Großübung Balkenbiegung Biegelinie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Großübung Balkenbiegung Biegelinie"

Transkript

1 Großüung Bkeniegung Biegeinie Es geen die in der Voresung geroffenen Annhmen: - Der Bken is unese gerde. - Ds eri sei üer den Querschni homogen und iner esisch. - Die Besung erfog durch Biegemomene und Querkräfe. - Es gee die Bernoui-Hpohese. - Die Deformionen sind kein. Die Biegeinie esische Linie eru die Besimmung der Verformung des Bkenrgerkes. Eenso können mi Hife der Biegeinie uch sisch unesimm gegere Bkenrgerke erechne erden. Dies r isher usschießich mi den Geichgeichsedingungen der Sik nich mögich. Benöig erden ur Berechnung die Schnigrößen, erikennere hier der Esiiäsmodu E soie ächenkennere. As Beispiee erden orgese: - Vereiges eenes Bkenrgerk, -fch sisch unesimm - Krgräger mi Eines, Z-Profi, -dimension

2 BV Biegeinie D Vereiges eenes Bkenrgerk, -fch sisch unesimm q A E, E, c E, B Schniid ur Besimmung der Lgerrekionen q AH AV E, E, c E, sische Geichgeichsedingungen A: AV AH BV BV q c q Ds Geichungsssem is derei nich ösr Uneknne in Geichungen. Desh ird eine Uneknne ischeneiich ie eine gegeene Krf ehnde,.b.. Ae nderen Uneknnen erden in Ahängigkei hieron drgese.

3 BV AV AH c q q BV q c i Hife der Geichungen für die Biegeinie knn die Krf esimm erden, ußerdem die Verformung des Trgerkes. Schnigrößen für Aschnie Es erden Koordinensseme mi geicher Orienierung eingeführ. Die Koordinensseme iegen im ächenmiepunk, d.h. is die Verindungsinie er ächenmiepunke enng der Bkenängschse. ür die Berechnung der Biegeinie muss nur die Schnigröße Biegemomen esimm erden. q AH AV N Q AV q N Q c- c N Q BV

4 Biegeinien E Annhme: Biegeseifigkei E sei konsn und in en Aschnien geich groß. Die Koordinenchsen seien uch Huprägheischsen. gerde Biegung E q AV E q AV E q AV Verschieung in -Richung Biegeinke ϕ, ϕ E E c E c c E E E 5 5 Es gi je Konsnen i und s Uneknne. Zu deren Besimmung ruchen ir geomerische Bedingungen für und ϕ n esimmen Seen des Trgerkes. Ds sind die Rnd- und Üergngsedingungen. Rnd- und Üergngsedingungen RÜB Annhme: Längenänderungen der Bken erden nich erücksichig. Die Vereigung sei iegeseif iegeseife Ecke Bedingung ur Besimmung on ögiche Verdrehung m Vereigungspunk

5 Dmi enseh ein Geichungsssem mi Uneknnen. Anmerkung: Wird Bedingung nich gese, is Lger B ein Losger und irk nur erik. order mn n dieser See eine esimme Verschieung oder, so knn mn die Krf esimmen, die um Erreichen dieser Verschieung erforderich is. die Auserung der RÜB iefer: us us us us us us us AV 5 q AV 5 q Konsnen sind Nu, Geichungen müssen noch erreie erden. Zuor muss AV noch durch und die gegeenen Besungen erse erden. us mi 5: us mi : Aus den een eiden Geichungen erhä mn: q AV q AV AV q q AV 8 q q 8 q c q c 8 c 5

6 Hierus fogen nun e nderen Konsnen und die ürigen Lgerrekionen:..., AH, AV, BV Ds is rech ufändig, mn knn uch u nderen Hifsmien greifen. Vorge AV 5 Smoisches Lösen des Geichungsssems, um Beispie mi Progrmmen ie pe, hemic oder hier hcd. Der Lösungsekor enhä die gesuchen Größen in der ngegeenen Reihenfoge. q AV q c AV AH c q BV Suchen,, 5,, BV, AH, AV 8 q q 8 8 c q 8 8 c 8 q 8 8 c 5q q 8 8 c cq 8 q 8 8 c Nun ssen sich uch die Verformungen in den Aschnien erechnen. 8 q q 8 8 c

7 Wir hen is hier eine sehr gemein gehene Lösung. ür die Verformungserechnung oen ir nun einige Konkreisierungen reffen um die Rechnung üersichicher u gesen. Annhme: q q c Dnn ergi sich: 5 q q 8 q q AH AV q q BV q 5 q Biegeinien Verschieungsfunkionen Ae Zischenergenisse erden in die Verschieungsfunkionen eingese. E q q E E q q 8 q q E q q E q q E 8 Verschieung m Angriffspunk der Krf c q E 8 Bkenneigung m Angriffspunk der Krf q E c 8 q E 5 8

8 grfische Drseung der dimensionsosen Verformung q E n geicher Weise können die Biegeinke esimm und drgese erden. 8

9 Biegeinie D, schiefe Biegung Aufge.5 us der Aufgensmmung Esosik Der Krgräger is durch eine Krf in -Richung ese., E,, Der Querschni h die geeige orm, die Profindsärke is konsn. Die Richungen und sind keine Hupchsenrichungen. Es hnde sich so um schiefe Biegung. Die Berechnung is in Vrinen mögich: - im Ssem der Huprägheischsen: Die Huprägheismomene und sind u esimmen und die Besung muss in die ensprechenden Richungen ereg erden. - im gegeenen Ssem --: Die Trägheismomene,, sind u esimmen. ormen für ein Koordinenssem -- im ächenmiepunk σ,, E E u gesm [ ] [ ]

10 ormen für ein Hupchsenssem --, im ächenmiepunk die ormen ereinfchen sich σ,, E E u gesm [ ] [ ] Die Rechnung so im gegeenen Koordinenssem orgenommen erden. Besimmung der Trägheismomene eogen uf Annhme: Die Wndsärke sei erheich keiner s die Amessung. Hineis: dünnndiges Profi << << Die Bemßung erfog enng der Profimieinien. Die Berechnung der T is eine gue Näherung, deren Güe om Verhänis / häng. doppe. nich erfsse Eckereiche << A i A i i ii Ai i i i i 8

11 Huprägheismomene und Hupchsenge,,5,8,, ± ± ±,, rcn,,8 rcn rcn ϕ ϕ,5 Biegemomene nch reischneiden ergeen sich für ds negie Schniufer: -

12 Biegeinien 8 E E E E RÜB: 8 E E E E RÜB: Die mimen Verschieungen finde mn n der Lsngriffssee. posiie Verschieung in posiier Achsenrichung E u E E gesm m m

13 Skie der Bkenerformung Verformung der Bkenchse m m u gesm

Aufgabe 124. q I = Q I. Bereich I: q II = Q II (1) (2) Bereich III: q III = Q III (3) (4) Randbedinungen (5) (6) (7)

Aufgabe 124. q I = Q I. Bereich I: q II = Q II (1) (2) Bereich III: q III = Q III (3) (4) Randbedinungen (5) (6) (7) ik und eemenre esigkeisehre Prof. Popov Wie 6/7,.Tuorium Lösungshinweise eie uperposiion, Biegespnnungen Version 6. Jnur 07 Tuorium Aufge us Due: + A w(x) w I (x) + w II (x) w I (x) q 0 4 [ 4 5 x ( x )

Mehr

12 Schweißnahtberechnung

12 Schweißnahtberechnung 225 12 Schweißnherechnung 12 Schweißnherechnung Die Berechnung der ufreenden Spnnungen in Schweißnähen erfolg im Regelfll mi Hilfe der elemenren Gleichungen der esigkeislehre. Auf weierführende Berechnungsverfhren,

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft.

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft. Prmeergleichung und Koordinenform einer Ebene Prmeergleichung und Koordinenform einer Ebene Die Lge einer Ebene E im Rum is durch drei Größen eindeuig fesgeleg: X. Einen Punk A, durch den die Ebene verläuf..

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 Mikro-Conroller-Pss Lernsyseme MC 85 eie: rdl. Logik_B rundlgen logische Verknüpfungen Inhlserzeichnis Vorwor eie Binäre Aussgen in der Technik eie Funkionseschreiungen der Digilechnik eie 5 Funkionselle

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren Prof. Dr. Gerd von Cölln Prof. Dr. Dirk Re Mhemik II Weiere Aufgen zum hemenkomple : Grundlgen, Hupsz der Diff.- und Inegrlrechnung und Susiuionsverfhren. Sind folgende Aussgen whr oder flsch ) Sind f

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme. Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git

