Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Größe: px
Ab Seite anzeigen:

Download "Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban"

Transkript

1 Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien endlichen Finanzmarkt mit Periodenende T N. Sei Q ein äquivalentes Martingalmaß, H = H t t=0,...,t eine Amerikanische Option und Z := Z t t=0,...,t mit Z T := H } T Ht, Z t := max, E Q [Z t+ F t ], t = 0,..., T, B T B t die Snell-Einhüllende des diskontierten Anspruchs. Z ist ein Supermartingal. Wir wenden Doob s Zerlegungssatz an und finden damit ein Martingal M = M t t=0,...,t und einen P-f.s. fallenden, F- vorhersagbaren Prozess A = A t t=0,...,t mit A 0 = 0 und Z t = M t + A t, t = 0,..., T. Wie üblich bezeichnen wir mit τ die optimale Ausübungsstrategie, die wir aus Z ablesen können: τ := inf Z t = H } t. t 0,...,T } B t Aus der Vorlesung wissen wir, dass die bei τ gestoppte Snell-Einhüllende Z τ := Z t τ t=0,...,t ein Martingal ist. Vergleichen wir mit der Martingaldarstellung von oben, muss also Z t = M t bzw. A t = 0 gelten für alle 0 t τ. Ebenfalls aus der Vorlesung bekannt ist, wie man eine Amerikanische Option hedgt: Dazu betrachtet man den Martingalteil M der Snell-Einhüllenden Z. Sowohl dessen Endwert M T als auch das Vielfache M T B T =: H davon sind erreichbare Zahlungsansprüche. Die zugehörige Hedgingstrategie sei mit φ bezeichnet. φ ist dann ebenfalls eine Hedgingstrategie für die Amerikanische Option H. Mit der risikoneutralen Bewertungsformel läßt sich der Wert des Hedgingportfolios zur Zeit τ als Preis von H auffassen. Wir setzen im nächsten Schritt die Definition von H ein und nutzen aus, dass M ein Martingal ist. Bis einschließlich zur Zeit τ stimmt Z mit M überein, woraus wir unmittelbar die gewünschte Gleichheit erhalten: [ ] H V φ τ = B τ E B T F τ = B τ E [M T F τ ] = B τ M τ = B τ Z τ H τ = B τ B τ = H τ. Aufgabe 2 Einen Amerikanischen Put hedgen Gegeben sei folgender endlicher Finanzmarkt mit Zinsrate r = 5%:

2 S 0 = 20 S u = 22 S 2 u, u = 26 S 2 u, d = 20 S 2 d, u = 8 S d = 6 S 2 d, d = 0 Wir wollen einen Amerikanischen Put H auf S mit Strike K = 2 hedgen. Aus der letzten Übung kennen wir die optimale Strategie τ, ω d, u, d, d} ω = 2, ω u, u, u, d}. Eine Amerikanische Option hedgt man, indem man ihre Snell-Einhüllende Z t bestimmt und dieses Supermartingal mit Doob s Zerlegungsssatz als Summe aus einem Martingal M t und einem fallenden Prozess schreibt. Aus der Vorlesung wissen wir, dass die Strategie, mit der man den erreichbaren aufdiskontierten Anspruch M t B t hedgt, auch eine Hedgingstrategie für H t ist. In Aufgabe haben wir gesehen, dass Z bis zum optimalen Stoppzeitpunkt τ ein Martingal ist, also bis dort hin mit M übereinstimmt. Da wir ohnehin nur bis τ hedgen wollen, müssen wir die Doob-Zerlegung nicht berechnen, sondern können genausogut den Anspruch Z t B t t=0,...,τ hedgen. Die benötigten Werte von Z haben wir schon ausgerechnet: Z 0 = , Z u = , Z 2u, u = 0, Z 2 u, d = , Z d = 00 2, Z 2d, u = , Z 2 d, d = Hedgingstrategien werden immer von hinten nach vorne berechnet, weil man den Endwert des Hedgingportfolios kennt. Sei α t, β t t=0, unsere Hedgingstrategie. Für den Fall, dass wir im ersten Zeitintervall eine Kursentwicklung nach oben beobachtet haben, stoppen wir erst am Ende und beginnen mit dem Hedging im rechten oberen Teilbaum: Z 2 u, ub 2 = α us 2 u, u + β ub 2, Z 2 u, db 2 = α us 2 u, d + β ub 2 α u = Z 2 u, ub 2 Z 2 u, db 2 S 2 u, u S 2 u, d = 6, β u = Z 2 u, u α us 2 u, u B 2 = Den unteren rechten Teilbaum müssen wir nicht betrachten, denn falls der Aktienkurs im ersten Intervall fällt, stoppen wir bereits zum Zeitpunkt t =. Formal setzen wir α d = β d = 0. Im ersten Baum haben wir schließlich Z ub = α 0 S u + β 0 B, Z db = α 0 S d + β 0 B α 0 = Z ub Z db S u S d = 43 89, β 0 = Z u α 0S u B =

3 Aufgabe 3 Down-and-Out als Amerikanische Call-Option Wir wollen die Amerikanische Option H = H t t=0,...,3 mit H t = S t K + mins0,...,s t}>b, Strike K = 2 und Barriere B = 8 im CRR-Modell mit 3 Stufen bewerten, u = 5 4, d = 4 5, r = 5% und S 0 = 0, und die optimale Ausübungsstrategie herausfinden. Die Idee zur Lösung ist die selbe wie in Aufgabe 2: Bestimme die Kurswerte von Bond und Aktie zu jeder Zeit, leite daraus den Wert des Zahlungsanspruchs zu jeder Zeit ab, bestimme das risikoneutrale Maß und rechne damit die Snell-Einhüllende aus, notiere für jeden Pfad die kleinste Zeit, zu der sie mit dem diskontierten Zahlungsanspruch übereinstimmt, als Ausübungsstrategie und erhalte schließlich den Startwert der Snell-Einhüllenden als Preis der Option. Die notwendigen Rechnungen übernimmt das im Rahmen der Praxisaufgabe Aufgabe 4 von Blatt 7 angefertigte Programm. Die einzelnen Ergebnisse sind: Kurswerte des Bonds B 0,..., B 3 : [,] Kurswerte der Aktie S 0 ω i,..., S 3 ω i, i in der ersten Spalte: [,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] Zahlungsanspruch H zu jeder Zeit und für jeden Pfad wie oben: [,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] Es gilt q = +r d u d = 5 9. Man findet die Snell-Einhüllende Z wie unten angegeben. Hier ist die Baumstruktur in der Matrix notiert; Wer möchte, kann dort, wo ein NA notiert ist, den Wert von Z finden, indem er in der selben Spalte mit dem Finger bis zum ersten auf diese Weise erreichten Eintrag nach oben fährt. [,] [2,] NA NA NA [3,] NA NA [4,] NA NA NA [5,] NA

4 [6,] NA NA NA [7,] NA NA [8,] NA NA NA Wir haben hier auch schon den Preis gesehen, es ist der Z 0 entsprechende erste Eintrag links oben: π A H = Man sieht schon an H oder an Z, dass es bei einer Abwärtsbewegung im ersten Schritt egal ist, wann man stoppt, denn die Auszahlung ist dann in jedem Fall und zu jedem noch kommenden Zeitpunkt Null. Wir haben τ so definiert, dass in solchen Fällen beim ersten Zeitpunkt gestoppt wird, zu dem Z mit dem diskontierten Zahlungsanspruch übereinstimmt und erhalten daher τ ω,..., τ ω 8 als [] Genauso optimal wäre es, in jedem Fall bis zum Ende zu halten, eine frühzeitige Ausübung ist also möglich, aber nicht nötig. Aufgabe 4 Optimale Strategie für den Amerikanischen Put Wir betrachten eine Amerikanische Put-Option im CRR-Modell, H t = K S t + für alle t. Sei Ṽts wie in der Vorlesung der Preis der Option zur Zeit t, wenn S t = s der korrespondierende Preis der zu Grunde liegenden Aktie ist. a Wir wollen zeigen, dass s Ṽts+s nicht-fallend ist für t = 0,..., T. Zunächst gilt nach Definition Wir gehen rückwärtsinduktiv vor. Für t = T gilt Ṽ T s = K s + 0, s > 0. Ṽ T s + s = K s + + s = K, s K s, K < s und das ist eine nicht-fallende Funktion in s. Wegen ist ṼT s 0 und damit auch Ṽ t s 0, t = 0,..., T, s > 0, 2 als Maximum aus einem ersten Argument und einer nichtnegativen Zahl. Als nächstes rechnen wir qu + qd = 3 durch Einsetzen von q = +r d u d nach. Es gelte nun die gewünschte Aussage oberhalb eines festen t 0,..., T }. Wir gehen induktiv von t + t und folgern aus Obigem für s > 0 Ṽ t s = max K s + }, qṽt+us + qṽt+ds 2 = max K s, qṽt+us + qṽt+ds } Ṽ t s + s = max K, s + } qṽt+us + qṽt+ds 3 = max K, Ṽt+ q us + us + q Ṽt+ ds + ds. 4 } } } } Wegen 0 < d < u sind auch ds, us > 0 und wir können die Induktionsvoraussetzung an den mit markierten Stellen anwenden. Es folgt direkt die Behauptung. 4

5 b Wir wollen t Ṽts ist nicht-wachsend für s > 0 zeigen und bemühen dazu direkt eine Rückwärtsinduktion über t: Für alle s > 0 erfüllt das Paar T, T Ṽ T s = K s + max K s +, qṽt us + qṽt ds } = ṼT s. Nun gelte die geforderte Eigenschaft für das Paar t +, t. Für alle s > 0 folgern wir daraus Ṽ t s = max K s+, q } Ṽt+us + q } } Ṽt+ds } Ṽtus Ṽtds max K s +, qṽtus + qṽtds } = Ṽt s. c Wir wollen zeigen, dass es Zahlen x 0 x x T = K gibt, sodass die optimale Ausübungsstrategie τ geschrieben werden kann als τ = inf S t x t }. t=0,...,t Betrachte 4. Wir wissen aus Teil a, dass die rechte Seite in s wächst. Da das erste Argument K der Maximumsfunktion konstant ist, wächst also das zweite Argument der Maximumsfunktion. Wir wissen aus der Vorlesung und den Eigenschaften der Snell-Einhüllenden, dass wir optimalerweise stoppen, wenn zum ersten Mal K das Ergebnis der Maximumsfunktion ist. Es gibt also ein kleinstes s, sodass die rechte Seite gerade genau so groß ist wie K, für das also die Stoppregel ausgelöst wird. Genauer gilt für den Maximisator der Stufe t 0,..., T } f t s = Option jetzt ausüben, K +r weiter warten, andernfalls q Ṽt+ us + us + q Ṽt+ ds + ds und wir wählen x t := inf K = q Ṽt+ us + us + q Ṽt+ ds + ds }. s 0 Wir dürfen hier Gleichheit fordern, denn wir haben es mit in s stetigen Funktionen zu tun. In der letzten Stufe t = T stoppen wir, sobald s = K gilt, denn es gilt ja gerade ṼT s = K s +. Insgesamt gilt für die optimale Stoppzeit also wie behauptet τ = inf S t x t }. t=0,...,t Die behauptete aufsteigende Ordnung der x t müssen wir noch zeigen. Das ist richtig, da Ṽts in t fällt, vergleiche Teil b. Gehen wir also von t zu t+, müssen wir s länger wachsen lassen, bis K das Ergebnis des Maximums ist. Wir erhalten wie gewünscht die Anordnung x 0 x x T = K. 5

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag studienbegleitende Klausur Finanzmathematik I Aufgabe (7 Punkte) Vorgelegt sei ein Wahrscheinlichkeitsraum (Ω, F, P) und

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Bewertung von Barriere Optionen im CRR-Modell

Bewertung von Barriere Optionen im CRR-Modell Bewertung von Barriere Optionen im CRR-Modell Seminararbeit von Susanna Wankmueller. April 00 Barriere Optionen sind eine Sonderform von Optionen und gehören zu den exotischen Optionen. Sie dienen dazu,

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 17 Crash Course Brownsche Bewegung (stetige Zeit, stetiger Zustandsraum); Pricing & Hedging von Optionen in stetiger Zeit Literatur Kapitel 17 * Uszczapowski:

Mehr

Übung zu Forwards, Futures & Optionen

Übung zu Forwards, Futures & Optionen Übung zu Forwards, Futures & Optionen Vertiefungsstudium Finanzwirtschaft Dr. Eric Nowak SS 2001 Finanzwirtschaft Wahrenburg 15.05.01 1 Aufgabe 1: Forward auf Zerobond Wesentliche Eckpunkte des Forwardgeschäfts:

Mehr

III Stochastische Analysis und Finanzmathematik

III Stochastische Analysis und Finanzmathematik III Stochastische Analysis und Finanzmathematik Ziel dieses Kapitels ist es, eine Einführung in die stochastischen Grundlagen von Finanzmärkten zu geben. Es werden zunächst Modelle in diskreter Zeit behandelt,

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Bewertung von amerikanischen Optionen im CRR Modell. Seminararbeit von Nadja Amedsin

Bewertung von amerikanischen Optionen im CRR Modell. Seminararbeit von Nadja Amedsin Bewertung von amerikanischen Optionen im CRR Modell Seminararbeit von Nadja Amedsin 22.05.10 i Inhaltsverzeichnis 1 Einführung 1 2 Amerikanischer Claim 1 2.1 Beispiele................................ 2

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

So wähle ich die EINE richtige Option aus

So wähle ich die EINE richtige Option aus So wähle ich die EINE richtige Option aus Rainer Heißmann, Dresden, 16.01.2016 Experten. Sicherheit. Kompetenz. So wähle ich die EINE richtige Option aus Seite 2 von 18 Geld machen Voltaire (französischer

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte : Derivative und strukturierte Finanzprodukte Institut für Finanzmathematik Johannes Kepler Universität Linz 10. Jänner 2008 Wesentliche Fragen Was sind Derivate? Was sind strukturierte Finanzprodukte

Mehr

FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN

FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN JOSEF TEICHMANN 1. Ein motivierendes Beispiel aus der Anwendung Das SABR-Modell spielt in der Modellierung von stochastischer Volatilität eine herausragende

Mehr

Vorlesung. Finanzmathematik I. Steffen Dereich und Marcel Ortgiese. Westfälische Wilhelms-Universität Münster WS2013/14. Version: 31.01.

Vorlesung. Finanzmathematik I. Steffen Dereich und Marcel Ortgiese. Westfälische Wilhelms-Universität Münster WS2013/14. Version: 31.01. Vorlesung Finanzmathematik I Steffen Dereich und Marcel Ortgiese Westfälische Wilhelms-Universität Münster WS2013/14 Version: 31.01.2014 Inhaltsverzeichnis 1. Einführung 1 1.1. Das Finanzmarktmodell...........................

Mehr

Aufgaben zur Vorlesung Finanzmanagement

Aufgaben zur Vorlesung Finanzmanagement Aufgaben zur Vorlesung Finanzmanagement B. rke FH Gelsenkirchen, Abteilung Bocholt February 4, 006 Aufgabenblatt: "Bewertung von Optionen" 1 Lösungshinweise 1 uropean Put Option Zeichnen Sie den einer

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

76 10. WEITERE ASPEKTE

76 10. WEITERE ASPEKTE 76 10. WEITERE ASPEKTE 10. Weitere Aspekte 10.1. Aktien mit Dividendenzahlungen Betrachten wir das Black Scholes-Modell. Falls die Aktie nun Dividenden bezahlt, wird der Wert der Aktie um den Wert der

Mehr

II. Bewertung von Derivaten in diskreter Zeit

II. Bewertung von Derivaten in diskreter Zeit II. Bewertung von Derivaten in diskreter Zeit 2.1. Wahrscheinlichkeitstheoretische Grundlagen 2.1.1. Bedingte Erwartungswerte Sei (Ω, F, P) ein Wahrscheinlichkeitsraum. Für A, B F mit P(B) > 0 ist die

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Vorbemerkungen zur Optionsscheinbewertung

Vorbemerkungen zur Optionsscheinbewertung Vorbeerkungen zur Optionsscheinbewertung Matthias Groncki 24. Septeber 2009 Einleitung Wir wollen uns it den Grundlagen der Optionsscheinbewertung beschäftigen. Dazu stellen wir als erstes einige Vorraussetzungen

Mehr

Bewertung von Derivaten im Black-Scholes Modell

Bewertung von Derivaten im Black-Scholes Modell Bewertung von Derivaten im Black-Scholes Modell Bachelorarbeit Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik Institut für Mathematische Statistik Betreuung: PD Dr. Volkert

Mehr

Finanzmathematik. Johannes Bartels. 10. April 2016

Finanzmathematik. Johannes Bartels. 10. April 2016 Finanzmathematik Johannes Bartels 10. April 2016 Der Verfasser ist Oberregierungsrat bei der BaFin. Das vorliegende Skript gibt ausschlieÿlich seine persönliche Meinung wieder. J. Bartels, Bonn, E-Mail:

Mehr

Wirtschaftswissenschaftliches Forum

Wirtschaftswissenschaftliches Forum Wirtschaftswissenschaftliches Forum Prof. Dr. Dr. Andreas Löffler Universität Paderborn Investitionsneutrale Steuersysteme unter Unsicherheit Investitionsneutrale Steuersysteme unter Unsicherheit Wirtschaftswiss.

Mehr

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie Kurzbeschreibung Mit dem Eurex-OptionMaster können Sie - theoretische Optionspreise - Optionskennzahlen ( Griechen ) und - implizite Volatilitäten von Optionen berechnen und die errechneten Preise bei

Mehr

11 Stochastisches Integral und Itô-Formel

11 Stochastisches Integral und Itô-Formel 11 Stochastisches Integral und Itô-Formel Im diskreten Finanzmodell bei selbstfinanzierender Strategie ϑ = {ϑ n n=,...,n mit Anfangswert V gilt : Ṽ n ϑ = V + n ϑ T j S j. j=1 Dieser diskontierte Wertprozess

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009 nach Black-Scholes mit sprüngen 2. Februar 2009 nach Black-Scholes mit sprüngen Inhaltsverzeichnis 1 Einleitung Optionsarten Modellannahmen 2 Aktienmodell Beispiele für e ohne Sprung 3 nach Black-Scholes

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 8

Mathematische Grundlagen der Ökonomie Übungsblatt 8 Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H 5+7+8 = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

Optik II (Beugungsphänomene)

Optik II (Beugungsphänomene) Optik II (Beugungsphänomene) 1 Wellenoptik 2 1 Interferenz von Wellen, Interferenzversuche 3 Überlagerung von Wellen 4 2 Konstruktive und destruktive Interferenz 5 Beugungsphänomene 6 Bei der Interferenz

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Vorlesung Stochastische Finanzmathematik Einführung

Vorlesung Stochastische Finanzmathematik Einführung Vorlesung Stochastische Finanzmathematik Einführung Pascal Heider Institut für Numerische Mathematik 30. März 2011 Einleitung Frage: Ist der Kurs einer Aktie absicherbar? Beispiel: Sie besitzen eine Daimler

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn, 04.11.2008 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele Kapitel 6 Martingale In der Statistik modellieren Martingale z.b. Glücksspiele oder Handelsstrategien in Finanzmärkten und sind ein grundlegendes Hilfsmittel für die statistische Inferenz stochastischer

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Interdisziplinäres Vertiefungsfach Geld und Finanzierung. Vertiefungskurs I: Optionspreise und Derivate. Klaus Pötzelberger

Interdisziplinäres Vertiefungsfach Geld und Finanzierung. Vertiefungskurs I: Optionspreise und Derivate. Klaus Pötzelberger Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate Klaus Pötzelberger Institut für Statistik und Mathematik Option Slide 1 Klaus Pötzelberger Optionspreis

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 14 Lehren für s Management & das tägliche Leben III: Zins und exponentielles Wachstum Zur Erinnerung: mit grossen n gilt: n! > c n > n c > log n. Aus der Analysis

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Teil A - Einführung und Tipps für Lernbegleiter (Eltern, Pädagogen, Therapeuten, Lehrer)

Teil A - Einführung und Tipps für Lernbegleiter (Eltern, Pädagogen, Therapeuten, Lehrer) Teil A - Einführung und Tipps für Lernbegleiter (Eltern, Pädagogen, Therapeuten, Lehrer) Methode des Konzentrierten Einmaleins-Trainings Teil A Dieses Training baut auf den Teil des Konzentrierten Einmaleins-Kurses

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Leonhard Euler 1 Wann immer in den Anfängen der Analysis die Potenzen des Binoms entwickelt

Mehr

zu Aufgabe 3b) Binomialmodell: C 0 = S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 = S 0 0,909 165,28 = 16,53

zu Aufgabe 3b) Binomialmodell: C 0 = S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 = S 0 0,909 165,28 = 16,53 zu Aufgabe 3b) Binomialmodell: C 0 S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 S 0 0,909 65,8 6,53 Frage: Wie setzt sich das Duplikationsportfolio des Calls (anteiliger Aktienkauf teilweise kreditfinanziert)

Mehr

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Ausarbeitung zum Vortrag im Seminar Stochastische Dynamische Optimierung vom 18.01.2008 Datum : 18.01.2008 Verfasser: Martin Schymalla

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Eine Einführung zum numerischen Programmieren mit Excel

Eine Einführung zum numerischen Programmieren mit Excel Eine Einführung zum numerischen Programmieren mit Excel Bastian Groß Nina Weiand Universität Trier 23. Juni 2014 Groß, Weiand (Universität Trier) Excel/OpenOffice Kurs 2014 1/38 23. Juni 2014 1 / 38 Inhaltsverzeichnis

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014 Walter Sanddorf-Köhle Foliensatz Nr. 8 1 / 40 Erweiterungen des Binomialmodells Dividendenzahlungen Sei S der Wert einer Aktie

Mehr

Lösungshinweise zum Aufgabenteil aus Kapitel 6

Lösungshinweise zum Aufgabenteil aus Kapitel 6 Lösungshinweise zum Aufgabenteil aus Kapitel 6 Aufgabe 6.A Zu 1. Ein Export nach Europa ist dann von Vorteil, wenn der US$- -Wechselkurs größer als Eins ist, d. h. wenn man für einen Euro mehr als einen

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

Vertical-Spreads Iron Condor Erfolgsaussichten

Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 1 Eigenschaften Erwartung Preis Long Calls Long Puts Kombination mit Aktien Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 2 www.mumorex.ch 08.03.2015

Mehr

Finanzmathematik mit Excel

Finanzmathematik mit Excel Finanzmathematik mit Excel Seminar zur Finanzwirtschaft im Wintersemester 2014/15 Dipl.-Math. Timo Greggers B.Sc. VWL Janina Mews M.Sc. BWL Dienstag 14.15-15.45 (Beginn: 28.10.2014) PC-Labor (Walter-Seelig-Platz

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Zur Bewertung von Derivaten Eine Einführung

Zur Bewertung von Derivaten Eine Einführung Zur Bewertung von Derivaten Eine Einführung Dr. Volkert Paulsen 17. September 2009 Im wesentlichen unternimmt man auf Finanzmärkten eine Zweiteilung in Basis- und derivative Finanzgüter. Ein Anteil an

Mehr

Hackenbusch und Spieltheorie

Hackenbusch und Spieltheorie Hackenbusch und Spieltheorie Was sind Spiele? Definition. Ein Spiel besteht für uns aus zwei Spielern, Positionen oder Stellungen, in welchen sich das Spiel befinden kann (insbesondere eine besondere Startposition)

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a -

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a - : Eine Einführung in die moderne Finanzmathematik Prof. Dr. Dietmar Pfeifer Institut für Mathematik chwerpunkt Versicherungs- und Finanzmathematik Kursverläufe des DA: agesgang 5.1.2011-1a - Kursverläufe

Mehr

Internationale Finanzierung 7. Optionen

Internationale Finanzierung 7. Optionen Übersicht Kapitel 7: 7.1. Einführung 7.2. Der Wert einer Option 7.3. Regeln für Optionspreise auf einem arbitragefreien Markt 7.3.1. Regeln für Calls 7.3.2. Regeln für Puts 7.3.3. Die Put Call Parität

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Finanzmanagement 5. Optionen

Finanzmanagement 5. Optionen Übersicht Kapitel 5: 5.1. Einführung 5.2. Der Wert einer Option 5.3. Regeln für Optionspreise auf einem arbitragefreien Markt 5.3.1. Regeln für Calls 5.3.2. Regeln für Puts 5.3.3. Die Put Call Parität

Mehr

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1 Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha)

Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha) Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha) - dies ist i.w. die Übersetzung eines Artikels, der im November 2010 im Newsletter der Chue Foundation erschienen ist - Korrektheit

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Finanzmathematik. Jürgen Dippon. 28. März 2011. Vorlesung WS 2010/11

Finanzmathematik. Jürgen Dippon. 28. März 2011. Vorlesung WS 2010/11 Finanzmathematik Vorlesung WS 21/11 Jürgen Dippon 28. März 211 Inhaltsverzeichnis 1 Einführung 3 1.1 Grundbegrie................................... 4 1.2 Put-Call-Parität.................................

Mehr

Thema: Winkel in der Geometrie:

Thema: Winkel in der Geometrie: Thema: Winkel in der Geometrie: Zuerst ist es wichtig zu wissen, welche Winkel es gibt: - Nullwinkel: 0 - spitzer Winkel: 1-89 (Bild 1) - rechter Winkel: genau 90 (Bild 2) - stumpfer Winkel: 91-179 (Bild

Mehr

Bewertung von exotischen Optionen im CRR Modell

Bewertung von exotischen Optionen im CRR Modell Bewertung von exotischen Optionen im CRR Modell Bachelorarbeit von Stefanie Tiemann 11. 08. 2010 Betreuer: Privatdozent Dr. Volkert Paulsen Institut für mathematische Statistik Fachbereich Mathematik und

Mehr

PROSEMINAR ONLINE ALGORITHMEN

PROSEMINAR ONLINE ALGORITHMEN PROSEMINAR ONLINE ALGORITHMEN im Wintersemester 2000/2001 Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans (Betreuer) Vortrag vom 15.11.2000 von Jan Schmitt Thema : Finden eines

Mehr

Mathematik Serie 1 (60 Min.)

Mathematik Serie 1 (60 Min.) Aufnahmeprüfung 011 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! - Die

Mehr

3.8 Wahrscheinlichkeitsrechnung III

3.8 Wahrscheinlichkeitsrechnung III 3.8 Wahrscheinlichkeitsrechnung III Inhaltsverzeichnis ufallsgrössen Der Erwartungswert 3 3 Die Binomialverteilung 6 4 Die kumulierte Binomialverteilung 8 4. Die Tabelle im Fundamentum (oder Formeln und

Mehr

Gantt-Diagramm - Diagramm zur Projektverfolgung

Gantt-Diagramm - Diagramm zur Projektverfolgung Gantt-Diagramm - Diagramm zur Projektverfolgung 5.06.206 3:29:35 FAQ-Artikel-Ausdruck Kategorie: Windows::MS Office::Excel Bewertungen: 0 Status: öffentlich (Alle) Ergebnis: 0.00 % Sprache: de Letzte Aktualisierung:

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

Martingal-Maße. Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Manuel Müller Mathematisches Institut

Martingal-Maße. Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Manuel Müller Mathematisches Institut Martingal-Maße Manuel Müller 29.04.2016 Mathematisches Institut Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Seite 2 Martingal-Maße 29.04.2016 Inhaltsverzeichnis

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr