Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Größe: px
Ab Seite anzeigen:

Download "Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre"

Transkript

1 Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt gewählte Vertreter der Fchschft c.t cum tempore ( mit Zeit ): s.t sine tempore ( ohne Zeit ): Vorlesung beginnt 11:00 Uhr c.t., lso 11:15 Uhr Vorlesung beginnt pünktlich 11:00 Uhr 2 Grundlgen 2.1 Aufbu von Vorlesungen Eine Vorlesung ist eine Folge von Definitionen, Sätzen mit Beweisen und Beispielen. Notiert werden diese mit einer formlen Sprche, um eine höchstmögliche Exktheit zu erreichen. Dbei geht leider oft die Anschulichkeit verloren, so dß mn die dhinter steckende Idee erst wieder heruskrtzen muss. In den Bezeichnungen finden oft exotische Alphbete Verwendung: ζ, η, Σ, Θ,, ℵ 1

2 Definitionen führen neue Begriffe sowie die Nutzung bereits beknnter Begriffe ein. Beispiel Der Durchschnitt zweier Mengen A und B ist die Menge ller Elemente die in A und B liegen. Formle Schreibweise: A B := {x x A x B} Dbei sollten die Begriffe Menge und Element beknnt sein. Ein Stz ist eine bewiesene Aussge beziehungsweise eine Aussge mit Beweis. Je nch Bedeutung gibt es uch die Begriffe Lemm (Hilfsstz), Theorem (Huptstz), Korollr (unmittelbre Folgerung), Proposition oder Bemerkung. 2.2 Symbole Leider gibt es keine einheitliche Schreibweise, sprich jeder Dozent nutzt die Symbole, n die er sich gewöhnt ht. Generell gilt jedoch: Ein Dozent in der Vorlesung drf mehr, ls ein Student in den Übungsufgben Definitionssymbole := ist definiert Definiendum (ds zu definierende) steht links, definiens (ds Definierende) rechts. : genu dnn, wenn per Definition gegebene Eigenschft Quntoren für lle Beispiel: x Z : x 1 2 es existiert Beispiel: x R : x = 1 2 Bemerkung: Bei der Verwendung mehrerer Quntoren ist die Reihenfolge zu bechten. Beispielsweise ht die Aussge Für lle Menschen gibt es genu eine Mutter. eine ndere Bedeutung ls die Aussge Es gibt genu eine Mutter für lle Menschen.. 2

3 3 Nive Mengenlehre Die Frge, ws genu eine Menge ist, ist eher philosophischer Ntur (Cntor, 1895). Dher beschäftigen wir uns vorerst mit niver Mengenlehre: Wir nehmen n, eine Menge sei ds, ws wir umgngssprchlich drunter verstehen. 3.1 Einfche Definitionen Symbol Erklärung Forml leere Menge := {x x x} x A x ist Element von A A B, A B A ist echte Teilmenge von B A B A ist Teilmenge von B A B Durchschnitt der Mengen A B := {x x A und x B} A B Vereinigung der Mengen A B := {x x A oder x B} A \ B Differenzmenge A \ B := {x x A und x / B} A, A C, C A Komplement in Reltion A C := {x x / A} zu Trägermenge (, b) geordnetes Pr (, b) := {{, b}, {b}} (b, ) A B Produktmenge, A B := {(, b) A, b B} Menge der geordneten Pre P(A), 2 A Potenzmenge von A P(A) := {B B A} A, #A, crd(a) Mächtigkeit von A, bei endlichen Mengen: Anzhl der Elemente Beispiele Seien A := {x N m N : x = 2m}, B := {1, 2, 3, 4, 5}, C := {100, 723} Dnn gilt: A N, B N, C N, B C A B = {2, 4} C B = {1, 2, 3, 4, 5, 100, 723} B \ A = {1, 3, 5} 3

4 A C = {x N m N : x = 2m 1} B C = {(1, 100), (2, 100), (3, 100), (4, 100), (5, 100), (1, 723), (2, 723), (3, 723), (4, 723), (5, 723)} (A B) (B \ A) = {(2, 1), (2, 3), (2, 5), (4, 1), (4, 3), (4, 5)} P(C) = 2 C = {, {100}, {723}, {100, 723}} C = 2 = P(C) = 2 2 = 4 D := {f f : {0, 1} {0, 1}}, ( D = 4) E := {A, B, C, D}, E = 4 4 Weitere Symbole ( 1, 2 ) geordnetes Pr ( 1, 2, 3 ) Tripel ( 1, 2,..., n ) n-tupel ( 1, 2,..., n,...) = ( i ) i N = ( i ) Folge n i := n Summe n i := n Produkt n! := n i = n Fkultät ( ) n := k n! k!(n k)! Binomilkoeffizient k teilt k : m Z : m = k (nur sinnvoll in N und Z) 4

5 z Betrg von z, z := { z, flls z 0 z, sonst mx{ 1,..., n } ds mximle Element (Mximum) = mx{ 1,..., n } : { 1,..., n } i = 1,..., n : i min{ 1,..., n } ds minimle Element Minimum) Schreibweisen: mx n, n N min N gerde Beispiele (2i) i N = 2, 4, 6, 8, i 2 = = ( n ) i 2 = (1 2, , ,...) = (1, 5, 14, 30, 55,...) n N n n+1 i = i 1 = n + i=0 5! = = 120 ( ) 5 2 = 5! 2! 3! = = , 5 10, = 5, 103 = 103 mx{ 3, 6, 10, 27, 4} = 27 n i 1 5 Weitere Begrifflichkeiten 5.1 In Beweisen z.z. zu zeigen (Vrition: g.z.z.: genug zu zeigen,... ), w.z.b.w., q.e.d. Beweisende (seltene Vrition für Hilfslemmt:, ) 5

6 5.2 Ausdrücke wohldefiniert bedeutet repräsenttenunbhähgig. Oft wird eine Eigenschft einer Menge oder Opertion uf einer Menge mit Hilfe eines einzelnen Repräsentnten (Vertreters) der Menge definiert. Dnn muss gezeigt werden, dss die Definition nicht von den usgewählten Repräsentnten bhängt. o.b.d.a. bedeutet ohne Beschränkung der Allgemeinheit. Oft wird nur ein Teil der Behuptung gezeigt, weil der Rest lut Meinung des Dozenten utomtisch, direkt oder nlog folgt und dher nicht extr bewiesen werden muss, beziehungsweise vernchlässigt werden knn. knonisch bedeutet in gewissem Sinne ntürlich. Oft wird diese Eigenschft einem Objekt zu geschrieben, von dem es viele weitere gibt, ber welches deutlich us seinen Artgenossen herusrgt. Beispiel, c N, b, c Z \ {0} Ist diese Verknüpfung wohldefiniert? zz.: Für b = b und c d = c d gilt: Beweis: Gemäß der Definition der Brüche in Q ist und dmit ergibt sich: b c def. d = d + b c b d sei b c d + bc := d bd b c d + bc d = bd Beispiel: 1 2 = 2 4 b = b b = b (1) c d = c d cd = c d (2) Erw. = c( d + b c ) c(b d ) distr. = cd + b cc (1) b cd = cd + bcc bcd (2) = c d + bcc bc d kürz = d + bc bd = b c d distr. = c (d + bc) c (bd) 6

7 Gegenbeispiel zur Wohldefiniertheit Sei definiert: f : Q Z b f ( b ) := + b Diese Funktion ist nicht wohldefiniert, denn es gilt: 3 = f ( 1 2) = f ( 2 4) = 6 Widerspruch Beispiel für knonisch Die knonische Bsis des R 3 ist {(1, 0, 0), (0, 1, 0), (0, 0, 1)} 5.3 Singulr und Plurl Singulr Plurl Bemerkung Lemm Lemmt beliebt, ber flsch: Lemms Mtrix, Index Mtrizen, Indizes nicht Mtrize (ds ist eine Gussform) Mximum, Minimum Mxim, Minim Bsis Bsen 7

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

Identifizierbarkeit von Sprachen

Identifizierbarkeit von Sprachen FRIEDRICH SCHILLER UNIVERSITÄT JENA Fkultät für Mthemtik und Informtik INSTITUT für INFORMATIK VORLESUNG IM WINTERSEMESTER STOCHASTISCHE GRAMMATIKMODELLE Ernst Günter Schukt-Tlmzzini 06. Quelle: /home/schukt/ltex/folien/sprchmodelle-00/ssm-06.tex

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

Analysis I im SS 2011 Kurzskript

Analysis I im SS 2011 Kurzskript Anlysis I im SS 2011 Kurzskript Prof. Dr. C. Löh Sommersemester 2011 Inhltsverzeichnis -2 Literturhinweise 2-1 Einführung 4 0 Grundlgen: Logik und Mengenlehre 5 1 Zählen, Zhlen, ngeordnete Körper 14 2

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Grundbegriffe der Informatik Aufgabenblatt 6

Grundbegriffe der Informatik Aufgabenblatt 6 Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen und endliche Automaten 2 Reguläre Sprchen und endliche Automten Sei Σ = {, b,...} ein endliches Alphbet. Ein endliches Wort über Σ ist eine Folge w = 0... n 1, wobei i Σ für i = 0,...,n 1. Wir schreiben w für die Länge von w,

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006 1 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte Modellierung,

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns Skript zur Vorlesung Anlysis I/II 9/ Peter Junghnns Hinweis: Ds vorliegende Skript stellt nur ein Gerüst zu den Inhlten der Vorlesung dr. Die Vorlesung selbst bietet weiterführende Erläuterungen, Beweise

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

8 Die rationalen Zahlen

8 Die rationalen Zahlen 8 Die rtionlen Zhlen Die Konstruktion der rtionlen Zhlen ist eine Umbu, der Anlogien zur Umbu- Konstruktion von Z ht. Wir werden sehen, dss Brüche Äquivlenzklssen von Pren gnzer Zhlen sind. Es gelte die

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Mathematik Brückenkurs

Mathematik Brückenkurs Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Mthemtik Brückenkurs im Fchbereich Informtik & Elektrotechnik Rumpfskript V7 Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Inhltsverzeichnis Mengen...

Mehr

Effiziente Algorithmen und Komplexitätstheorie

Effiziente Algorithmen und Komplexitätstheorie Effiziente Algorithmen und Komplexitätstheorie Vorlesung Ingo Wegener Vertretung Thoms Jnsen 10042006 1 Ws letzten Donnerstg geschh Linere Optimierung Wiederholung der Grundbegriffe und Aussgen M konvex

Mehr

Endliche Automaten. Prof. Dr. W. Vogler. Sommersemester 2007

Endliche Automaten. Prof. Dr. W. Vogler. Sommersemester 2007 Endliche Automten Prof. Dr. W. Vogler Sommersemester 2007 1 INHALTSVERZEICHNIS i Inhltsverzeichnis 1 Wörter und Monoide 1 2 Endliche Automten 4 3 Anwendung: Diophntische Gleichungen 9 4 Minimierung endlicher

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen 5 2014 Sonderdruck us BWK 5-2014 Wichtige Kennzhlen und effiziente Plnung für die dezentrle Wärmewende Nutzung der Abwärme us Erneuerbre-Energie-Anlgen Wichtige Kennzhlen und effiziente Plnung für die

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

$Id: integral.tex,v /04/22 11:22:04 hk Exp $

$Id: integral.tex,v /04/22 11:22:04 hk Exp $ Mthemtik für Physiker II, SS 015 Mittwoch.4 $Id: integrl.tex,v 1.35 015/04/ 11::04 hk Exp $ Integrlrechnung.1 Ds Riemn Integrl In der letzten Sitzung hben wir verschiedene vorbereitende Begriffe zur Konstruktion

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Vorlesungsskript Mathematik I für Wirtschaftsingenieure

Vorlesungsskript Mathematik I für Wirtschaftsingenieure Vorlesungsskript Mthemtik I für Wirtschftsingenieure Verfsserin: HSD Dr. Sybille Hndrock TU Chemnitz Fkultät für Mthemtik e-mil: hndrock@mthemtik.tu-chemnitz.de Wintersemester 2005/06 Litertur [] Dllmnn,

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

hat genau eine eindeutig bestimmte Lösung, wenn für die Determinante der Koeffizientenmatrix gilt:

hat genau eine eindeutig bestimmte Lösung, wenn für die Determinante der Koeffizientenmatrix gilt: 1 Determinnten Die Determinnte einer qudrtischen Mtrix ist eine reelle Zhl. Sie ermöglicht insbesondere eine Aussge über die Existenz der inversen Mtrix bzw. über die Lösbrkeit von lineren leichungssystemen.

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur Grundlgen der Theoretischen Infomtik SS 213 Institut für Informtik Prof. Dr. Ulrich Furch Dr. Mnfred Jckel Dr. Björn Pelzer Christin Schwrz Nchklusur Modul Grundlgen der Theoretischen Informtik 4IN118/INLP1

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Einleitung. Mathematik für Volkswirte. Literatur. Über die mathematische Methode. Weitere Übungsbeispiele. Statische (Gleichgewichts-) Analyse

Einleitung. Mathematik für Volkswirte. Literatur. Über die mathematische Methode. Weitere Übungsbeispiele. Statische (Gleichgewichts-) Analyse Mthemtik für Volkswirte Mthemticl Methods for Economists Josef Leydold Institute for Sttistics nd Mthemtics WU Wien Wintersemester 05/6 009 05 Josef Leydold This work is licensed under the Cretive Commons

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Lösungshinweise zu den zusätzliche Übungsaufgaben

Lösungshinweise zu den zusätzliche Übungsaufgaben Lösungshinweise zu den zusätzliche Übungsufgben Aufgbe Z.1 (Mximin Regel [1]) Als Gleichgewicht ergibt sich, mit Auszhlungsvektor 5, 5. Aufgbe Z. (Dominnzüberlegungen und Nsh Gleichgewicht ) & b) [1]/

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederun 1. Motivtion / Grundlen 2. Sortierverfhren 3. Elementre Dtenstrukturen / Anwendunen 4. Bäume / Grphen 5. Hshin 6. Alorithmische Geometrie 3/1, Folie 1 2010 Prof. Steffen Lne - HD/FbI - Dtenstrukturen

Mehr

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen Vorlesung 16 Infinitesimlrechnung, Mengenlehre und logische Verknüpfungen 16.1 Huptstz der Differentil- und Integrlrechnung Wir verknüpfen nun Differentil- mit Integrlrechnung. Definition 16.1.1. Eine

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Analysis I. Inhaltsverzeichnis. Martin Brokate. 1 Aussagen, Mengen, Abbildungen 1. 2 Das Prinzip der vollständigen Induktion 14

Analysis I. Inhaltsverzeichnis. Martin Brokate. 1 Aussagen, Mengen, Abbildungen 1. 2 Das Prinzip der vollständigen Induktion 14 Anlysis I Mrtin Brokte Inhltsverzeichnis Aussgen, Mengen, Abbildungen 2 Ds Prinzip der vollständigen Induktion 4 3 Die reellen Zhlen 8 4 Folgen 29 5 Die komplexen Zhlen 40 6 Reihen 44 7 Unendliche Mengen

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Lineare Algebra 1. Semester (WS 1999) Prof. Pahlings - Zusammenfassung

Lineare Algebra 1. Semester (WS 1999) Prof. Pahlings - Zusammenfassung Linere Algebr WS 99/00 Stnd:.0.00 7:3 Seite Linere Algebr. Semester (WS 999) Prof. Phlings - Zusmmenfssung Diese Zusmmenfssung von Klus Ridder ht weder Anspruch uf Vollständigkeit noch uf Richtigkeit.

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mthemtisches Institut der Universität München Prof. Dr. Frnz Merkl Sommersemester 2013 Bltt 2 26.4.2013 Übungen zur Anlysis 2 2.1 Vernschulichung der Cuchy-Schwrz-Ungleichung. Gegeben seien die Vektoren

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

4 Stetigkeit. 4.1 Intervalle

4 Stetigkeit. 4.1 Intervalle 4 Stetigkeit Der Grenzwertbegriff für Zhlenfolgen lässt sich uf Funktionen übertrgen. Funktionen (oder Abbildungen) wren bereits im Kpitel über Mengen ufgetreten. Hier wird nun der Fll betrchtet, dss Definitionsbereich

Mehr

2. Klausur in K2 am

2. Klausur in K2 am Nme: Punkte: Note: Ø: Profilfch Physik Azüge für Drstellung: Rundung:. Klusur in K m.. 04 Achte uf die Drstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Aufge ) (8 Punkte) In drei

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b Grundlgen 0.0. Zhlbereiche ntürliche Zhlen: N = {0; ; 2;...} (nch DIN 547) N = N \ {0} gnze Zhlen: Z = {... 2; ; 0; ; 2;...} rtionle Zhlen: Q = { p p, q Z, q 0} q Q besteht us llen Bruchzhlen. reelle Zhlen:

Mehr

Analysis I/II - Vorlesungs-Script

Analysis I/II - Vorlesungs-Script Anlysis I/II - Vorlesungs-Script Prof. Michel Struwe 05/06 Mitschrift: Eveline Hrdmeier Grphics: Prisc Greminger Mthis Weylnd Corrections: Prisc Greminger $Id: nlysis.tex 1237/1502 2006-10-19 21:13:30

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit WS 008/09 7 Elementrmthemtik (LH) und Fehlerfreiheit. Zhlenbereiche... Die rtionlen Zhlen... Definition Die Definition der rtionlen Zhlen erfolgt hier innermthemtisch ebenflls wie diejenige der gnzen Zhlen

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr