Das Mathematik-Abitur im Saarland

Größe: px
Ab Seite anzeigen:

Download "Das Mathematik-Abitur im Saarland"

Transkript

1 Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die Aufgaben in der Prüfung beträgt: G-Kurs: 3 Stunden, E-Kurs: 5 Stunden. Weitere Informationen finden Sie unter und Wie arbeiten Sie mit dem Buch? Mit «Erfolg im Mathe-Abi Basiswissen» können Sie Ihre mathematischen Grundlagen auffrischen. Dazu befindet sich am Anfang jedes Kapitels eine kurze thematische Übersicht. Die einzelnen Kapitel bauen zwar aufeinander auf, doch ist es nicht zwingend notwendig, das Buch der Reihe nach durchzuarbeiten. Die Aufgaben sind in der Regel nach ihrer Schwierigkeit gestaffelt. Den besten Lerneffekt erreichen Sie, wenn Sie bei Fragen oder Unklarheiten zuerst im Tippteil nachschauen. Die Lösungen mit ausführlichen und verständlichen Lösungswegen bilden den letzten Teil des Übungsbuchs. Hier finden Sie neben den notwendigen Formeln, Rechenverfahren und Denkschritten auch sinnvolle alternative Lösungswege. Checkliste Auf den folgenden Seiten sind die Kapitel des Buchs «Erfolg im Mathe-Abi Basiswissen» aufgelistet, die für Sie im G-Kurs bzw. E-Kurs wichtig sind. Darüber hinaus finden Sie in diesem Heft noch ergänzende Aufgaben zu einigen Kapiteln. Allen Schülerinnen und Schülern, die sich auf das Abitur vorbereiten, wünschen wir viel Erfolg. Helmut Gruber und Robert Neumann 3

2 Checkliste 4

3 Checkliste 5

4 Checkliste 6

5 Checkliste 7

6 Ergänzende Aufgaben 5 Gleichungslehre (Ergänzung) Polynomdivision Um eine Polynomdivision durchführen zu können, brauchen Sie zuerst eine Lösung. Diese findet man durch «systematisches Probieren». Setzen Sie einige einfache Zahlen (±1, ±2,...) in die Gleichung ein und prüfen Sie, ob diese die Gleichung lösen. Zerlegen Sie die Gleichungen in Linearfaktoren, führen Sie dazu Polynomdivisionen durch und bestimmen Sie die Lösungen der Gleichungen: a) x 3 2x 2 5x + 6 = 0 b) x 3 + 3x 2 6x 8 = 0 c) x 3 + 0,5x 2 3,5x 3 = 0 d) x 3 4,5x 2 + 3,5x + 3 = 0 7 Kurvendiskussion (Ergänzung) Verständnis von gebrochenrationalen Funktionen Gebrochenrationale Funktionen können Definitionslücken oder Polstellen besitzen (wenn der Nenner Null ist). Ist der Zähler an dieser Stelle ungleich Null, handelt es sich um eine Polstelle, ist der Zähler auch gleich Null, handelt es sich um eine hebbare Lücke. a) Was ist eine Definitionslücke einer Funktion? b) Charakterisieren Sie eine Polstelle. Welche unterschiedlichen Arten von Polstellen gibt es? c) Welche Fälle gibt es bei gebrochenrationalen Funktionen für das Verhalten der y-werte, wenn x gegen Unendlich geht? Wie kommt es zu einer waagerechten Asymptote y = 0? Wie muss die Funktion aussehen, damit die Asymptote y = 2 ist? Was muss für eine Situation vorliegen, damit eine schräge Asymptote, z.b. y = 2x + 1, entsteht? d) E-Kurs: Was ist eine «hebbare Lücke»? E-Kurs: Ortslinien Eine Ortskurve beschreibt den Verlauf eines speziellen Punktes einer Kurvenschar, z.b. des Hochpunktes oder des Wendepunktes. Um eine Ortslinie zu bestimmen, gehen Sie wie folgt vor: 1. Zuerst wird der spezielle Punkt bestimmt, falls er nicht schon vorliegt, z.b. H ( 4 t t 2). 2. Der x-wert des Punktes wird so umgeformt, dass der Parameter alleine steht: x = 4 t t = 4 x. 3. Der Parameter (in Abhängigkeit von x) wird in den y-wert des Punktes eingesetzt: y = t 2 = ( 4 x ) Durch Ausrechnen erhalten Sie den y-wert in Abhängigkeit von x: y = ( 4 x ) 2 = 16 x 2 und damit die Gleichung der Ortslinie. 8

7 Ergänzende Aufgaben Tipps 5 Gleichungslehre Polynomdivision Die erste Lösung muss durch «systematisches Probieren» bestimmt werden. Meist ist dies eine relativ einfache Lösung, z.b. x 1 = 1. Anschließend wird die Gleichung durch «x minus bekannte Lösung» geteilt. Die Lösungen der dann vorliegenden quadratischen Gleichung können mit der pq- oder abc-formel bestimmt werden. Liegt nach der 1. Polynomdivision immer noch eine Gleichung 3. Grades vor, muss eventuell eine erneute Polynomdivision ausgeführt werden. 7 Kurvendiskussion Verständnis von gebrochenrationalen Funktionen a) Betrachten Sie das Zähler- und das Nennerpolynom der Funktion. Was passiert, wenn der Nenner eine Nullstelle in x 0 besitzt? Was passiert, wenn sowohl der Zähler als auch der Nenner eine Nullstelle in x 0 besitzen? b) Betrachten Sie das Verhalten der y-werte in der Umgebung der Polstelle. c) Betrachten Sie den Grad des Zähler- und des Nennerpolynoms. Führen Sie unter Umständen eine Polynomdivision durch, indem Sie den Zähler durch den Nenner teilen. Betrachten Sie dann die Funktion für x ±. d) Wie könnte man eine Funktion ergänzen, die an einer Stelle eine Definitionslücke hat? E-Kurs: Ortslinien a) - b) Da die Punkte schon gegeben sind, müssen Sie nur die Ortslinien wie angegeben bestimmen. c) - d) Sie müssen zunächst den gesuchten Punkt bestimmen. Hierbei gehen Sie wie bei einer «normalen» Funktion ohne Parameter vor. Beachten Sie: Die Parameter werden beim Ableiten wie Zahlen behandelt! 8 Integralrechnung Uneigentliche Integrale 12 a) Die Fläche wird anfänglich durch die vertikale Gerade x = z mit z > 0 begrenzt. Setzen Sie z als obere Grenze ein und bestimmen Sie A(z). Lassen Sie dann z gehen. b) I) Bestimmen Sie die Grenzen des Integrals und integrieren Sie die Funktion. II) Betrachten Sie das Verhalten der Funktion für x. Welcher Term fällt weg? III) Die Fläche zwischen zwei Kurven wird berechnet, indem man die Funktionsgleichung der unteren Kurve von der der oberen Kurve abzieht und dann integriert. Für die ins Unendliche reichende Fläche setzt man als untere Grenze z ein und bildet dann den Grenzwert lim z A(z).

8 Ergänzende Aufgaben Lösungen 5 Gleichungslehre Polynomdivision 14 a) Die erste Nullstelle wird durch Ausprobieren bestimmt: x 1 = 1. Daher wird die Ausgangsgleichung durch (x 1) geteilt: ( x 3 2x 2 5x + 6 ) : (x 1) = x 2 x 6 (x 3 x 2 ) x 2 5x ( x 2 + x) 6x + 6 ( 6x + 6) 0 Lösen der quadratischen Gleichung x 2 x 6 = 0 mit Hilfe der pq- oder abc-formel ergibt: x 2 = 3 und x 3 = 2. Die Linearfaktorzerlegung der Ausgangsgleichung ist damit: (x 1) (x 3) (x + 2) = 0. Die Lösungsmenge ist L = { 2; 1; 3}. b) Die erste Nullstelle wird durch Ausprobieren bestimmt: x 1 = 1. Daher wird die Ausgangsgleichung durch (x ( 1)), also durch (x + 1) geteilt: ( x 3 + 3x 2 6x 8 ) : (x + 1) = x 2 + 2x 8 (x 3 + x 2 ) 2x 2 6x (2x 2 + 2x) 8x 8 ( 8x 8) 0 Lösen der quadratischen Gleichung x 2 + 2x 8 = 0 mit Hilfe der pq- oder abc-formel ergibt: x 2 = 2 und x 3 = 4. Die Linearfaktorzerlegung der Ausgangsgleichung ist damit: (x + 1) (x 2) (x + 4) = 0. Die Lösungsmenge ist damit: L = { 4; 1; 2}. c) Die erste Nullstelle wird durch Ausprobieren bestimmt: x 1 = 1. Die Ausgangsgleichung wird daher durch (x + 1) geteilt: ( x 3 + 0,5x 2 3,5x 3 ) : (x + 1) = x 2 0,5x 3 (x 3 + x 2 ) 0,5x 2 3,5x ( 0,5x 2 0,5x) 3x 3 ( 3x 3) 0 Lösen der Gleichung x 2 0,5x 3 = 0 mit Hilfe der pq- oder abc-formel ergibt: x 2 = 1,5 und x 3 = 2. Die Linearfaktorzerlegung der Ausgangsgleichung ist damit: (x + 1) (x + 1,5) (x 2) = 0. Die Lösungsmenge ist L = { 1,5; 1; 2}.

9 Lösungen Ergänzende Aufgaben d) Die erste Nullstelle wird durch Ausprobieren bestimmt: x 1 = 2. Die Ausgangsgleichung wird daher durch (x 2) geteilt: ( x 3 4,5x 2 + 3,5x + 3 ) : (x 2) = x 2 2,5x 1,5 (x 3 2x 2 ) 2,5x 2 + 3,5x ( 2,5x 2 + 5x) 1,5x + 3 ( 1,5x + 3) 0 Lösen der Gleichung x 2 2,5x 1,5 = 0 mit Hilfe der pq- oder abc-formel ergibt: x 2 = 3 und x 3 = 0,5. Die Linearfaktorzerlegung der Ausgangsgleichung ist damit: (x 2) (x 3) (x + 0,5) = 0. Die Lösungsmenge ist L = { 0,5; 2; 3}. 7 Kurvendiskussion Verständnis von gebrochenrationalen Funktionen a) Bei einer gebrochenrationalen Funktion bezeichnet eine Definitionslücke eine Stelle, an der das Nennerpolynom gleich Null ist. b) Eine Polstelle an der Stelle x 0 einer gebrochenrationalen Funktion liegt vor, wenn (nach Kürzung aller überzähligen Linearfaktoren) für eine Zahl x 0 das Zählerpolynom ungleich Null ist und das Nennerpolynom gleich Null. Dabei werden die Funktionswerte beliebig groß, wenn man sich x 0 nähert. Es gibt Polstellen mit und ohne Vorzeichenwechsel (VZW). Bei einer Polstelle mit VZW wechselt das Vorzeichen der Funktionswerte, je nachdem, ob man sich von links oder von rechts der Funktion annähert (der eine Ast des Schaubilds geht «nach oben», der andere «nach unten»). Bei einer Polstelle ohne VZW streben die Funktionswerte links und rechts der Polstelle beide nach + bzw.. c) Welche Art einer waagerechten bzw. schrägen Asymptote das Schaubild einer gebrochenrationalen Funktion hat, hängt vom Grad des Zähler- und Nennerpolynoms ab (der Grad ist der höchste Exponent eines Polynoms). Es sind verschiedene Fälle möglich: Grad des Zählerpolynoms < Grad des Nennerp. Asymptote: y = 0 (x-achse) Grad des Zählerpolynoms = Grad des Nennerp. waagerechte Asymptote Grad des Zählerpolynoms = Grad des Nennerp.+1 schräge Asymptote Grad des Zählerpolynoms > Grad des Nennerp.+1 Näherungskurve Der Grad der Näherungskurve ist die Differenz zwischen dem Grad des Zählerpolynoms und dem Grad des Nennerpolynoms. Die Position der waagerechten Asymptote wird durch die Koeffizienten im Zähler und Nen- 15

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Diskutieren Sie die Funktionen: a.) f(x) = 1 + x 5 x 2 1 b.) f(x) = x 4 + 5 x+2 c.) f(x) = x3 +2x 2 +x+2 x+2 Lösung: a.) An der Summenform des

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen Kurvendiskussion Gebrochenrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 7. September 0 Inhaltsverzeichnis Gebrochenrationale Funktion Gebrochen rationale Funktion Zählergrad < Nennergrad

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Erfolg im Mathe-Abi 2012

Erfolg im Mathe-Abi 2012 Gruber I Neumann Erfolg im Mathe-Abi 2012 Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Windkraftanlage... 5 2 Heizkosten... 6 3

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Gruber I Neumann. Erfolg im Mathe-Abi. Basiswissen Schleswig-Holstein. Übungsbuch mit Tipps und Lösungen

Gruber I Neumann. Erfolg im Mathe-Abi. Basiswissen Schleswig-Holstein. Übungsbuch mit Tipps und Lösungen Gruber I Neumann Erfolg im Mathe-Abi Basiswissen Schleswig-Holstein Übungsbuch mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist speziell auf die Anforderungen der Profiloberstufe

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Analysis 1 Gebrochenrationale Funktion - Laptop... 7 2 Gebrochenrationale

Mehr

Erfolg im Mathe-Abi 2014

Erfolg im Mathe-Abi 2014 Gruber I Neumann Erfolg im Mathe-Abi 2014 Prüfungsaufgaben Hessen Übungsbuch für den Grundkurs mit Tipps und Lösungen Vorwort Vorwort Dieses Übungsbuch ist speziell auf die Anforderungen des zentralen

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Erfolg im Mathe-Abi 2014

Erfolg im Mathe-Abi 2014 Gruber I Neumann Erfolg im Mathe-Abi 2014 Schleswig-Holstein Übungsbuch Prüfungsaufgaben mit Tipps und Lösungen Inhaltsverzeichnis 1. Aufgabensatz... 7 2. Aufgabensatz... 12 3. Aufgabensatz... 17 4. Aufgabensatz...

Mehr

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n . Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

durch folgende Einschränkungen bestimmt:

durch folgende Einschränkungen bestimmt: 1 von 11 27.04.2008 16:00 Kurvendiskussion aus Wikipedia, der freien Enzyklopädie Unter Kurvendiskussion versteht man in der Mathematik die Untersuchung des Graphen einer Funktion auf dessen Eigenschaften,

Mehr

1 Analysis Kurvendiskussion

1 Analysis Kurvendiskussion 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise

Mehr

MatheBasics Teil 4 Grundlagen der Mathematik

MatheBasics Teil 4 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (B) Prüfungstag 5. April Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

GF MA Differentialrechnung A2

GF MA Differentialrechnung A2 Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften W. Kippels 10. April 2016 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Prinzipielle Vorgehensweise.......................... 2 1.2 Lösungsrezepte................................

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

Erfolg im Mathe-Abi 2013

Erfolg im Mathe-Abi 2013 Gruber I Neumann Erfolg im Mathe-Abi 213 Schleswig-Holstein Übungsbuch Prüfungsaufgaben mit Tipps und Lösungen Inhaltsverzeichnis 1. Aufgabensatz... 7 2. Aufgabensatz... 12 3. Aufgabensatz... 17. Aufgabensatz...

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Ergänzungsheft Erfolg im Mathe-Abi

Ergänzungsheft Erfolg im Mathe-Abi Ergänzungsheft Erfolg im Mathe-Abi Hessen Prüfungsaufgaben Grundkurs 2012 Grafikfähiger Taschenrechner (GTR), Computeralgebrasystem (CAS) Dieses Heft enthält Übungsaufgaben für GTR und CAS sowie die GTR-

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenurg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 0 KREIS und KUGEL Bogenlänge rπα = 80 Das Verhältnis r πα = 80 heißt Bogenmaß, ist nur vom Mittelpunktswinkel α ahängig

Mehr

Viele Aufgaben sind ähnlich, beim Bearbeiten ist genaues Hinsehen

Viele Aufgaben sind ähnlich, beim Bearbeiten ist genaues Hinsehen Die Lerndominos sind ein idealer Weg, um Gelerntes zu vertiefen. Das Domino wird mit der Start-Karte begonnen, dann werden die passenden Antwort-Karten angelegt bis die Ziel-Karte erreicht ist. Bewährt

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Kurvendiskussion einer ganzrationalen Funktion

Kurvendiskussion einer ganzrationalen Funktion Kurvendiskussion einer ganzrationalen Funktion Lernzuflucht 24. November 20 L A TEX M. Neumann Folgende Funktion soll in einer Kurvendiskussion bearbeitet werden: f(x) = x 4 2x 2 ; D = R () Diese Funktion

Mehr

1 Allgemeines, Verfahrensweisen

1 Allgemeines, Verfahrensweisen 1 Allgemeines, Verfahrensweisen 1.1 Allgemeines Definition einer Funktion Eine Funktion f ist eine eindeutige Zuordnung, die jedem x-wert genau einen y-wert zuordnet. Dem y-wert, welchem ein x-wert zugeordnet

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Aufgaben zu den ganzrationalen Funktionen

Aufgaben zu den ganzrationalen Funktionen Aufgaben zu den ganzrationalen Funktionen. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y x + x 6 b) y x x + x c) y (x + )(x + x ) d) y x 5x + e) y x + x x + 0 f) y x x 5x +50x

Mehr

Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1

Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Lehrplan: M 11.1.1 Graphen gebrochen-rationaler Funktionen M 11.1.2 Lokales Differenzieren Passende Kapitel im Schulbuch Fokus Mathematik 11:

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Lösungen Kapitel A: Funktionen

Lösungen Kapitel A: Funktionen Lösungen Kapitel A: Funktionen Arbeitsblatt 01: Abhängigkeiten entstehen a) Zu Beginn des Tages befinden sich 10 Besucher am Strand. Bis um 4 Uhr nachts haben alle den Strand verlassen. Um 6 Uhr sind bereits

Mehr

ToDo-Liste für s Mathe-Abi 2009

ToDo-Liste für s Mathe-Abi 2009 ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Abi Know-How Mathematik

Abi Know-How Mathematik Mathe bis zum Abitur Abi Know-How Mathematik Olaf Schneider Liebe Schüler, Das Abi Know-How Mathematik ist als Lernhilfe für meine Nachhilfeschüler entstanden. Es ist geeignet für die Oberstufe bis zum

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Erfolg im Mathe-Abi. Gruber I Neumann. Baden-Württemberg Berufliche Gymnasien

Erfolg im Mathe-Abi. Gruber I Neumann. Baden-Württemberg Berufliche Gymnasien Gruber I Neumann Erfolg im Mathe-Abi Baden-Württemberg Berufliche Gymnasien Übungsbuch für das Basiswissen in Analysis, Geometrie und Stochastik mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang

Mehr

Funktionen-Katalog. I. Geraden. f(x) = 1 oder y = 1. x = 1. eine Gerade parallel zur x-achse. Gerade parallel zur y- Achse (keine Funktion) f(x) = - x

Funktionen-Katalog. I. Geraden. f(x) = 1 oder y = 1. x = 1. eine Gerade parallel zur x-achse. Gerade parallel zur y- Achse (keine Funktion) f(x) = - x Funktionen-Katalog I. Geraden II. Ganzrationale Funktion: Parabeln -ten Grades 3-ten Grades Parabeln höheren Grades III. Gebrochenrationale Funktionen: Asymptoten, Polstellen... IV. Eponentialfunktionen

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Zusammenfassung - Mathematik

Zusammenfassung - Mathematik Mathematik Seite 1 Zusammenfassung - Mathematik 09 October 2014 08:29 Version: 1.0.0 Studium: 1. Semester, Bachelor in Wirtschaftsinformatik Schule: Hochschule Luzern - Wirtschaft Author: Janik von Rotz

Mehr

Inhaltsverzeichnis. Seite 1: Matrizen. Seite 23: Funktionen. Seite 51: Integralrechnung. Seite 69: Binomialverteilung

Inhaltsverzeichnis. Seite 1: Matrizen. Seite 23: Funktionen. Seite 51: Integralrechnung. Seite 69: Binomialverteilung Inhaltsverzeichnis Seite : Matrizen Seite : Funktionen Seite 5: Integralrechnung Seite 69: Binomialverteilung Seite 86: Statistik/Normalverteilung Seite 04: Vektoren Seite 40: Wachstum Lineare Algebra

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Eine rationale Funktion r mit n verschiedenen Polstellen z j der Ordnung m j, r = p q, lässt sich in der Form r(z) = f (z) + n j=1 q(z) = c(z z 1) m1 (z z n ) mn r j (z), r j (z)

Mehr

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich Lösungen (1)

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich Lösungen (1) Mathe-Abitur ab 24: Fundus für den Pflichtbereich Lösungen () Die Autoren übernehmen keine Garantie für die Richtigkeit der Lösungen. Auch wurde sicher nicht immer der kürzeste und eleganteste Lösungsweg

Mehr

Erfolg im Mathe-Abi 2017

Erfolg im Mathe-Abi 2017 Gruber I Neumann Erfolg im Mathe-Abi 017 Übungsbuch für das Grundwissen Berufliche Gymnasien Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Strecken und Geraden

Mehr

Erfolg im Mathe-Abi 2011

Erfolg im Mathe-Abi 2011 Gruber I Neumann Erfolg im Mathe-Abi 211 Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Gebrochenrationale Funktion - Laptop... 5

Mehr

Abkürzungen & Begriffe

Abkürzungen & Begriffe A Bedeutungen Abkürzungen & Begriffe Abzisse ist ein normaler x-wert [ Ordinate] arcsin, arccos, arctan sind die korrekten Bezeichnungen für: sin -, cos -, tan -. [Die üblichen Bezeichnungen sin -, cos

Mehr

Diskutiere die Funktion f(x) - Nullstellen, Extremwerte, Wendepunkte, Graph. f ( x) = 1 8 ( x3 +3 x 2 9 x+5) x f ( x) = 3 8 ( x2 +2 x 3)

Diskutiere die Funktion f(x) - Nullstellen, Extremwerte, Wendepunkte, Graph. f ( x) = 1 8 ( x3 +3 x 2 9 x+5) x f ( x) = 3 8 ( x2 +2 x 3) Kurvendiskussion Diskutiere die Funktion f(x) - Nullstellen, Extremwerte, Wendepunkte, Graph f ( x) = 1 8 x3 + 3 8 x2 9 8 x+5 8 Zuerst berechne ich die Ableitungen. Außerdem hebe ich so weit wie möglich

Mehr

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion

Mehr

Formelsammlung Analysis

Formelsammlung Analysis Formelsammlung Analysis http://www.fersch.de Klemens Fersch. August 0 Inhaltsverzeichnis Analysis. Grenzwert - Stetigkeit.............................................. Grenzwert von f(x) für x gegen x0...................................

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Mündliches Abitur in IViathematik

Mündliches Abitur in IViathematik Mündliches Abitur in IViathematik Zusatzprüfung: Kurzvortrag mit Prüfungsgespräcti Ziele: Nachweis von fachlichem Wissen und der Fähigkeit, dies angemessen darzustellen erbringen fachlich überfachlich

Mehr

Matur-/Abituraufgaben Analysis

Matur-/Abituraufgaben Analysis Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4.1 Überblick Die Interpolationsaufgabe haben wir bereits in Kapitel 7 (Band Analysis 1) untersucht. Als Auffrischung: Zu n vorgegebenen

Mehr

Rabatt und Skonto. Rechnung Computersystem. Bruttopreis Rabatt Nettopreis Skonto Zahlung. 2'950.00 Fr. 2'457.35 Fr.

Rabatt und Skonto. Rechnung Computersystem. Bruttopreis Rabatt Nettopreis Skonto Zahlung. 2'950.00 Fr. 2'457.35 Fr. Ratt und Skonto Rechnung Computersystem Computer P7 '650.00 Fr. Drucker XX 300.00 Fr. Total '950.00 Fr. 15% 44.50 Fr. '507.50 Fr. % 50.15 Fr. '457.35 Fr. Bruttopreis Ratt Nettopreis Skonto Zahlung Worterklärungen

Mehr

Beispiele für eine vollständige Kurvendiskussion

Beispiele für eine vollständige Kurvendiskussion Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

B.7 Kurzzusammenfassung zum Thema Kurvendiskussion

B.7 Kurzzusammenfassung zum Thema Kurvendiskussion B.7 Kurzzusammenfassung zum Thema Kurvendiskussion B.7.a Übersicht Charakteristische Punkte/Verläufe einer Kurve Eine Funktion bzw. Gleichung wird üblicherweise auf folgende charakteristische Punkte analysiert:

Mehr

Abiturprüfung 2008. Mathematik, Grundkurs

Abiturprüfung 2008. Mathematik, Grundkurs M GK HT 3 Seite 1 von Name: Abiturprüfung 008 Mathematik, Grundkurs Aufgabenstellung: Gegeben ist die Funktion f mit x f( x) = ( x+ 1) e, x IR. Der Graph von f ist in der nebenstehenden Abbildung dargestellt.

Mehr

6 Trigonometrische Funktionen

6 Trigonometrische Funktionen 6 Trigonometrische Funktionen 6. Definition Die Trigonometrischen Funktionen (oder Winkelfunktionen) Sinus-, Kosinusund Tangensfunktion stellen den Zusammenhang zwischen Winkel und Seitenverhältnis dar.

Mehr

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Gebrochen rationale Funktion f(x) = x2 +1

Gebrochen rationale Funktion f(x) = x2 +1 Gebrochen rationale Funktion f() = +. Der Graph der Funktion f ist punktsmmetrisch, es gilt: f( ) = ( ) + f() = f( ) = + = + = f(). An der Stelle = 0 ist f nicht definiert, an dieser Stelle liegt ein Pol

Mehr

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg Pflichtteilaufgaben zu Elemente der Kurvendiskussion Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com September 6 Übungsaufgaben: Ü: Gegeben ist

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten

Mehr

Zusammenfassung Abitursstoff Mathematik

Zusammenfassung Abitursstoff Mathematik Zusammenfassung Abitursstoff Mathematik T. Schneider, J. Wirtz, M. Blessing 2015 Inhaltsverzeichnis 1 Analysis 2 1.1 Monotonie............................................ 2 1.2 Globaler Verlauf........................................

Mehr

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen H. Gruber, R. Neumann Erfolg im Mathe-Abi Prüfungsaufgaben Hessen Übungsbuch für den Grundkurs mit Tipps und Lösungen - plus Aufgaben für GTR und CAS Inhaltsverzeichnis Inhaltsverzeichnis 1 Ganzrationale

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

HOCHSCHULE RAVENSBURG-WEINGARTEN Prof. Dr.-Ing. Tim J. Nosper Mathematik 1 Kurvendiskussion. -Lösungen- 4 2 f(x) 3 (x) 2 (x) (x) x = 0,765.

HOCHSCHULE RAVENSBURG-WEINGARTEN Prof. Dr.-Ing. Tim J. Nosper Mathematik 1 Kurvendiskussion. -Lösungen- 4 2 f(x) 3 (x) 2 (x) (x) x = 0,765. Pro. Dr.-Ing. Tim J. Nosper Mathematik Augabe : a) 4 () + 4 4 + 8 () + 8 () () 4 Etremstellen: 0,765 0,765,847,847 4 HP,44 / HP,44/ TP 0 / WP 0,86/ 0, WP 0,86/ 0, Seite von Pro. Dr.-Ing. Tim J. Nosper

Mehr

TEST Basiswissen Mathematik für Ingenieurstudiengänge

TEST Basiswissen Mathematik für Ingenieurstudiengänge TEST Basiswissen Mathematik für Ingenieurstudiengänge Erste Fassung März 2013 Dieser Test beinhaltet Aufgaben zu den wesentlichen Themen im Bereich Mathematik, die Basiswissen für ein Ingenieurstudium

Mehr

Lösungen Kapitel A: Wahrscheinlichkeiten

Lösungen Kapitel A: Wahrscheinlichkeiten Lösungen Kapitel A: Wahrscheinlichkeiten Arbeitsblatt 01: Kombinatorische Zählverfahren (1) Junge, Junge, Mädchen, Mädchen (2) Junge, Mädchen, Junge, Mädchen (3) Junge, Mädchen, Mädchen, Junge (4) Mädchen,

Mehr

Extrempunkte eine Einführung

Extrempunkte eine Einführung Extrempunkte eine Einführung Kurzer Überblick Grundsätzlich ist ein Extrempunkt der entweder ein Hochpunkt oder ein Tiefpunkt sein kann ein Punkt am Graphen einer Funktion, dessen Wert (y- Koordinate)

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007 Senatsverwaltung für Bildung, Wissenschaft und Forschung Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr / 7 Name, Vorname: Klasse: Prüfungsfach: Mathematik Prüfungstag:

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer

Mehr