Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?"

Transkript

1 Was aben Bescleunigungs-Apps mit der Quadratur des Kreises zu tun? Teilnemer: Jonatan Geuter Leonard Hackel Paul Hagemann Maximilian Kuc Amber Lucas Tobias Tieme Tobias Tiesse Niko Wolf Gruppenleiter: Caren Tiscendorf René Lamour Herder-Oberscule, Berlin Herder-Oberscule, Berlin Herder-Oberscule, Berlin Herder-Oberscule, Berlin Andreas-Oberscule, Berlin Heinric-Hertz-Oberscule, Berlin Heinric-Hertz-Oberscule, Berlin Herder-Oberscule, Berlin Humboldt-Universität zu Berlin Mitglied im Forscungszentrum Mateon Humboldt-Universität zu Berlin Mitglied im Forscungszentrum Mateon Sensoren in Smartpones können deren Bescleunigung messen. Uns interessieren die Gescwindigkeiten und Wegstrecken. Mitilfe numeriscer Integration (Quadratur) lassen sic die gesucten Werte für beliebige Messkurven approximieren. Durc Experimente und einige Vorüberlegungen können wir daraus versciedene Berecnungsmetoden ableiten. Mitilfe von Pyton wurden diese auc implementiert und erfolgreic getestet. Dabei aben wir uns folgende Fragen gestellt: (1) Wie siet eine App aus, die die Bescleunigung messen kann? () Wie ängen diese Größen pysikalisc zusammen? (3) Welce Möglickeiten der Berecnung gibt es? (4) Wie lassen sic diese in Pyton implementieren? 45

2 1 Accelogger & Experiment Die App Accelogger für Android misst die Bescleunigung mitilfe der Bescleunigungssensoren. In den obigen Bildern lassen sic versciedene Kurven und versciedene Werte in der Tabelle erkennen. Diese sind unterteilt in die Bescleunigungskomponenten in x, y, z-rictung und die Gesamtkoordinate mag. Accelogger nimmt standardmäßig mit einer Frequenz von 1Hz auf, sie bietet aber auc die Option an, diese Frequenz zu ändern. Accelogger ist kostenlos im Google Play Store erältlic. Die Zeit und Bescleunigungswerte werden in einem txt-file gespeicert, wobei die Zeit in Nanosekunden gespeicert wird. Wir aben die App beim Farradfaren einer Teststrecke von ca. m getestet. Dazu aben wir das Smartpone auf dem Gepäckträger befestigt und aben die Bescleunigung mitilfe von Accelogger gemessen. Weg, Gescwindigkeit, Bescleunigung Ziel ist es, aus der Bescleunigung den Weg und die Gescwindigkeit zu berecnen. Dabei ist die Ableitung des Weges nac der Zeit die Gescwindigkeit und 46

3 die Ableitung der Gescwindigkeit nac der Zeit die Bescleunigung: s (t) = d s(t) = v(t), dt v (t) = d v(t) = a(t). dt Entsprecend ist das Integral über der Bescleunigung die Gescwindigkeit und das über der Gescwindigkeit der Weg: v(t ) v() = s(t ) s() = T T a(t) dt, v(t) dt. Bei einer bescleunigten Bewegung berecnet man die Fläce unter dem Grapen der Funktion, um die Gescwindigkeit zu eralten. Dazu nutzen wir die nacfolgend erläuterte Trapezregel. 3 Trapezregel Allgemein lässt sic das Integral durc Trapeze annäern. Dabei gilt für den Fläceninalt eines einzelnen Trapezes folgende Formel, wobei a(t) die Bescleunigung ist: A t = a(t i 1) + a(t i ) (t i t i 1 ). Um das gesamte Integral zu berecnen, müssen alle Trapeze addiert werden: T a(t i 1 ) + a(t i ) v(t ) v() = a(t)dt (t i t i 1 ). 47

4 Analog kann aus der Gescwindigkeit die Strecke berecnet werden. Nac dem Hauptsatz der Integral- und Differentialrecnung lässt sic das Integral aus v(t) als s(t ) s() screiben: s(t ) s() + v(t i 1 ) + v(t i ) (t i t i 1 ). Das Integral wird mit 1 multipliziert, um die partielle Integration anwenden zu können: t i 1 f(t)dt = mit g(t) = t c und c = t i 1 + t i. Es gilt allgemein für die partielle Integration: b [ ] b u v = uv a t i 1 f(t)g (t)dt a b a uv. Die partielle Integration angewandt auf das Integral: [ ] f(t)g ti (t)dt = f(t)g(t) f (t)g(t)dt t i 1 t i 1 t i 1 mit t i 1 f (t)g(t)dt = R i und R i = R ergibt = f(t i) + f(t i 1 ) (t i t i 1 ) R. Durc die eingesetzten Grenzen und die umgeformte Gleicung ergibt sic die Trapezregel: T f(t i ) + f(t i 1 ) f(t)dt = (t i t i 1 ) R. 3.1 Iterierte Trapezregel Die iterierte Trapezregel ist ein Spezialfall der Trapezregel, bei dem eine äquidistante Unterteilung vorgenommen wird. Der Abstand zwiscen zwei Punkten ist konstant, sodass man in durc ein ersetzen kann. Beim Summieren der Einzeltrapeze wird dann ausgeklammert. T () = f i 1 + f i = (f + f 1 + f 1 + f + f f n ). 48

5 Da dann alle Punkte zwiscen den Randpunkten doppelt vorkommen, wird die Gleicung wie folgt zusammengefasst T () = (f n 1 + f i + f n ). 4 Implementierung der Trapezregel for i in range (b): # in sec umwandeln t=( float ( datentxt [i,1]) - float ( datentxt [,1]))/1. vektor_t [i]=t Abbildung 1: Import der Messpunkte in Sekunden for i in range (b): # Korrekturwert = -r/( vektor_t [b -1]) a= float ( datentxt [i,]. replace (",","."))#+K vektor_a [i]=a Abbildung : Erstellen des Bescleunigungsvektors r= vek = zeros (b) for i in range (1,b) : r=r +(( vektor_a [i -1]+ vektor_a [i ])/)* ( vektor_t [i]- vektor_t [i -1]) vek [i]=r Abbildung 3: Integration mit Trapezregel Als erstes werden die Messwerte aus der Datei daten.txt importiert. Nun werden die Zeiten in Sekunden umgewandelt und als Differenz zum Anfangswert in einem Vektor gespeicert (siee Abb. 1). Als näcstes erfolgt die Umrecnung der Bescleunigungswerte in float-zalen (siee Abb. ). Diese werden zunäcst in einem Bescleunigungsvektor gespeicert. Diese Bescleunigungswerte werden nun mitilfe der Trapezregel integriert (siee Abb. 3). Anscließend wird der 49

6 Weg als Integral der Gescwindigkeit nac der Zeit nac dem selben Muster berecnet. Ausgeend von den Messungenauigkeiten des Smartpones ist noc ein Korrekturwert nötig. Aufgrund der Tatsace, dass die Gescwindigkeit am Ende Null ist, kann man diesen über die Abweicung der berecneten Gescwindigkeit ermitteln (siee Abb. ). Hier lässt sic klar erkennen, dass die Bescleunigungswerte große Sprünge aufweisen, jedoc siet der Weg dabei ser realistisc aus. Die Ergebnisse beider Versuce sind relativ dict am eigentlicen Ergebnis von m; s 1 = 184m und s = 169m. 5 Bernoulli-Polynome 5.1 Allgemeine Definition Das k-te Bernoulli Polynom B k (x) ist das Polynom, das auf [;1] mit Werten in R definiert ist und folgende Eigenscaften besitzt: B (x) = 1 x [; 1] (5.1) B k(x) = k B k 1 (x) x [; 1] k 1 (5.) B k (x) dx = k 1 (5.3) Die Eigenscaften (5.1)-(5.3) sind eine Bildungsvorscrift für weitere Bernoulli- Polynome, wobei stets aus einem B n (x) das näcste Glied B n+1 (x) bestimmt wird. 5

7 5. Berecnung der Polynome = B 1 (x) = x + c [ x (x + c) dx = + xc c = 1. Hier wird B 1 (x) gebildet. Es gilt B (x) = x + c. Um die Konstante c zu bestimmen, muss das Polynom integriert werden (nac Eigenscaft (5.3)). ] 1 B = = ( x 1 B (x) = B 1 (x) ) dx = [ x x + c ] 1 [ x 3 3 x + c (x x + c) dx = c = 1 6. Aus B 1 (x) wird nun das näcste Polynom B (x) ermittelt. Die Bernoulli-Zal bezeicnet die Konstante c, welce im 3. Bernoulli-Polynom c = 1 6 beträgt. B 3(x) bis B 5 (x) sind die näcsten Bernoulli-Polynome: B 3 (x) = x 3 3 x + 1 x, B 4 (x) = x 4 x 3 + x 1 3, B 5 (x) = x 5 5 x x3 1 6 x. ] Eigenscaften Für alle k > 1 mit k ungerade, gilt C = und folglic B =. Für alle j gilt B j (1) = B j () bezieungsweise B j (1) B j () =. Dies lässt sic mittels des Hauptsatzes der Infinitesimalrecnung und Eigenscaft (5.) zeigen. 51

8 5.4 Weitere Anwendung Da B (x) = 1 gilt, lässt sic ein Integral über einer Funktion g(x) mit Hilfe partieller Integration umformen zu: = g(x)dx = [ ] 1 g(x)b 1 (x) g (x)b 1 (x)dx =... [ ] 1 1 i! g(i 1) (x)b i (x) ( 1) i+1 + ( 1) n 1 n! B n(x)g (n) (x)dx. Dabei wurde partielle Integration n mal angewandt; das am Ende steende Integral stellt das Restglied dar. 6 Reienentwicklung in für Trapezregel Um das Romberg-Verfaren anwenden zu können, benötigen wir eine weitere Formel, welce für T () einen Term mit geraden Potenzen von, der äquidistanten Scrittweite beim Trapezverfaren, und Koeffizienten a n ausgibt: T () = a + a 1 + a 4 + a Beweis der Existenz dieser Darstellung von T () Es gilt T f(t)dt = t i 1 f(t)dt. Nun sei x = t t i 1 und = t i t i 1. Wir definieren eine Funktion g i (x): g i (x) = f(t) = f(t i 1 + x). Nac Integration durc Substitution gilt: t i 1 f(t)dt = = = j=1 f(t i 1 + x)dx g i (x)dx ( 1) j+1 [ 1 j! g(j 1) i ] 1 (x)b j (x) + R i. 5

9 Setzt man in die Grenzen und die (j-1)te Ableitung von g i (x) ein, so erält man: g i (x)dx = ( 1) j+1 1 ( j! j f (j 1) (t i )B j (1) f (j 1) (t i 1 )B j () ) + R i. j=1 Aus den Eigenscaften der Bernoulli-Polynome folgt nun: [ f(ti ) g i (x)dx = + f(t ] i 1) m k (k)! b ( k f (k 1) (t i ) f (k 1) (t i 1 ) ) + R i. k=1 [ f(ti ) Dabei stellt der Term + f(t ] i 1) den Term T () dar. Betractet man nun anstelle des Integrals g i(x)dx das ursprünglice gesamte Integral T f(t)dt, so kürzen sic die meisten der Faktoren f (k 1) (t i ) f (k 1) (t i 1 ) raus und die Reste R i addieren sic zu dem Gesamtrestglied R: T f(t)dt = T () m k=1 k (k)! b ( k f (k 1) (T ) f (k 1) (t ) ) + R. Get m gegen, so get R gegen. Die Umstellung nac T () ergibt: T () =a + m k=1 k (k)! b ( k f (k 1) (T ) f (k 1) (t ) ) =a + a 1 + a 4 + a Hierbei lässt sic die obige Summe als Summe aus Produkten mit Potenzen von und von unabängigen Faktoren darstellen. Damit eralten wir die geforderte Darstellung von T (). 7 Romberg-Verfaren Aus der Reienentwicklung folgt, dass die Trapezformel auc als Reie, abängig von der äquidistanten Scrittweite, gescrieben werden kann. Hierbei ist T () der Wert der Trapezformel, a der Wert des Integrals und die restlicen Terme sind Felerterme. T () = T [] = a + a 1 + a T [] = a + a 1 ( ) + a ( )

10 Da a 1 der größte Feler ist, wird dieser durc gescicktes Umformen eliminiert. Dabei werden T () und T ( ) mitilfe von q (=.5) verrecnet, sodass bei der Subtraktion beider Gleicungen a 1 mit multipliziert wird. T [] q T [] = a q a + a 1 ( 4 4 ) + a 3( ) +... Nun teilen wir durc (1 q ), damit wir wieder a als Ergebnis eralten und definieren es als T [1] T [] q T [] = a 1 q a 1 + a 4 + a =: T [1]. Somit fällt der größte Felerterm (a 1 ) eraus, sodass wir einen genaueren Wert erreicen. Diese Metode lässt sic beliebig oft fortsetzen, um Feler zu eliminieren und einen genaueren Wert zu erreicen, solange es genügend Startwerte (z.b. T [] ) gibt. Es ergibt sic folgende Tabelle, wobei zwei Werte nac erwänter Metode einen neuen ergeben. T [] T [] T [] 4 T [1] T [1] T []... Ein weiterer Vorteil des Romberg-Verfarens ist, dass es gleiczeitig auc eine gute Felerabscätzung liefert, indem man jeweils die zwei genauesten Werte, den neu erzeugten und den vorer genaueren Wert, subtraiert. So würde man z.b., um die Genauigkeit des Ergebnisses zu testen, T [] von T [1] subtraieren. Dabei entfällt der Wert des Integrals a, sodass lediglic die Differenz des Felers übrigbleibt. Beispiel: T [] T [1] = a a + a 1 4 a Implementierung am Beispiel Um das Romberg-Verfaren in Pyton zu implementieren, definieren wir uns eine Funktion. Da wir als Ergebnis π eralten möcten, macen wir das in 1. mit der Kreisfunktion, welce sic über Umformen des Satzes des Pytagoras erleiten lässt. 54

11 1. Definition der Funktion: def f(x): return sqrt(1-x**) Diese Funktion übergeben wir mit folgenden Parametern an unsere Funktion unser_romberg: unser_romberg(vorer angegebene Funktion, untere Grenze, obere Grenze, Toleranz).. Ausfürung der Funktion: unser_romberg(f,.,1.,1e-1) Die Grenzen müssen in Dezimalscreibweise angegeben werden, da sie sonst als int interpretiert und dementsprecend gerundet werden. Dies möcten wir aber verindern, wesalb wir sie in dieser Weise als float angeben. Die Werte werden nun von unserer Funktion unser_romberg verarbeitet, sodass wir ein genaues Ergebnis eralten. 3. Funktion Definieren: def unser_romberg(f,a,b,tol): if TOL<1e-1: TOL=1e-1 q=.5; n=;t=zeros(n);t[]=;t[1]=*tol wile ((abs(t[]-t[1]))>tol): T=zeros(n) for i in range(n): T[i]=Tt(f,a,b,(**i)) for j in range(n-1): Tz=zeros(n-j-1) for k in range(n-j-1): Tz[k]=(T[k+1]-((q**)*T[k]))/(1-q**) for k in range(n-j-1): T[k]=Tz[k] n=n+1 Dabei wird als erstes die Toleranz korrigiert, wenn diese zu oc ist, da sonst der Recenaufwand zu oc wäre. Danac wird die oben bereits angesprocene Konstante q definiert und in den folgenden Zeilen ein Vektor T konstruiert, welcer nur den Sinn at, in die wile-scleife zu gelangen. Nun wird als erstes ein neuer n-dimensionaler Vektor T erzeugt, welcer dann als Speicer für die durc das Trapez-Verfaren errecneten Werte genutzt wird. In der näcsten Scleife wird ein neuer Vektor Tz für den näcsten Iterationsscritt erzeugt. Dieser wird dann mitilfe des Rombergverfarens wie oben bescrieben. 55

12 Danac werden die alten Vektoren T mit den Werten aus Tz überscrieben, damit die aktuellen Werte weiter genutzt werden können. Dabei bleibt einer der Werte aus den alten T-Vektoren übrig, was genutzt wird, wenn danac für die wile- Scleife kontrolliert wird, ob die Toleranz erreict ist. Falls dem so ist, wird der Wert ausgegeben (nict im Quelltext zu seen) oder die Scleife wiederolt, wobei vorer n = n + 1 gesetzt wurde, also diesmal eine Ebene mer berecnet wird. 8 Quadratur des Kreises Abscließend wurden diese Verfaren mit Hilfe der Kreisfunktion 1 x im Intervall [,1] getestet: π(t rapez) = ; bei =1e-5 π(romberg) = ; bei 3 Iterationen π = Am Ende stellt sic natürlic noc die Frage, was diese Verfaren nun mit der Quadratur des Kreises und mit der Berecnung von π zu tun at. Es lässt sic sagen, dass das Romberg-Verfaren bei ungefär gleicem Recenaufwand deutlic genauer ist. Außerdem kann man mit dem Romberg-Verfaren, im Gegensatz zum Trapez-Verfaren, genau abscätzen, wie groß der Feler am Ende ist. 56

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Cristop Scmoeger Heiko Hoffmann SS 24 Höere Matematik II für die Facrictung Informatik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 9 a) Bestimmen

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Das Matrizenexponential

Das Matrizenexponential Das Matrizenexponential Tobias Fleckenstein 18 Mai 215 Das Matrizenexponential Seminar im Sommersemester 215 HCM Bonn Einleitung Bei der Untersucung von Differentialgleicung kommt man ser scnell in die

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum Anwendungen der Potenzreienentwicklung: Approximation, Grenzwerte; Wacstum Lokale Näerung einer Funktion durc ganzrationale Funktionen Ganzrationale Funktionen aben viele angeneme Eigenscaften. Man weiß

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

Geometrische Mehrgitterverfahren. Annabell Schlüter

Geometrische Mehrgitterverfahren. Annabell Schlüter Geometrisce Mergitterverfaren Annabell Sclüter 13.07.2010 Inaltsverzeicnis 1 Einleitung 2 2 Das Mergitterverfaren für lineare Probleme 3 2.1 Dämpfungseigenscaften des Jacobiverfarens............ 3 2.2

Mehr

Spezialgewebe für: Industrie Feuerwehr Rettungsdienste Polizei Sicherheitsdienste Militär Motorsport Sachschutz

Spezialgewebe für: Industrie Feuerwehr Rettungsdienste Polizei Sicherheitsdienste Militär Motorsport Sachschutz Spezialgewebe für: Industrie Feuerwer Rettungsdienste Polizei Sicereitsdienste Militär Motorsport Sacscutz IBENA Soft & Dry das Besondere in Sacen Tragekomfort Oberfläce one Vakuum-Plasmabeandlung Zum

Mehr

Einstiegsphase Analysis (Jg. 11)

Einstiegsphase Analysis (Jg. 11) Einstiegspase Analysis (Jg. 11) Ac Geradengleicungen: Eine Gerade g verlaufe durc P(-3/-2) und Q(4/3). Eine Gerade gee durc R(1/y) und stee senkrect auf g. Zeicne diese Geraden und stelle ire Gleicungen

Mehr

Taylorentwicklung der k ten Dimension

Taylorentwicklung der k ten Dimension Taylorentwicklung der k ten Dimension 1.) Taylorentwicklung... 2 1.1.) Vorgehenesweise... 2 1.2.) Beispiel: f ((x, y)) = e x2 +y 2 8x 2 4y 4... 3 2.) Realisierung des Algorithmus im CAS Sage Math... 5

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar.

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar. ysikkurs i Raen des Forbildungslerganges Indusrieeiser Facricung arazeuik anuar 008 Lösungen Wärelere Aufgabe : Eine Drucasflasce (V50l) sei gefüll i icksoff uner eine Druck von 00 bar. ϑ a) Wieviel ol

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Unterlagen zu endlichen Körpern. Erhard Aichinger

Unterlagen zu endlichen Körpern. Erhard Aichinger Unterlagen zu endlicen Körpern Erard Aicinger Linz, im November 2005 Alle Recte vorbealten 1 KAPITEL 1 Endlice Körper 1 Definition endlicer Körper DEFINITION 11 Ein Ring mit Eins R R,,,, 0, 1 ist ein

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy. Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom 07.05.15 Aufgabe V.1 + Punkte) Gegeben seien die Funktionen

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Numerische Integration

Numerische Integration Numerische Integration Fakultät Grundlagen Januar 0 Fakultät Grundlagen Numerische Integration Übersicht Grundsätzliches Grundsätzliches Trapezregel Simpsonformel 3 Fakultät Grundlagen Numerische Integration

Mehr

Musterlösung Übung 1

Musterlösung Übung 1 Allgemeine Cemie PC) Musterlösung Übung HS 07 Musterlösung Übung Aufgabe : Molmasse von Sauerstoff Da die Summe der natürlicen Häufigkeiten aller stabilen Isotope Σ i i = sein muss, ist die Häufigkeit

Mehr

Simulation elektrischer Schaltungen

Simulation elektrischer Schaltungen Simulation elektrischer Schaltungen mittels Modizierter Knotenanalyse Teilnehmer: Artur Stephan Andreas Dietrich Thomas Schoppe Maximilian Gruber Jacob Zschuppe Sven Wittig Gruppenleiter: René Lamour Heinrich-Hertz-Oberschule,

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

2 Ein Beispiel und der Haken an der Sache

2 Ein Beispiel und der Haken an der Sache Numerik I. Version: 9.02.08 2 Ein Beispiel und der Haken an der Sace In lineare Algebra I-II wurde gezeigt, wie durc das Gaußsce Verfaren lineare Gleicungssysteme gelöst werden. Das folgende einface Beispiel

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

Hilfe zum neuen Online-Shop

Hilfe zum neuen Online-Shop Hilfe zum neuen Online-Sop Hier finden Sie umfassend bescrieben, wie Sie sic in unserem neuen Sop zurectfinden. Wenn Sie Fragen zur Kunden-Nr., Kunden-ID oder zum Passwort aben, rufen Sie uns bitte an:

Mehr

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit

Mehr

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung.

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung. Matematik Klasse 11 1 Zylinder Zwei Zylinderförmige Gefäße werden mit Wasser gefüllt (siee unten). Jedes Gefäß at einen Grundfläceninalt von 1dm 2 und ist 85cm oc. Erreict der Wasserspiegel des zweiten

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Berechnungen in Access Teil I

Berechnungen in Access Teil I in Access Teil I Viele Daten müssen in eine Datenbank nicht eingetragen werden, weil sie sich aus anderen Daten berechnen lassen. Zum Beispiel lässt sich die Mehrwertsteuer oder der Bruttopreis in einer

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff Programmieren in C Rekursive Funktionen Prof. Dr. Nikolaus Wulff Rekursive Funktionen Jede C Funktion besitzt ihren eigenen lokalen Satz an Variablen. Dies bietet ganze neue Möglichkeiten Funktionen zu

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Numerisches Programmieren (IN0019) 9. Symmetrisches Eigenwertproblem. Eigenwert-Problem. Verallgemeinerte Fourier-Reihe

Numerisches Programmieren (IN0019) 9. Symmetrisches Eigenwertproblem. Eigenwert-Problem. Verallgemeinerte Fourier-Reihe Numerisces Programmieren (IN009) Frank R. Scmidt 9. Symmetrisces Eigenwertproblem Winter Semester 06/07 Verallgemeinerte Fourier-Reie Das Berecnen von Eigenwerten wird bei viele praktisce Anwendungen vorausgesetzt,

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376 EigenMath Howto EigenMath ist ein kleines Programm, das als 'Taschenrechner' für die Mathematik der Oberstufe verwendet werden kann. Es ist viel weniger mächtig als die großen Brüder Sage, Maxima, Axiom

Mehr

Aufgaben zur Quantenphysik

Aufgaben zur Quantenphysik ufgaben zur Quantenpysik 187. In eine Nactsictgerät wird eine Fotozelle aus der Legierung gcso verwendet, das eine ustrittsarbeit von 1,04 ev at. a) b welcer Wellenlänge werden bei Bestralen it Lict aus

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

V8 - Auf- und Entladung von Kondensatoren

V8 - Auf- und Entladung von Kondensatoren V8 - Auf- und Entladung von Kondensatoren Michael Baron, Frank Scholz 07.2.2005 Inhaltsverzeichnis Aufgabenstellung 2 Theoretischer Hintergrund 2 2. Elektrostatische Betrachtung von Kondensatoren.......

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München WS /3 Institut für Informatik Prof Dr Hans-Joachim Bungartz Dipl-Inf Christoph Riesinger Dipl-Inf Dipl-Math Jürgen Bräckle Numerisches Programmieren Programmieraufgabe: Polnominterpolation,

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha)

Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha) Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha) - dies ist i.w. die Übersetzung eines Artikels, der im November 2010 im Newsletter der Chue Foundation erschienen ist - Korrektheit

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Tecnisce Universität Müncen SoSe 2013 Institut für Informatik Prof. Dr. Tomas Huckle Dipl.-Inf. Cristop Riesinger Dipl.-Mat. Jürgen Bräckle Numerisces Programmieren, Übungen 2. Übungsblatt: Kondition,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 008/009 Anweseneitsaufgaben Übung 4 Einleitung Es soll darauf ingewiesen werden, daß es in der Woce vor der Klausur

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

0.1. Lösung der Aufgabe 1. Nehme an, wir ( hätten ) die Aufgabe, n Personen aus 2n

0.1. Lösung der Aufgabe 1. Nehme an, wir ( hätten ) die Aufgabe, n Personen aus 2n .. Lösung der Aufgabe. Neme an, wir ätten die Aufgabe, n Personen aus n n Personen auszuwälen. Dafür gibt es natürlic Möglickeiten. Wir können aber n auc wie folgt verfaren. Teilen wir die n Personen auf

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

3.2 Spline Interpolation

3.2 Spline Interpolation 3.2 Spline Interpolation 3.2 Spline Interpolation Ein wesentlicer Defekt der globalen Interpolation aus dem vorerigen Abscnitt ist, dass die interpolierenden Polynome starke Oszillationen zwiscen den Stützstellen

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet.

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet. Aufgabe S1 F10 Die auteile 1,2,3 sind gelenkig miteinander verbunden, in A und gelagert und durc das Gewict G 1 der Sceibe 1 belastet. Annamen: Die Gelenke seien reibungsfrei. Das Material der Sceibe 1

Mehr

4.3.2 Ableitungsregeln

4.3.2 Ableitungsregeln Vorbereitungskurs auf die Aufnameprüfung der ETH: Matematik 4.3.2 Ableitungsregeln Der Differentialquotient [s. 43] zur Definition der Ableitung beinaltet eine Grenzwertbildung Limes), welce meist dadurc

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung A Maple-Skripte A.1 Einleitung Bei der Ausführung mechanischer Rechnungen können Computeralgebra-Programme sehr nützlich werden. Wenn man genau weiß, was eingesetzt, umgeformt, zusammengefaßt oder entwickelt

Mehr

Aufgaben zu den Newtonsche Gesetzen

Aufgaben zu den Newtonsche Gesetzen Aufgaben zu den ewtonce Geetzen. Zwei Maen von = 8 und = ängen an den Enden eine Seil, da über eine fete Rolle it vernacläigbarer Mae gefürt it. a) Wie groß it die Becleunigung de al reibungfrei angenoenen

Mehr

Numerische und stochastische Grundlagen der Informatik

Numerische und stochastische Grundlagen der Informatik Numerisce und stocastisce Grundlagen der Informatik Peter Bastian Universität Stuttgart, Institut für Parallele und Verteilte Systeme Universitätsstraße 38, D-70569 Stuttgart email: Peter.Bastian@ipvs.uni-stuttgart.de

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension Physik Bewegung in einer Dimension Überblick für heute 2. Semester Mathe wird das richtig gemacht! Differenzieren (Ableitung) Integration Strecke Geschwindigkeit Beschleunigung Integrieren und differenzieren

Mehr

Erstellen einer GoTalk-Auflage

Erstellen einer GoTalk-Auflage Erstellen einer GoTalk-Auflage 1. Bei dem Startbild Vorlage öffnen wählen 2. In dem folgenden Fenster Geräte Schablonen doppelt anklicken. - und schon öffnet sich der gesamte Katalog der verfügbaren Talker-Auflagen...eigentlich

Mehr

Herleitungen von elementaren Ableitungsregeln

Herleitungen von elementaren Ableitungsregeln Herleitungen von elementaren Ableitungsregeln by Nictnäerdefiniert 5..003-6..003 Index. Differenzenquotient. Faktorregel 3. Konstantenregel 4. Summenregel 5. Produktregel 6. Quotientenregel 7. Potenzregel

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt Forelsalung Facangestellte für Bäderbetriebe Meister für Bäderbetriebe Erstellt von Dipl.-Ing. (FH) Wolfgang Hetteric, BVS it Ergänzungen von Dipl.-Ing. (FH) Peter Vltavsky, BS Lindau Inalt llgeeine Mecanik...

Mehr

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Konfiguration der Messkanäle. Konfiguration der Zeitachse. Abb. 3: Konfigurationsmenü des Sensoreingangs A. Abb. 4: Messparameter Konfigurationsmenü

Konfiguration der Messkanäle. Konfiguration der Zeitachse. Abb. 3: Konfigurationsmenü des Sensoreingangs A. Abb. 4: Messparameter Konfigurationsmenü Anleitung zum Programm CASSY Lab für den Versuch E12 Starten Sie das Programm CASSY Lab durch Doppelklick auf das Icon auf dem Windows- Desktop. Es erscheint ein Fenster mit Lizensierungsinformationen,

Mehr