Frühe Kindheit Die berufsbegleitende interdisziplinäre Ausbildung umfsst

Mehr

Whitepaper epayslip Moderne und sichere Kommunikation mit Mitarbeitern

Whitepaper epayslip Moderne und sichere Kommunikation mit Mitarbeitern For better Whitepper epyslip Moderne und sichere Kommuniktion mit Mitrbeitern Ws Sie zum Them Digitlisierung von Verdienstbrechnungen und nderen Dokumenten wissen müssen. INHALTSVERZEICHNIS 2 2 3 4 5 5

Mehr

Werben mit Knauf Insulation Supafil. Einfach gestalten, professionell auftreten, erfolgreich kommunizieren.

Werben mit Knauf Insulation Supafil. Einfach gestalten, professionell auftreten, erfolgreich kommunizieren. Schüttdämmstoffe 07/2014 Werben mit Knuf Insultion Supfil. Einfch gestlten, professionell uftreten, erfolgreich kommunizieren. Inhltsverzeichnis Einleitung Erfolgreiche Kommuniktion beginnt bei der richtigen

Mehr

Gedanken stoppen und entschleunigen

Gedanken stoppen und entschleunigen 32 AGOGIK 2/10 Bertie Frei, Luigi Chiodo Gednken stoppen und entschleunigen Individuelles Coching Burn-out-Prävention Probleme knn mn nie mit derselben Denkweise lösen, durch die sie entstnden sind. Albert

Mehr

Diplom-Lehrgang Lebens- und Sozialberatung

Diplom-Lehrgang Lebens- und Sozialberatung Ausbildungsktlog Diplom-Lehrgng Lebens- und Sozilbertung Sttlich-Zertifiziert Akdemie des Österreichischen Instituts für Gnzheitliche Therpie - ÖIGT Inhlt ÖIGT-Akdemie für Bertungs- und Gesundheitsberufe...

Mehr

6 zusatzlehren. für / zum polybauer. gerüstbau. sonnenschutzsysteme. spengler

6 zusatzlehren. für / zum polybauer. gerüstbau. sonnenschutzsysteme. spengler gerüstbu 6 zustzlehren für / zum polybuer bdichten DªCHdecken fssdenbu sonnenschutzsysteme spengler deine krriere! polybuer berufe mit perspektiven Gebäudehülleningenieur (FH)* Polybu- Meister (HFP) Gebäudehüllentechniker

Mehr

Diplom-Lehrgang Lebens- und Sozialberatung

Diplom-Lehrgang Lebens- und Sozialberatung Ausbildungsktlog Diplom-Lehrgng Lebens- und Sozilbertung Sttlich-Zertifiziert Akdemie des Österreichischen Instituts für Gnzheitliche Therpie - ÖIGT Inhlt ÖIGT-Akdemie für Bertungs- und Gesundheitsberufe...

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

HUMAN-CENTRIC WORKFLOW SOLUTION FOR SHAREPOINT

HUMAN-CENTRIC WORKFLOW SOLUTION FOR SHAREPOINT HUMAN-CENTRIC WORKFLOW SOLUTION FOR SHAREPOINT Tool zur grfischen Modellierung von Workflows in ShrePoint Einfches Gestlten von Prozessen und Chnge Mngement Gemeinsme Arbeitsplttform für kufmännische Abteilungen

Mehr

Social Media Guidelines

Social Media Guidelines Socil Medi Guidelines Socil Medi (Sozile Online-Netzwerke) sind us unserer Gesellschft nicht mehr wegzudenken. Auf Plttformen und in Netzwerken wie Blogs, Wikipedi, YouTube, Fcebook, GooglePlus, Twitter

Mehr

für/zum Polybauer 6 Zweitausbildungen gerüstbau sonnenschutzsysteme spengler

für/zum Polybauer 6 Zweitausbildungen gerüstbau sonnenschutzsysteme spengler gerüstbu 6 Zweitusbildungen für/zum Polybuer bdichten DªCHdecken fssdenbu sonnenschutzsysteme spengler Deine Krriere! Polybuer Berufe mit Perspektiven Bchelor of Science in Butechnik mit Vertiefung in

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Kommunikation und Marketing. Marketing-Dienstleistungen. Für Sie und Ihre Kunden

Kommunikation und Marketing. Marketing-Dienstleistungen. Für Sie und Ihre Kunden Kommuniktion und Mrketing Mrketing-Dienstleistungen Für Sie und Ihre Kunden Kommuniktion und Mrketing KNV Servicenummern Koch, Neff & Volckmr GmbH Stuttgrt Husnschrift: Schockenriedstrße 37 70565 Stuttgrt

Mehr

Stand: 01/08 Version 1.1

Stand: 01/08 Version 1.1 Stnd: 01/08 Version 1.1 I. Die e-mrke I. e-mrke II. Schriften III. Frben IV. Bilder V. Gestltung VI. Geschäftsusstttung I.1 Wertedrstellung VII. Werbung VIII. Presse/Publiktionen IX. Multimedi X. Vernstltungen/Messen

Mehr

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung Mnnhrd Bech Mlte Gertenbch Athletiktrining nch der FIT-Methode Mehr Stbilität Speziell für den Hndbllsport entwickelt Für bessere Körperbeherrschung, Leistungssteigerung und Verletzungsprävention Ab der

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlgen in Mthemtik für die. Klssen der HMS und der FMS Einleitung In der Mthemtik wird häufig uf bereits Gelerntem und Beknntem ufgebut. Wer die Grundlgen nicht beherrscht, ht deshlb oft Mühe und Schwierigkeiten,

Mehr

Ausbildungslehrgang zum PCM - Business Coach

Ausbildungslehrgang zum PCM - Business Coach Lehrgngsleitung, Informtion und Anmeldung: Bete Kolouch Dipl. Lebens- & Sozilberterin, kd. Supervisorin, PCM -Trinerin & Coch DI Uwe Reiner-Kolouch selbständiger Unternehmensberter, Triner, Sprringprtner,

Mehr

lehrberufe.somedia.ch

lehrberufe.somedia.ch lehrberufe.somedi.ch DU HAST TALENT MACH WAS DRAUS. INFORMATIKER/IN QUICK FACTS Gute Englisch- und Mthemtikkenntnisse Temfähigkeit Geduld und Ausduer Hohe Konzentrtionsfähigkeit Räumliches Vorstellungsvermögen

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Hierzu wird eine Anschubfinanzierung benötigt, damit das Projekt mit seinen Alleinstellungsmerkmalen die Standortfaktoren in Idstein stärken kann.

Hierzu wird eine Anschubfinanzierung benötigt, damit das Projekt mit seinen Alleinstellungsmerkmalen die Standortfaktoren in Idstein stärken kann. Kulturbhnhof Idstein - Bericht zur Stdtrendite Im vorliegenden Bericht wird der derzeitige Stnd des Projekts Kulturbhnhof drgestellt, um nhnd dieser Grundlge ds Vorhben weiter konkretisieren zu können.

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

tujareisen Ihr Nordlandpartner

tujareisen Ihr Nordlandpartner Incentives Events Abenteuer tujreisen Ihr Nordlndprtner tujreisen Ihr Nordlndprtner 17 Jhre 17 Jhre tujreisen Ihr Nordlndprtner Wer sind wir? Ws können wir für Sie tun? Ihnen zuhören, nchfrgen, Wünsche

Mehr

1 Räumliche Darstellung in Adobe Illustrator

1 Räumliche Darstellung in Adobe Illustrator Räumliche Drstellung in Adobe Illustrtor 1 1 Räumliche Drstellung in Adobe Illustrtor Dieses Tutoril gibt Tips und Hinweise zur räumlichen Drstellung von einfchen Objekten, insbesondere Bewegungspfeilen.

Mehr

Pause im Alltag - Babysitterbörse der Caritas macht-s möglich

Pause im Alltag - Babysitterbörse der Caritas macht-s möglich Puse im Alltg - Bbysitterbörse der Crits mcht-s möglich Um Eltern und Fmilien zu unterstützen und zu entlsten, ht die Crits-Konferenz St. Mrien in Koopertion mit der Crits-Helfergruppe St. Peter und Pul

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Evaluation von School s In im Stadtverband Saarbrücken

Evaluation von School s In im Stadtverband Saarbrücken Dirk Groß, Melnie Bitterlich ABSCHLUSSBERICHT Im Auftrg des Stdtverbndes Srbrücken Evlution von School s In im Stdtverbnd Srbrücken Srbrücken, im November 2006 INSTITUT FÜR SOZIALFORSCHUNG, PRAXISBERATUNG

Mehr

FDT-VERLEGESCHULUNGEN

FDT-VERLEGESCHULUNGEN 25 % RABATT SICHERN. BIS 15.11.2015 online buchbr FDT-VERLEGESCHULUNGEN KURSSTAFFEL 2016 WEITERBILDEN. OPTIMIEREN. WISSEN! 02 03 WEITERBILDEN. OPTIMIEREN. WISSEN! FDT-Verlegeschulungen Schulungen für Verleger

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Schritte international im Beruf

Schritte international im Beruf 1 Ws mchen die Leute uf dem Foto? Kreuzen Sie n. Die Leute sind ei der Berufsertung. mchen zusmmen ein Seminr. hen gerde Puse. pnthermedi / Werner H. Wer sind die Leute? Ergänzen Sie. die Referentin /

Mehr

Auswahl, Bearbeitung und eventuelle Vereinfachung authentischer Texte im Deutschunterricht

Auswahl, Bearbeitung und eventuelle Vereinfachung authentischer Texte im Deutschunterricht Projekt Berufsspezifische Sprchkompetenzprofile für Lehrpersonen für Fremdsprchen Auswhl, Berbeitung und eventuelle Vereinfchung uthentischer Texte im Deutschunterricht Pädgogisches Szenrio Deutsch ls

Mehr

Kriterien für die Auszeichnung einer Abbaustelle

Kriterien für die Auszeichnung einer Abbaustelle Stnd Mi 2015 Kriterien Seite 1/2 Kriterien für die Auszeichnung einer Abbustelle GRUNDSATZ Mit dem Zertifikt werden Abbustellen usgezeichnet, die durch ihre besondere ökologische Qulität einen wichtigen

Mehr

5.2 BASIC MSC (BMSC) BASIC MSC. Kommunikation zwischen Instanzen. Message Sequence Charts

5.2 BASIC MSC (BMSC) BASIC MSC. Kommunikation zwischen Instanzen. Message Sequence Charts BASIC MSC Ein System besteht us Instnzen. Eine Instnz ist eine bstrkte Einheit, deren Interktion mit nderen Instnzen oder mit der Umgebung mn (teilweise) beobchten knn. Instnzen kommunizieren untereinnder

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Lösungshinweise zu den zusätzliche Übungsaufgaben

Lösungshinweise zu den zusätzliche Übungsaufgaben Lösungshinweise zu den zusätzliche Übungsufgben Aufgbe Z.1 (Mximin Regel [1]) Als Gleichgewicht ergibt sich, mit Auszhlungsvektor 5, 5. Aufgbe Z. (Dominnzüberlegungen und Nsh Gleichgewicht ) & b) [1]/

Mehr

Sicherheitssysteme Digitale Videoüberwachung

Sicherheitssysteme Digitale Videoüberwachung Sicherheitssysteme Digitle Videoüberwchung PM11 M11_A- 6-4- 1 Sie hben lles unter Kontrolle. Für Objekte ller Größen Viele Unternehmen benötigen mehr ls nur eine punktuelle Videoüberwchung. Kom- Lösungen.

Mehr

c dl SPiC (Teil C, SS 11) 13 Zeiger und Felder 13.1 Zeiger Einführung 13 1 Zeigervariable := Behälter für Verweise ( Adresse) Beispiel int x = 5;

c dl SPiC (Teil C, SS 11) 13 Zeiger und Felder 13.1 Zeiger Einführung 13 1 Zeigervariable := Behälter für Verweise ( Adresse) Beispiel int x = 5; Überblick: Teil C Systemnhe Softwreentwicklung Einordnung: Zeiger (Pointer) Literl: Drstellung eines Wertes 0110 0001 12 Progrmmstruktur und Module Vrible: Bezeichnung chr ; eines Dtenobjekts Behälter

Mehr

Version 3. Installation. Konfiguration. Bedienung. Referenz. SYNCING.NET Technologies GmbH Weipertstr. 8-10 74076 Heilbronn www.syncing.

Version 3. Installation. Konfiguration. Bedienung. Referenz. SYNCING.NET Technologies GmbH Weipertstr. 8-10 74076 Heilbronn www.syncing. Rev. 03 SNT 000.2547 Version 3 Instlltion Konfigurtion Bedienung Referenz SYNCING.NET Technologies GmbH Weipertstr. 8-10 74076 Heilbronn www.syncing.net Inhltsverzeichnis Inhltsverzeichnis Einleitung 5

Mehr

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3 2.5 Algebr Inhltsverzeichnis Fktorisieren 2. Terme fktorisieren...................................... 2.2 (-) usklmmern....................................... 2.3 Terme mit Klmmern fktorisieren..............................

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

PREISLISTE STAND 01. JUNI 2015

PREISLISTE STAND 01. JUNI 2015 PREISLISTE STAND 01. JUNI 2015 Der Ruhr Nchrichten Stellenmrkt Tgeszeitung + Internet Kombinieren Sie Ihr Stellenngebot in der Tgeszeitung mit unserem portl stellen.ruhrnchrichten.de. Mit dieser Kombi

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

KONZEPT EINER SCHULE FÜR ERWACHSENE AN DER VOLKSHOCHSCHULE STUTTGART. Foto: micromonkey - fotolia

KONZEPT EINER SCHULE FÜR ERWACHSENE AN DER VOLKSHOCHSCHULE STUTTGART. Foto: micromonkey - fotolia KONZEPT EINER SCHULE FÜR ERWACHSENE AN DER VOLKSHOCHSCHULE STUTTGART Foto: micromonkey - fotoli Inhlt Vorwort: Schule für Erwchsene VORWORT: SCHULE FÜR ERWACHSENE 4 1. AUSGANGSSITUATION/ MOTIV UND ANLASS

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

GPM Project Excellence Modell Nürnberg, PM Forum 2014

GPM Project Excellence Modell Nürnberg, PM Forum 2014 GPM Project Excellence Modell Nürnerg, PM Forum 2014 Einführung Reflexion professionell egeisterte Stkeholder Lernen innovtiv Ws ist Project Excellence? Umweltinteressen nchhltige Werte schffen herusrgende

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

a Gute Abschlussnoten aus der Sekundarschule (Sek.-Stufe 1) a Selbstständigkeit und hohe Lernbereitschaft a Lehrdauer (Jahre): 4

a Gute Abschlussnoten aus der Sekundarschule (Sek.-Stufe 1) a Selbstständigkeit und hohe Lernbereitschaft a Lehrdauer (Jahre): 4 DU HAST TALENT MACH WAS DRAUS. POLYGRAF/IN QUICK FACTS Exktheit und Suberkeit Gutes ästhetisches Gespür Stilsicheres Deutsch Gute Abschlussnoten us der Sekundrschule (Sek.-Stufe 1) Ausgeprägte Auffssungsgbe

Mehr

.. -. -..-. -.. - .. -...-. ---.-. --.- -.. --- -. -...-...- -.-. -.- .--. -... -... --. -. Kommt Ihnen hier etwas chinesisch vor?

.. -. -..-. -.. - .. -...-. ---.-. --.- -.. --- -. -...-...- -.-. -.- .--. -... -... --. -. Kommt Ihnen hier etwas chinesisch vor? Kommt Ihnen hier etws chinesisch vor? Internet.. -. -..-. -.. - Dnn hben Sie Recht! urbn 31 bringt chinesische Zeichen uf Bildschirm und Ppier Informtionstechnologie.. -...-. ---.-. --.- -.. --- -. Druckschen

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Karlsruhe - Mannheim - Aachen

Karlsruhe - Mannheim - Aachen Deutsche Finnzdtenbnk - DFDB Krlsruhe - Mnnheim - Achen - Krlsruhe - Die Bereinigung von Aktienkursen - Ein kurzer Uberblick uber Konzept und prktische Umsetzung - Andres Suer Version 10, August 1991 Projektleitung:

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Wie wirkt sich eine reiserhöhung für Gut uf die konsumierte Menge n us: Bzw.: d (,, ) h (,, V ) 2 V 0,5 0,5 Für die Unkompensierte Nchfrgefunktion gilt:

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

XING Events. Kurzanleitung

XING Events. Kurzanleitung XING Events Kurznleitung 00 BASIC nd PLUS Events 2 Die Angebotspkete im Überblick Wählen Sie zwischen zwei Pketen und steigern Sie jetzt gezielt den Erfolg Ihres Events mit XING. Leistungen Event BASIS

Mehr

f(ξ k )(x k x k 1 ) k=1

f(ξ k )(x k x k 1 ) k=1 Integrlrechnung Definition des bestimmten Integrls Die Integrtion ist die Umkehropertion zur Differentition. Grundufgbe der Integrlrechnung ist die Bestimmung von Flächen. Will mn beispielsweise den Inhlt

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Verbrauchswerte. 1. Umgang mit Verbrauchswerten

Verbrauchswerte. 1. Umgang mit Verbrauchswerten Verbruchswerte Dieses Unterkpitel ist speziell dem Them Energienlyse eines bestehenden Gebäudes nhnd von Verbruchswerten (Brennstoffverbräuche, Wrmwsserverbruch) gewidmet. BEISPIEL MFH: Ds Beispiel des

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium 521310620_1001.indd 1 03.12.09 14:50 Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die

Mehr

Case Management in der Arzthaftpflicht. KM-Kongress 2012 PD Dr. Ursula Wandl, Swiss Re,

Case Management in der Arzthaftpflicht. KM-Kongress 2012 PD Dr. Ursula Wandl, Swiss Re, Cse Mngement in der Arzthftpflicht KM-Kongress 2012 PD Dr. Ursul Wndl, Swiss Re, Vorwurf Behndlungsfehler Medizin Hftpflicht-Versicherung Arbeitswelt Sozilversicherung Fmilie Rechtsnwlt Dr. Ursul Wndl

Mehr

Inhaltsverzeichnis der Module

Inhaltsverzeichnis der Module nle 2: Modulbeschreibunen In der Fssun des 3. Beschlusses vom 10.06.2009 30.09.2009 7.35.06 Nr. 1 S. 1 Inhltsverzeichnis der Module ode Bezeichnun Semester PSY-B-PM-01 PSY-B-PM-02 PSY-B-PM-03 PSY-B-PM-04

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

Swiss Post Solutions

Swiss Post Solutions Swiss Post Solutions Ihr strtegischer Prtner für intelligentes Informtions- und Dokumentenmngement Index Swiss Post Solutions stellt sich vor Input Mngement Customer Contct Mngement Milroom Mngement Archiv

Mehr

Unabhängiger Versicherungsmakler a. & w. gmbh

Unabhängiger Versicherungsmakler a. & w. gmbh Unbhängiger Versicherungsmkler Unser Mklerprofil... Allfinnz-Mkler und Wirtschftsbertungsgesellschft mbh Informtion nch 11 Versicherungsvermittlungsverordnung - VersVermV Firmennschrift : Vorjurstrße 113

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Finanzbuchhaltung nach SWISS GAAP FER

Finanzbuchhaltung nach SWISS GAAP FER Finnzbuchhltung nch SWISS GAAP FER Frnz Crlen, Anton Riniker, Nicole Widmer Anpssungen der 2. Auflge 2013 Liebe Leserinnen und Leser In der Fchempfehlung zu Rechnungslegung 2014/15 wurden einige wesentliche

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

STATUS DES WINDENERGIEAUSBAUS

STATUS DES WINDENERGIEAUSBAUS Jhr STATUS DES WINDENERGIEAUSBAUS AN LAND Zusätzliche Auswertungen und Dten für ds Jhr Deutsche WindGurd GmbH - Oldenburger Strße 65-26316 Vrel 4451/9515 - info@windgurd.de - www.windgurd.de Jhr STATISTISCHE

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

3 Wiederholung des Bruchrechnens

3 Wiederholung des Bruchrechnens 3 Wiederholung des Bruchrechnens Ein Bruch entsteht, wenn ein Gnzes in mehrere gleiche Teile zerlegt wird. Jeder Bruch besteht us dem Zähler, der Zhl über dem Bruchstrich, und dem Nenner, der Zhl unter

Mehr

Kapitel 5 Viren und unerwünschte Werbung abwehren

Kapitel 5 Viren und unerwünschte Werbung abwehren Kpitel Viren und unerwünschte Werbung bwehren Firewll und Antivirenprogrmm sind Pflicht für jeden Computerbesitzer. Wissen Sie, ob Sie wirklich geschützt sind? Ich zeige Ihnen, wo Sie ds erfhren und ws

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

Sponsored Search Markets

Sponsored Search Markets Sponsored Serch Mrkets ngelehnt n [EK1], Kpitel 15 Seminr Mschinelles Lernen, WS 21/211 Preise Slots b c Interessenten y z 19. Jnur 211 Jn Philip Mtuschek Sponsored Serch Mrkets Folie 1 Them dieses Vortrgs

Mehr

Limit Texas Hold em. Meine persönlichen Erfahrungen

Limit Texas Hold em. Meine persönlichen Erfahrungen Limit Texs Hold em Meine persönlichen Erfhrungen Dominic Dietiker c Drft dte 21. September 2010 Inhltsverzeichnis 1. Spielnleitung...................................... 1 1.1 Der Spielverluf....................................

Mehr

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b Grundlgen 0.0. Zhlbereiche ntürliche Zhlen: N = {0; ; 2;...} (nch DIN 547) N = N \ {0} gnze Zhlen: Z = {... 2; ; 0; ; 2;...} rtionle Zhlen: Q = { p p, q Z, q 0} q Q besteht us llen Bruchzhlen. reelle Zhlen:

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr