Formelsammlung Mathematik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung Mathematik"

Transkript

1 Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1 R 0 = 1 q R q 1 q 1 = R q vorschüssig R = (q R) q 1 q 1 R 0 = 1 q R q 1 1 q 1 = R q 1.2 Tilgugsrechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie K 0 die Kreditsumme, die Laufzeit Auitätetilgug (Gleich hohe Auitäte) A = K 0 q q 1 q 1.. Auitat K t = K 0 q t A qt 1 q 1 Restschuld ach Ablauf vo t Jahre Ratetilgug (Gleich hohe Tilgugsrate) K t = K t 1 K0 Restschuld ach Ablauf vo t Jahre 1.3 Festverzisliche Wertpapiere Sei der omielle Jahreszissatz p %. Redite = Effektivzissatz p eff %, so dass für q eff = 1 + p eff 100 gilt: Emissioskurs C 0 = 1 q eff ( ) p q eff 1 q eff 1 + C 1

2 1.4 Ivestitiosrechug Sei der Kalkulatioszissatz p%, der Zisfaktor q = 1 + p 100. Seie R 0 R 1... R die Zahlugsreihe, die Laufzeit. Kapitalwert C 0 = k=0 1 q k R k = EV q Edvermögesdifferez EV = k=0 q k R k = C 0 q Iterer Zissatz = Effektifzissatz = p it %, so dass C 0 (q it )= 0 ist 2 Aalysis 2.1 Logarithme Umrechug vo Logarithme zu verschiedee Base: log a (x) = log b (x) log b (a) 2.2 Differetialrechug Tagetegleichug Sei f eie differezierbare Fuktio. Tagete a de Graphe vo f im Pukt x 0 : t(x) = f(x 0 ) + f (x 0 ) (x x 0 ) Ableitugsregel Produktregel: Quotieteregel: Ketteregel: (u v) (x) = u (x) v(x) + u(x) v (x) ( u v) (x) = u (x) v(x) u(x) v (x) v 2 (x) ( 1 v) (x) = v (x) v 2 (x) (u v) (x) = u (v(x)) v (x) Elastizität ǫ f,x = f (x) x f(x).. fur eie Fuktio f eier Variable ǫ f,xi = f x i x i f(x).. fur eie Fuktio f mehrerer Variable 2

3 2.2.4 Lagrage-Fuktio eier Nutzefuktio U uter Budgetbeschräkug Sei eie Budgetgerade gegebe durch p 1 x 1 + p 2 x 2 = C. Lagragefuktio: L(x 1, x 2, λ) = U(x 1, x 2 ) + λ (p 1 x 1 + p 2 x 2 C) Im Haushaltsoptimum gilt das 2. Gossesches Gesetz 1 p 1 U x 1 = 1 p 2 U x 2 3 Lieare Gleichugssysteme 3.1 Iverse eier 2 2 Matrix ( a b Ist A = c d mit deta = a d c b ) eie ivertierbare 2 2 Matrix, so ist A 1 = 1 deta ( d b c a ) 3.2 Lieare Optimierug Gegebe: Lieare Zielfuktio Z(x 1, x 2 ) Restriktioe der Gestalt a 11 x 1 + a 12 x 2 b 1.. ud / oder a m1 x 1 + a m2 x 2 b m c 11 x 1 + c 12 x 2 d 1.. c 1 x 1 + c 2 x 2 d Gesucht: Zulässiger Bereich: Optimum der Zielfuktio Z uter de Nebebediguge Bereich der Werte x i 0, die alle Restriktioe erfülle 3.3 Leistugsverflechtug (Leotief-Modell) ( ) x1 Sei x = der Vektor der vo zwei Produzete hergestellte Mege. x 2 Sei B die Leistugsverflechtugsmatrix: B ethält die Eigeverbrauchsateile jedes Produzete. Beziehuge zwische hergestellte Mege x, Eigeverbrauchsmege w ud für de Verkauf übrige Mege v: Eigeverbrauch: w = B x Hergestellt: x = B 1 w falls B ivertierbar Verkaufsmege: v = (E B) x Hergestellt: x = (E B) 1 v falls E B ivertierbar 3

4 Formelsammlug Statistik 4 Grudlage der Wahrscheilichkeitsrechug Sei Ω die Ergebismege eies Zufallsexperimets. Sei P(A) die Wahrscheilichkeit eies Ereigisses A Ω. 4.1 Additiosgesetz der Wahrscheilichkeitsrechug P(A B) = P(A) + P(B) P(A B) 4.2 Bedigte Wahrscheilichkeit Bedigte Wahrscheilichkeit vo A uter der Bedigug B: P(A B) = P(A B).. P(B) fur P(B) > 0 Recheregel für bedigte Wahrscheilichkeite (i) Multiplikatiossatz P(A B) = P(A B) P(B) = P(B A) P(A) (ii) (iii) Sei A 1, A 2,..., A eie vollstädige Ereigisdisjuktio. Satz vo der totale Wahrscheilichkeit P(B) = i=1 P(B A i) P(A i ) Formel vo Bayes P(A B) = P(B A) P(A) P(B) 4.3 Uabhägige Ereigisse A ud B sid uabhägig geau, we gilt P(A B) = P(A) geau, we gilt P(B A) = P(B) geau, we gilt P(A B) = P(A) P(B) 4

5 5 Zufallsvariable Sei Ω die Ergebismege eies Zufallsexperimets. Sei X eie Zufallsvariable auf Ω mit Wertebereich W. Sei P zugehörige Wahrscheilichkeit. Sei F(x) = P(X x) die Verteilugsfuktio vo X. 5.1 Eidimesioale Zufallsvariable Lageparameter Erwartugswert eier diskrete ZufallsvariableX: E(X) = µ = i=1 x i P(X = x i ) Erwartugswert eier stetige ZufallsvariableX: E(X) = µ = x f(x)dx Media eier diskrete ZufallsvariableX: Zahl µ, so dass gilt: Falls F(x) fur alle x : µ ist miimal mit F( µ) > 1 2 Falls F(x i ) = 1 2 : xi+xi+1 µ = 2 Media eier stetige ZufallsvariableX: Zahl µ mit F( µ) = 1 2 α-quatil eier diskrete ZufallsvariableX: Eie Zahl µ α, so dass gilt: Falls F(x) α fur.. alle x : µ α ist miimal mit F( µ α ) > α Falls F(x i ) = α : µ α = xi+xi+1 2 α-quatil eier stetige ZufallsvariableX: Eie Zahl µ α mit F( µ α ) = α Streuugsparameter diskreter Zufallsvariable Variaz: V ar(x) = σ 2 = i (x i µ) 2 P(x i ) = i x2 i P(x i) µ 2 Stadardabweichug: σ = σ Stadardisierug eier Zufallsvariable X: X = X µ σ. Es gilt: E(X ) = 0, V ar(x ) = 1. 5

6 5.2 Paare diskreter Zufallsvariable Seie X, Y Zufallsvariable auf Ω. Bezeichug: p ij = P(X = x i, Y = y j ) Radverteiluge =Verteiluge der eizele Variable P(X = x i ) = k p ik P(Y = y j ) = l p lj Bedigte Verteiluge P(Y = y j X = x i ) = pij P(X=x i) P(X = x i Y = y j ) = pij P(Y =y j) Uabhägigkeit X ud Y sid uabhägig, we für alle Wertepaare gilt: p ij = P(X = x i ) P(Y = y j ) Kovariaz ud Korrelatioskoeffiziet Cov(X, Y ) = σ XY = i j (x i µ X ) (y j µ Y ) p ij ρ(x; Y ) = σx,y σ X σ Y Korrelatioskoeffiziet 6 Spezielle Verteiluge 6.1 Die diskrete gleichmäßige Verteilug Sei X gleichverteilte diskrete Zufallsvariable mit Wertebereich W = {1,...,m}. Wahrscheilichkeits verteilug : P(X = k) = 1 m.. fur 1 k m Verteilugsfuktio: F(k) = k m.. fur 1 k m Erwartugswert : µ = m+1 2 Variaz : σ 2 = m

7 6.2 Die Biomialverteilug Die Erfolgswahrscheilichkeit bei eiem Zufallsexperimet sei p. X zähle die Erfolgs-Häufigkeit bei Versuche. X B(, p). Wahrscheilichkeits ( verteilug : P(X = k) = k ) p k (1 p) k.. fur 0 k Verteilugsfuktio: F(k) = k i=0 ( i ) p i (1 p) i.. fur 0 k Erwartugswert : µ = p Variaz : σ 2 = p (1 p) 6.3 Die geometrische Verteilug Die Erfolgswahrscheilichkeit bei eiem Zufallsexperimet sei p. X zähle die beötigte Azahl vo Versuche bis zum Erfolg. Wahrscheilichkeits verteilug : P(X = k) = p (1 p) k 1.. fur k 1 Verteilugsfuktio: F(k) = 1 (1 p) k.. fur k 1 Erwartugswert : Variaz : µ = 1 p σ 2 = 1 p p 2 7

8 6.4 Die Poisso-Verteilug Die Erfolgswahrscheilichkeit bei eiem Zufallsexperimet sei p. X zähle die Erfolgs-Häufigkeit. Näherugsweise Awedug für biomial verteilte Zufallsvariable mit λ = p, we 50, p 0.1. Wahrscheilichkeits verteilug : Verteilugsfuktio: Erwartugswert : Variaz : P(X = k) = λk k! e λ.. fur k 0 F(k) = k i=0 λi i! e λ.. fur k 0 µ = λ σ 2 = λ 7 Kofidezitervalle ud Testverfahre für de Erwartugswert bei ubekater Variaz Voraussetzug: Normalverteilte Zufallsvariable X, Y oder 30. Die Quatile der t Verteilug zu Niveaus 1 α 2 t 1;1 α = t 2 1; α ud t 2 1;1 α = t 1;α. ud 1 α seie 7.1 Für eie Erwartugswert Seie x 1,..., x die Werte eier Stichprobe der Läge. Sei x = i=1 xi der Stichprobemittelwert. Sei s 2 = 1 1 i=1 (x i x) 2 diestichprobevariaz Kofidezitervalle eies Erwartugswerts µ zum Niveau 1 α bei ubekater Variaz zweiseitig: [ x t 1;1 α s 2, x + t 1;1 α s 2 ] eiseitig: [ x t 1;1 α s, ) ud [, x + t 1;1 α s ] 8

9 7.1.2 Test eies Erwartugswerts µ bei ubekater Variaz (t Test) zweiseitiger Test vo H 0 : µ = µ 0 : Ablehug vo H 0, we für τ = x µ0 s gilt: τ / [ t 1;1 α, t 2 1;1 α ] 2 eiseitiger Test vo H 0 : µ µ 0 : Ablehug vo H 0, we für τ = x µ0 s gilt: τ > t 1;1 α Ablehug vo H 0, vo H 0 : µ µ 0 : we für τ = x µ0 s gilt: τ < t 1;1 α 7.2 Vergleich zweier Erwartugswerte bei verbudee Stichprobe Seie (x 1, y 1 ),..., (x, y ) die Ergebisse eier zweidimesioale Stichprobe der Läge. Seie x = i=1 xi, ȳ = i=1 yi die Stichprobemittelwerte. Sei die Stichprobe der Differeze d 1 = x 1 y 1,..., d = x y. Seie d = x ȳ der zugehörige Stichprobemittelwert ud s 2 d die Stichprobevariaz. Sei µ D der Erwartugswert der Differez D = X Y Kofidezitervalle vo µ D zum Niveau 1 α zweiseitig: [ d t 1;1 α sd 2, d + t 1;1 α sd 2 ] eiseitig: [ d t 1;1 α sd, ) ud [, d + t 1;1 α sd ] Test vo µ D zum Niveau 1 α zweiseitiger Test vo H 0 : µ D = 0: Ablehug vo H 0, we für τ = d s d gilt: τ / [ t 1;1 α 2, t 1;1 α 2 ] eiseitiger Test vo H 0 : µ D 0 : Ablehug vo H 0, we für τ = d s d gilt: τ > t 1;1 α vo H 0 : µ D 0: Ablehug vo H 0, we für τ = d s d gilt: τ < t 1;1 α 9

10 Ahag: Quatile t ;1 α der t-verteilug 1 α

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung Formelsammlug Kombiatori Permutatio: ohe Wiederholug! = ( - 1) ( - 2).... 3 2 1 = alle Elemete Permutatio: mit Wiederholug!! P, = = usw. = gleiche Elemete! 1! K 2! Stichprobe (SP) = geordete Auswahl Geordete

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html Statistik Prof. Dr. K. Melzer kari.melzer@hs-esslige.de http://www.hs-esslige.de/de/mitarbeiter/kari-melzer.html Ihaltsverzeichis 1 Eileitug ud Übersicht 3 2 Dategewiug (kurzer Überblick) 3 2.1 Plaugsphase

Mehr

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ),

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ), ETHZ 90-683 Dr. M. Müller Statistische Methode WS 00/0 Zufallsvariable Zusammehag: Wirklichkeit Modell Wirklichkeit Stichprobe Date diskret stetig rel. Häufigkeit Häufigkeitstabelle Stabdiagramm Histogramm

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen Istitut für agewadte Mathematik Witersemester 9/ Adreas Eberle, Matthias Erbar, Berhard Hader. (Reelle Zufallsvariable) Klausur zu,,eiführug i die Wahrscheilichkeitstheorie Musterlösuge a) Die Verteilugsfuktio

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Fakultät für Wirtschafts- und Rechtswissenschaften

Fakultät für Wirtschafts- und Rechtswissenschaften F A C H H O C H S C H U L E K Ö L N Fakultät für Wirtschafts- ud Rechtswisseschafte F O R M E L S A M M L U N G Deskriptive Statistik Iduktive Statistik Herausgeber: c 2004 Fachgruppe Quatitative Methode

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Empirische Ökonomie 1 Sommersemester Formelsammlung. Statistische Grundlagen. Erwartungswert und Varianz einer Zufallsvariable.

Empirische Ökonomie 1 Sommersemester Formelsammlung. Statistische Grundlagen. Erwartungswert und Varianz einer Zufallsvariable. Empirische Ökoomie 1 Sommersemester 2013 Formelsammlug Hiweis: Alle Variable, Parameter ud Symbole sid wie i de Vorlesugsuterlage defiiert. Statistische Grudlage Erwartugswert Erwartugswert ud Variaz eier

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Grundkompetenz-Aufgaben

Grundkompetenz-Aufgaben Durch starte Mathematik übugsbuch bis Grudkompetez-Aufgabe Aufgrud der eue schriftliche Reifeprüfug i Mathematik ist es otwedig, sich mit de eue Grudkompetez-Aufgabe auseiaderzusetze. Die Olie-Ergäzug

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 5

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 5 TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 13/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Tutoraufgabe: Eiführug i die Wahrscheilichkeitstheorie Lösugsvorschläge zu Übugsblatt

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia Statistik I - Formelsammlug Ihaltsverzeichis 1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre................................. 1. Kombiatorik........................................ 1.3 Wahrscheilichkeite....................................

Mehr

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Formelsammlug Deskriptive Statistik ud Elemetare Wahrscheilichkeitsrechug Prof. Dr. Ralf Rude Statistik ud Ökoometrie, Uiversität Siege Prof. Dr. Ralf Rude - Uiversität Siege I Statistische Grudbegriffe

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Langrange-Multiplikators und Hinreichende Bedingungen

Langrange-Multiplikators und Hinreichende Bedingungen Albert Ludwigs Uiversität Freiburg Abteilug Empirische Forschug ud Ökoometrie Mathematik für Wirtschaftswisseschaftler Dr. Sevtap Kestel Witer 008 10. November 008 14.-4 Lagrage-Multiplikators ud Hireichede

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Uabhägigkeit, bedigte Wahrscheilichkeite 2.1 Stochastische Uabhägigkeit vo Ereigisse Im Folgede gehe wir vo eiem W-Raum (Ω, A, P aus. Der Begriff der stochastische Uabhägigkeit

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Kapitel 15 Wahrscheilichkeitstheorie ud Statistik Verstädisfrage Sachfrage 1. Erläuter Sie de Begriff der absolute ud relative Häufigkeit eier Stichprobe! 2. Erläuter Sie de Begriff der Klassehäufigkeit

Mehr

FORMELSAMMLUNG. re-wi. A. Ableitungsformeln und Integralformeln. Funktion ƒ(x) Ableitung ƒ'(x) Stammfunktion F(x) = 1 1. B. Ableitungsregeln.

FORMELSAMMLUNG. re-wi. A. Ableitungsformeln und Integralformeln. Funktion ƒ(x) Ableitung ƒ'(x) Stammfunktion F(x) = 1 1. B. Ableitungsregeln. FORMELSAMMLUNG A. Ableitugsformel ud Itegralformel Futio ƒ( Ableitug ƒ'( Stammfutio F( IR, ( IN) + + l ( ) + ( + ) + ( + ) + + + + + + + + r r, (r R \ {}) r r r + si os os os si si ta + (ta l os ot [ +

Mehr

Die notwendigen Verteilungstabellen finden Sie z.b. hier:

Die notwendigen Verteilungstabellen finden Sie z.b. hier: Fakultät für Mathematik Istitute IAG ud IMO Prof. Dr. G. Kyureghya/Dr. M. Hödig Schätz- ud Prüfverfahre Die otwedige Verteilugstabelle fide Sie z.b. hier: http://www.ivwl.ui-kassel.de/kosfeld/lehre/zeitreihe/verteilugstabelle.pdf

Mehr

Übungsaufgaben mit Lösungen zur Analysis und linearen Algebra

Übungsaufgaben mit Lösungen zur Analysis und linearen Algebra Übugsaufgabe mit Lösuge zur ud lieare Algebra Fuktioe mit eier uabhägige Variable, Folge ud Reihe ) Bilde Sie die. Ableitug der folgede Fuktioe: a) f (x) = (x 7 + 5x + 4) 0 = f (x) = 0(x 7 + 5x + 4) 9

Mehr

Herleitung der Parameter-Gleichungen für die einfache lineare Regression

Herleitung der Parameter-Gleichungen für die einfache lineare Regression Herleitug der Parameter-Gleichuge für die eifache lieare Regressio Uwe Ziegehage. März 03 Historie v.0 6.03.009, erste Versio hochgelade v.0 0.03.03, eie Vorzeichefehler beseitigt, diverse Gleichuge ud

Mehr

Einführung in die mathematische Statistik

Einführung in die mathematische Statistik Kapitel 7 Eiführug i die mathematische Statistik 7.1 Statistische Modellierug Bei der Modellierug eies Zufallsexperimets besteht oft Usicherheit darüber, welche W-Verteilug auf der Ergebismege adäquat

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK Statistische Formelsammlug Begleitede Materialie zur Statistik - Vorlesug des Grudstudiums im Fachbereich IK Erstellt im Rahme des studierede Projektes PROST Studiejahr 00/00 uter Aleitug vo Frau Prof.

Mehr

Grundlagen der Biostatistik und Informatik

Grundlagen der Biostatistik und Informatik Vergleich vo mehrere Stichprobe Grudlage der Biostatisti ud Iformati Hypotheseprüfuge III., Nichtparametrische Methode dr László Smeller Semmelweis Uiversität 0 Vergleich vo mehrere Stichprobe Boferroi

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 6. Grudlage der Wahrscheilichkeitsrechug 6.. Defiitioe ud Beispiele Spiele aus dem Alltagslebe: Würfel, Müze, Karte,... u.s.w. sid gut geeiget die Grudlage der Wahrscheilichkeitsrechug darzustelle. Wir

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

Zweifaktorielle Varianzanalyse. Zweifaktorielle Varianzanalyse. Zweifaktorielle Varianzanalyse. Zweifaktorielle Varianzanalyse

Zweifaktorielle Varianzanalyse. Zweifaktorielle Varianzanalyse. Zweifaktorielle Varianzanalyse. Zweifaktorielle Varianzanalyse Ziel Überprüfug der Gleichheit der Erwartugswerte eies Merals i Utergruppe, die vo zwei Fatore erzeugt werde Fator A i a Stufe Fator B i b Stufe Ist jede Stufe vo Fator A it jeder vo Fator B obiiert, spricht

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Demo für www.mathe-cd.de

Demo für www.mathe-cd.de Wahrscheilichkeitsrechug Hypergeometrische Verteilug Themeheft ud Traiigsheft Datei r. 4211 Stad 17. April 2010 Friedrich W. Buckel Demo für ITERETBIBLIOTHEK FÜR SCHULMATHEMATIK 4211 Hypergeometrische

Mehr

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II Strukturelle Modelle i der Bildverarbeitug Markovsche Kette II D. Schlesiger TUD/INF/KI/IS Statioäre Verteilug Verborgee Markovsche Kette (HMM) Erkeug stochastisches Automate D. Schlesiger SMBV: Markovsche

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Parameterschätzung. Kapitel Schätzfunktionen

Parameterschätzung. Kapitel Schätzfunktionen Kapitel 8 Parameterschätzug 8.1 Schätzfuktioe Def. 8.1.1: Es seie X 1,X,...,X uabhägige ZV, die alle die gleiche Verteilug besitze. θ sei ei ubekater Parameter dieser Verteilug. X 1,X,...,X ist als eie

Mehr

Kapitel 6 : Punkt und Intervallschätzer

Kapitel 6 : Punkt und Intervallschätzer 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte

Mehr

Maximum Likelihood Version 1.6

Maximum Likelihood Version 1.6 Maximum Likelihood Versio 1.6 Uwe Ziegehage 15. November 2005 Logarithmegesetze log a (b) + log a (c) = log a (b c) (1) log a (b) log a (c) = log a (b/c) (2) log a (b c ) = c log a (b) (3) Ableitugsregel

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

3 Wichtige Wahrscheinlichkeitsverteilungen

3 Wichtige Wahrscheinlichkeitsverteilungen 26 3 Wichtige Wahrscheilicheitsverteiluge Wir betrachte zuächst eiige Verteilugsfutioe für Produtexperimete 31 Die Biomialverteilug Wir betrachte ei Zufallsexperimet zum Beispiel das Werfe eier Müze, bei

Mehr

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik Pflichtlektüre: Kapitel 10 Grudlage der Iferezstatistik Überblick der Begriffe Populatio Iferezstatistik Populatiosparameter Stichprobeverteiluge Auch Stichprobekewerteverteiluge Wahrscheilichkeitstheorie

Mehr

Monte Carlo-Simulation

Monte Carlo-Simulation Mote Carlo-Simulatio Mote Carlo-Methode Der Begriff Mote Carlo-Methode etstad i de 1940er Jahre, als ma im Zusammehag mit dem Bau der Atombombe die Simulatio vo Zufallsprozesse erstmals i größerem Stil

Mehr

Grundbegriffe der Differentialrechnung

Grundbegriffe der Differentialrechnung Wirtschaftswisseschaftliches Zetrum Uiversität Basel Mathematik für Ökoome 1 Dr. Thomas Zehrt Grudbegriffe der Differetialrechug Referez: Gauglhofer, M. ud Müller, H.: Mathematik für Ökoome, Bad 1, 17.

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

9. Diskrete Zufallsvariable, Wahrscheinlichkeitsverteilung, Erwartungswert, Varianz

9. Diskrete Zufallsvariable, Wahrscheinlichkeitsverteilung, Erwartungswert, Varianz 44 9. Diskrete Zufallsvariable, Wahrscheilichkeitsverteilug, Erwartugswert, Variaz Bei Zufallsversuche iteressiere oft icht die Ergebisse selbst, soder Zahle, die de mögliche Ergebisse des Zufallsversuchs

Mehr

A = Ereignisraum = σ-algebra (Sigma-Algebra) = Menge aller messbaren Ergebnisse über eine definierte Grundmenge Ω

A = Ereignisraum = σ-algebra (Sigma-Algebra) = Menge aller messbaren Ergebnisse über eine definierte Grundmenge Ω Statistik Theorie Defiitioe Ω = Grudmege = Ergebismege = Mege aller mögliche Ergebisse A = Ereigisraum = σ-algebra (Sigma-Algebra) = Mege aller messbare Ergebisse über eie defiierte Grudmege Ω P(Ω) = Potezmege

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Elementare Wahrscheinlichkeitsrechnung und Statistik

Elementare Wahrscheinlichkeitsrechnung und Statistik CURANDO UNIVERSITÄT ULM SCIENDO DOCENDO Elemetare Wahrscheilichkeitsrechug ud Statistik Uiversität Ulm Istitut für Stochastik Vorlesugsskript Prof. Dr. Volker Schmidt Stad: Witersemester 28/9 Ulm, im Februar

Mehr

Bsp.: Kostenfunktion: Gerade, nichtlineare Kurve Stichwort: Fixkosten, Variable Kosten, proportional/überproportional steigend

Bsp.: Kostenfunktion: Gerade, nichtlineare Kurve Stichwort: Fixkosten, Variable Kosten, proportional/überproportional steigend FerUNI Hage WS 00/0 Differetialrechug für Fkt. Eier Variable Ziel: Maß für lokale Äderuge eier Fuktio Bei Etscheiduge sid of icht die absolute Koste iteressat, soder vielmehr die Veräderug, die eie Produktio

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Statistik, Abschnitt (1) Gegeben sei der Stichprobenvektor (X 1,..., X n ). Die Stichprobenfunktion. ˆµ k := 1 n. Xi k (1) i=1.

Statistik, Abschnitt (1) Gegeben sei der Stichprobenvektor (X 1,..., X n ). Die Stichprobenfunktion. ˆµ k := 1 n. Xi k (1) i=1. Statistik, Abschitt.. Schätzmethode.. Mometemethode Für Parameter, die sich i bekater Weise aus de Momete zusammesetze, erhält ma Schätzuge, idem ma die theoretische Momete durch die sogeate empirische

Mehr

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10 Stochastik Beroulli-Experimete, biomialverteilte Zufallsvariable Gymasium ab Klasse 0 Alexader Schwarz www.mathe-aufgabe.com November 203 Hiweis: Für die Aufgabe darf der GTR beutzt werde. Aufgabe : Ei

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

4 Punkt- und Intervallschätzung

4 Punkt- und Intervallschätzung W. Timischl, Agewadte Statistik - Formel (Agewadte Statistik Bachelor-Bioegieerig/Biotechologie) 4 Pukt- ud Itervallschätzug 4. Mittelwert ud Variaz Zufallsstichprobe der metrische Variable X vom Umfag

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Grundlagen der Differentialrechnung mit mehreren Veränderlichen

Grundlagen der Differentialrechnung mit mehreren Veränderlichen www.atheatik-etz.de Copyright, Page 1 of 6 Grudlage der Differetialrechug it ehrere Veräderliche Die Differezierbarkeit eier Fuktio f:m eier Veräderliche (d.h. M ) i eie Häufugspukt a M bedeutet a - geoetrisch

Mehr

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ).

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ). KAPITEL 11 Ugleichuge 111 Jese-Ugleichug Defiitio 1111 Eie Fuktio g : R R heißt kovex, we ma für jedes x R ei K = K (x ) R fide ka, so dass für alle x R gilt: g(x) g(x ) + K (x x ) Bemerkug 111 Eie Fuktio

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Istitut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökoometrie ud Statistik Kapitel XI - Korrelatiosrechug Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Seska Carlo Siebeschuh Aufgabe der Korrelatiosrechug

Mehr

Lineare Transformationen

Lineare Transformationen STAT 4 FK Herleituge Lieare Trasformatioe Sei eie lieare Trasformatio vo, so gilt Allgemei: a b, () Lieare Trasformatio des arithmetische Mittels y a+b x i () Da a eie additiv verküpfte Kostate ist, ka

Mehr

Diplomarbeit. Stochastische Modelle für Schadenabwicklungsschemata unter Berücksichtigung von Reservenbildung

Diplomarbeit. Stochastische Modelle für Schadenabwicklungsschemata unter Berücksichtigung von Reservenbildung - - Prof. Dr. Dietmar Pfeifer Uiversität Hamburg Fachbereich Mathematik Istitut für Mathematische Stochastik Diplomarbeit Stochastische Modelle für Schadeabwicklugsschemata uter Berücksichtigug vo Reservebildug

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brikma http://brikma-du.de Seite 1.0.014 Lösuge zur Biomialverteilug I Ergebisse: E1 E E E4 E E E7 Ergebis Ei Beroulli-Experimet ist ei Zufallsexperimet, das ur zwei Ergebisse hat. Die Ergebisse werde

Mehr

Evaluation & Forschungsstrategien

Evaluation & Forschungsstrategien Evaluatio & Forschugsstrategie WS2/2 Prof. Dr. G. Meihardt Johaes Guteberg Uiversität Maiz Prizipie des statistische Schliesses Samplig - Modellvorstellug Populatio Samplig Stichprobe Kewerte x Theoretische

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

10. Übungsblatt zur Einführung in die Stochastik

10. Übungsblatt zur Einführung in die Stochastik Fachbereich Mathematik rof. Dr. Michael Kohler Dipl.-Math. Adreas Fromkorth Dipl.-If. Jes Mehert SS 09 6.7.2009 0. Übugsblatt zur Eiführug i die Stochastik Aufgabe 38 (3 ukte Die Zufallsvariable X,...,

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5 Prof. Dr. Holger Dette Musterlösug Statistik I Sommersemester 009 Dr. Melaie Birke Blatt 5 Aufgabe : 4 Pukte Sei X eie Poissoλ verteilte Zufallsvariable mit λ > 0, ud die Verlustfuktio L sei defiiert durch

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Statistische Modelle und Parameterschätzung

Statistische Modelle und Parameterschätzung Kapitel 2 Statistische Modelle ud Parameterschätzug 2. Statistisches Modell Die bisher betrachtete Modellierug eies Zufallsexperimetes erforderte isbesodere die Festlegug eier W-Verteilug. Oft besteht

Mehr

Parameterschätzung. Numero, pondere et mensura Deus omnia condidit

Parameterschätzung. Numero, pondere et mensura Deus omnia condidit Parameterschätzug Numero, podere et mesura Deus omia codidit Populatio, Zufallsvariable, Stichprobe Populatio Zufallsvariable X Stichprobe x eie"realisierug vo X (Beobachtug) alle mäliche Rekrute der US

Mehr

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung:

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung: Gleichuge ud Ugleichuge Mathematische Grudlage Das Hadout ist Bestadteil der Vortragsfolie zur Höhere Mathemati; siehe die Hiweise auf der Iteretseite wwwimgui-stuttgartde/lstnumgeomod/vhm/ für Erläuteruge

Mehr

Konvexität und Ungleichungen

Konvexität und Ungleichungen Koveität ud Ugleichuge Tag der Mathematik 2003 Holger Stepha Weierstraß Istitut für Agewadte Aalysis ud Stochastik http://www.wias-berli.de/people/stepha = Für mathematisch iteressierte Schüler = Folie

Mehr