Mehr

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt London Brnch Nchrg Nr. 71 gemäß 10 Verkufsprospekgesez (in der vor dem 1. Juli 2005 gelenden Fssung) vom 6. Novemer 2006 zum Unvollsändigen Verkufsprospek vom 31. März 2005 üer Zerifike uf * üer FlexInves

Mehr

Aufgaben. Technischen Mechanik. - Statik -

Aufgaben. Technischen Mechanik. - Statik - Otto-von-Guericke-Universität Mgdeurg Institut für Mechnik ufgen ur Technischen Mechnik - Sttik - usge 008 Otto-von-Guericke-Universität Mgdeurg kutät für Mschinenu Institut für Mechnik ufgen ur Technischen

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

CALENBERG FLÄCHENLOCH -LAGER 205. planmäßig elastisch lagern. Belastbar bis 25 N/mm 2. Unbewehrt. Stahlbewehrt. Stahlbewehrtes Elastomergleitlager

CALENBERG FLÄCHENLOCH -LAGER 205. planmäßig elastisch lagern. Belastbar bis 25 N/mm 2. Unbewehrt. Stahlbewehrt. Stahlbewehrtes Elastomergleitlager CALENBERG LÄCHENLOCH -LAGER 205 Besr is 25 N/mm 2 Unewehr Shewehr Shewehres Esomergeiger T Agemeines uufsichiches Prüfzeugnis Nr. P-852.0290-1 pnmäßig esisch gern Inh Seie Agemeines 2 Lgerypen 2 ormfkor

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

5 Versicherung auf mehrere Leben

5 Versicherung auf mehrere Leben Versicherung auf mehrere Leben 59 5 Versicherung auf mehrere Leben Zie: nassen der bekannen ehoden, um Lebensversicherungen auf zwei oder mehrere Leben kakuieren zu können. Beisiee: Renenversicherung auf

Mehr

3.2. Flächenberechnungen

3.2. Flächenberechnungen Anlysis Inegrlrechnung.. Flächenerechnungen... Die Flächenfunkion ) Flächenfunkionen ufzeichnen Skizziere zur gegeenen Funkion diejenige Funkion, welche die Fläche unerhl der Funkionskurve miss. Die Flächenfunkion

Mehr

3 Leistungsbarwerte und Prämien

3 Leistungsbarwerte und Prämien Leisugsbarwere ud Prmie 23 3 Leisugsbarwere ud Prmie Zie: Rechemehode zur Ermiug der Barwere ud Prmie bei übiche Produe der Lebesversicherug. 3. Eemeare Barwere ud Kommuaioszahe Barwer eier Erebesfaeisug

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an! Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3

Mehr

Mehrstufige Spiele mit beobachtbaren Handlungen

Mehrstufige Spiele mit beobachtbaren Handlungen 3. Wiederhole Spiele und kooperives Verhlen Mehrsufige Spiele mi beobchbren Hndlungen Idee: Ds Spiel sez sich us K+ Sufen zusmmen, wobei eine Sufe k us einem Teilspiel mi simulner Whl von Akionen k i beseh

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K

Mehr

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich Mhe-Abiur b : Fundus für den Pflichbereich Lösungen) Die Auoren übernehmen keine Grnie für die Richigkei der Lösungen. Auch wurde sicher nich immer der kürzese und elegnese Lösungsweg eingeschlgen. Einfche

Mehr

1 (bekannt) (4 Punkte)

1 (bekannt) (4 Punkte) . Proekusur Mechnik I WS 003/04, Prof. r. rer. nt. Ventin Popov itte deutich schreien! Nme, Vornme: Mtr.-Nr.: Studiengng: itte inks und rechts nkreuzen! Studienegeitende Prüfung Üungsscheinkusur rgenis

Mehr

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5.1 Linere Ahängigeit/Unhängigeit von Vetoren Eine esondere Rolle in der nlytischen Geometrie

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Aufgaben zu Brechung - Lösungen:

Aufgaben zu Brechung - Lösungen: Aufgen zu Brechung - Lösungen: Aufg. 2 (mit Berechnung von n) ) 1 = 1,8 cm; = / n' mit n' = 1/1,5 ==> 1 = 1,8 cm. 1,5 = 2,7 cm r = 2,1cm; d 1 > r ==> Totlreflexion 2 = 0,9 cm; 2 = 0,9 cm. 1,5 = 1,35 cm

Mehr

Grundlagen der Technischen Informatik. 5. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

Grundlagen der Technischen Informatik. 5. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Grundlgen der Technischen Informtik 5. Üung Christin Knell Keine Grntie für Korrekt-/Vollständigkeit Üung u Grundlgen der Technischen Informtik 5. Üungsltt Themen Aufge 1: Aufge 2: Aufge 3: Aufge 4: Aufge

Mehr

Copyright, Page 1 of 5 Der Faktorraum

Copyright, Page 1 of 5 Der Faktorraum www.mthemtik-netz.de Copright, Pge of 5 Der Fktorrum Ein sehr wichtiges Konstrukt, welches üerll in der Mthemtik Verwendung findet, ist der Fktorrum, oft uch Quotientenrum gennnt. Dieser ist selst ein

Mehr

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG)

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) 26. November 2007 DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) Informion zur Anwendung der gesezlichen Regelungen zur Zueilung von Kohlendioxid-Emissionsberechigungen

Mehr

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion:

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion: Pro. Dr.-In. W.-P. Buchwld Sinl- und Sysemheorie 8. Absun Koninuierliches Sinl: u() Sinlspekrum: U() Abesees Sinl: ( ) = u( ) ( ) u Absunkion: + n= ( ) = δ ( n ) Spekrum der Absunkion: + n= Spekrum des

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Prüfen von Kunststoffen

Prüfen von Kunststoffen Prüfen von Kunststoffen Prüfen von Kunststoffen -Mehnishe Prüfungen Kureit - Lngeit -Chemish Physikishe Prüfungen Strukturnyse -Thermonyse Rheoogie Dihte Wssergeht Spnnungsriss -Mikroskopie Lihtmikrosk.

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Leichtbau Übung 2 - Fachwerke

Leichtbau Übung 2 - Fachwerke Leichtu Üung 2 - Fchwerke C. Krl, D. Montenegro, F. Runkel, C. Schneeerger 07.10.2015 ((Vornme Nchnme)) 09.10.2015 1 Aufge 1 Verformung von Rhmen- und Fchwerken Ds unten drgestellte Rhmenwerk esteht us

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Baustatik. Berechnung statisch unbetsimmter Tragwerke: Band 1 Baustatik I, Berechnung statisch bestimmter Tragwerke. von Raimond Dallmann. 1.

Baustatik. Berechnung statisch unbetsimmter Tragwerke: Band 1 Baustatik I, Berechnung statisch bestimmter Tragwerke. von Raimond Dallmann. 1. Busttik Berehnung sttish unetsimmter Trgwerke: Bn 1 Busttik I, Berehnung sttish estimmter Trgwerke von Rimon Dmnn 1. Aufge Busttik Dmnn shne un portofrei erhätih ei ek-shop.e DIE FACHBUCHHANDLUNG Hnser

Mehr

Schritte international im Beruf

Schritte international im Beruf 1 Ws mchen die Leute uf dem Foto? Kreuzen Sie n. Die Leute sind ei der Berufsertung. mchen zusmmen ein Seminr. hen gerde Puse. pnthermedi / Werner H. Wer sind die Leute? Ergänzen Sie. die Referentin /

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort Einführung in ie Progrmmierung Vorlesung 4: Topologil Sort : Hintergrun Bertrn Meer Letzte Üerreitung 3. Jnur 4 3 Topologil sort 4 Prouziere eine zu einer gegeenen Prtiellen Ornung komptile Vollstänige

Mehr

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ I. Vektorräume ================================================================== 1. Geometrische Definition von Vektoren -----------------------------------------------------------------------------------------------------------------

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

1 F r e q u e n t l y A s k e d Q u e s t i o n s Was ist der Global Partner Event Calendar (GPEC)? D e r g l o b a l e V e r a n s t a l t u n g s k a l e n d e r f ü r P a r t n e r i s t e i n w i c

Mehr

3.3 Extrema I: Winkel Ebene/Gerade

3.3 Extrema I: Winkel Ebene/Gerade 3 3 ANALYSIS 3.3 Extrem I: Winkel Eene/Gerde In diesem Aschnitt gehen wir von einer Gerde g und einer g nicht enthltenden Eene ε us und wollen unter llen möglichen spitzen Schnittwinkeln zwischen g und

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

P 2 Arbeitsblatt Vierecke und ihre Flächeninhalts- und Umfangformeln

P 2 Arbeitsblatt Vierecke und ihre Flächeninhalts- und Umfangformeln IFG Mthemtik Jnur 2011 Mteril 3 Pflichtufgen P 1 reitsltt Vierecke und ihre Eigenschften nregungen für ufgenprktikum eispiel 2: Wochenpln P 2 reitsltt Vierecke und ihre Flächeninhlts- und Umfngformeln

Mehr

Vektorrechnung im R 3 mit dem Voyage 200:

Vektorrechnung im R 3 mit dem Voyage 200: Wir legen einen neuen Folder n: VAR-LINK F, 5 (CREATE FOLDER) Nme: vektor3 Wechseln in den Folder: MODE Current Folder vektor3 uswählen Vektorrechnung im R 3 mit dem Voge 00: Punkte und Vektoren werden

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

Die Keplersche Fassregel

Die Keplersche Fassregel Die Keplersche Fssregel K. Gerer Bei vielen Aufgen, z.b. ei der Lösung von Differentilgleichungen, tucht die Schwierigkeit uf, dss Integrtionen nicht durchgeführt werden können. So können z.b. die folgenden

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

5.4 Zusammengesetzte Beanspruchung. Aufgaben

5.4 Zusammengesetzte Beanspruchung. Aufgaben Technische Mechnik 2 5.4-1 rof. Dr. Wndinger Aufgbe 1 5.4 Zusmmengesee Benspruchung Aufgben 4 2 10 4 Der bgebildee dünnwndige Ksenräger is m linken Ende fes eingespnn und wird m rechen Ende durch wei Kräfe

Mehr

Innenraum-Lasttrennschalter H 22. Ein- oder Dreipolige Ausführung Bemessungs-Spannung 12, 25 und 38,5 kv Bemessungs-Strom 630 und 1250 A

Innenraum-Lasttrennschalter H 22. Ein- oder Dreipolige Ausführung Bemessungs-Spannung 12, 25 und 38,5 kv Bemessungs-Strom 630 und 1250 A Innenrm-Lsrennshler H 22 Ein- oer Dreiolige sührng Bemessngs-Snnng 12, 25 n 8,5 Bemessngs-Srom n 12 Inhl: DRIESCHER - Innenrm-Lsrennshler n Lsshler- Siherngs-Kominion H 22 nh EN 60265-1 n EN 62271-105

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G wwwmhe-ufgbencom Abiurprüfung Mhemik 0 (Bden-Würemberg) Berufliche ymnsien Anlysis, Aufgbe Für jedes mi > is die Funkion g gegeben durch x g (x) = e, x Ds Schubild von g is ( Punke) Nennen Sie drei gemeinsme

Mehr

Hochschule Hannover Klausur SS Fakultät II, Abteilung Maschinenbau

Hochschule Hannover Klausur SS Fakultät II, Abteilung Maschinenbau Hocscule Hnnoer Klusur SS 9.06. kulä II, Abeilun scinenbu Zei: 90 c: Pysik SS (Prof. Screwe) Hilfsmiel: ormelsmmlun zur Vorlesun. Bercen Sie die leicmäßi bescleunie r eines oorrdes uf einem Kreis mi einem

Mehr

Ermittlung der Seilkräfte

Ermittlung der Seilkräfte Ane zur Dienstneisun Nr. es Anhns X Ertun er Seikräfte. Vorbemerkunen Diese Ane ient er Berechnun von räumichen Seitrerken unter Einirkun von Eienst Win un nernen Einzesten us u m iersei. In ieser Ane

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Einführung in die Robotik Differentialsantrieb. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.

Einführung in die Robotik Differentialsantrieb. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm. Einfühung in ie Roboik Diffeeniasanieb Mohame Oubbai Insiu fü Neuoinfomaik Te.: +49) 731 / 5 24153 mohame.oubbai@uni-um.e 27. 11. 212 D. Oubbai, Einfühung in ie Roboik Neuoinfomaik, Uni-Um) Diffeeniaanieb

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 05 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 05 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

Kapitel 3. x, wobei x, y R + und t R.

Kapitel 3. x, wobei x, y R + und t R. Lineare Geomerie Kapiel Homogene und inhomogene lineare Gleichungssyseme Täglich werden wir mi Gleichungssysemen konfronier Manche scheinen sehr komplizier zu sein und manchmal können sie nur numerisch

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Auswertung zum Praktikum Grundlagen der Meßtechnik Versuch Nr.: 4 Kapazitätsmessung in der Wechselstrombrücke

Auswertung zum Praktikum Grundlagen der Meßtechnik Versuch Nr.: 4 Kapazitätsmessung in der Wechselstrombrücke Auswertung zum Prktikum Grundgen der Meßtechnik Versuch Nr.: 4 Kpzitätsmessung in der Wechsestromrücke Theoretische Grundgen Die Kpzitätsmessung n einem Kondenstor knn sehr kompiziert sein. Dies iegt nicht

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

M A. B a a a a. Aufgabe 1. Lösungsvorschlag 1 zu Aufgabe 1 G 2V A V. Lösungsvorschlag zur Klausur Mechanik I vom 27. März 2007 Seite 1 von 19

M A. B a a a a. Aufgabe 1. Lösungsvorschlag 1 zu Aufgabe 1 G 2V A V. Lösungsvorschlag zur Klausur Mechanik I vom 27. März 2007 Seite 1 von 19 Lösungsvorschlg zur Klusur echnik I vom 7. ärz 7 eite von 9 Aufgbe A B C Berechnen ie für ds drgestellte ystem die Auflgerrektionen. Gegeben:, Gesucht: Auflgerrektionen Lösungsvorschlg zu Aufgbe unbeknnte

Mehr

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift

Mehr

(Analog nennt man a die und b die des Winkels β.)

(Analog nennt man a die und b die des Winkels β.) Mthemtik Einführung Ws edeutet ds Wort und mit ws eschäftigt sich die? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Eck' Beispiel: Pentgon ds Fünfeck mit 5 Winkeln

Mehr

NORM für das Kanalnetz Juli 2012. Hydraulische Berechnung von Abwasserkanälen für Kreisprofile und Eiprofile

NORM für das Kanalnetz Juli 2012. Hydraulische Berechnung von Abwasserkanälen für Kreisprofile und Eiprofile NORM für das Kananez ui 01 Hydrauische Berechnung on bwasserkanäen für Kreisprofie und iprofie Regeba 0 Sachgebie: Hydrauische Berechnungen Schagwörer: bwasserkana, Hydrauik, Kreisprofi, iprofi 1 nwendungsbereich

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN Mthemtik: Mg. Schmid Wolfgng+LehrerInnentem ) Rottion um die -Achse ARBEITSBLATT 5L- BERECHNEN VON RAUMINHALTEN Es geht hier um folgende Aufgenstellung. Eine gegeene Funktion f() soll in einem estimmten

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2013) Prof Dr Jens Teuner Leitung der Üungen: Geoffry Bonnin, Sven Kuisch, Moritz Mrtens,

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Definition: Eine Funktion mit der Gleichung y = c (,, c R; 0) heißt qudrtische Funktion oder Funktion. Grdes. qudrtisches Glied;...lineres Glied; c...solutes Glied Der Grph einer

Mehr

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest Studienkolleg ei den Universitäten des Freisttes Bern Üungsufgen zur Vorereitung uf den Mthemtiktest . Polnomdivision:. Dividieren Sie! ) ( 6 + 8 ):( + ) = Lös.: = ) ( 9 7 0 + 8 + 9):(6 + +) = Lös.: =

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

Lösungen zur Prüfung 2010: Pflichtbereich

Lösungen zur Prüfung 2010: Pflichtbereich 00 Pflichtbereich Lösungen zur Prüfung 00: Pflichtbereich ufgbe P: ür ds Volumen des Restkörpers gilt: V Rest = V Kegel + V Zylinder VKugel Mit ormeln: V Rest = π r h K + π r 4 h π r Mit r =,0 cm und h

Mehr

im Beruf Gespräche führen: Über Gepflogenheiten (Versammlungen, Feste und Geschenke) am Arbeitsplatz sprechen pressmaster/fotolia.

im Beruf Gespräche führen: Über Gepflogenheiten (Versammlungen, Feste und Geschenke) am Arbeitsplatz sprechen pressmaster/fotolia. 1 Sehen Sie die Fotos n und ergänzen Sie: Welches Wort psst? c pressmster/fotoli.com dp/c Jochen Lüke d e der Betriesusflug die Besprechung die Betriesversmmlung die Aschiedsfeier (von den Auszuildenden)

Mehr

Potenzen, Wurzeln, Logarithmen Definitionen

Potenzen, Wurzeln, Logarithmen Definitionen Definitionen Wir gehen von der Gleichung c und dem Beispiel 8 2 us: nennt mn Potenz nennt mn Bsis nennt mn Eponent Allgemein: "Unter versteht mn die -te Potenz zur Bsis " " ist hoch " Beispiel: 2 8 Vorgng:

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr