MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB

Größe: px
Ab Seite anzeigen:

Download "MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB"

Transkript

1 MATLAB Kurs 2010 Teil 2 Eine Einführung in die via MATLAB &

2 nhaltsverzeichnis 1 2 3

3 Ziele Kurze Einführung in die -Analyse

4 Ziele Kurze Einführung in die -Analyse MATLAB Routinen für FFT

5 Ziele Kurze Einführung in die -Analyse MATLAB Routinen für FFT Beispiele und Anwendungen

6 Ziele Kurze Einführung in die -Analyse MATLAB Routinen für FFT Beispiele und Anwendungen

7 Theorie 1 Theorem Jede stetige Funktion f kann als Superposition einer Reihe von trigonometrischen Funktionen (Sinus, Kosinus) dargestellt werden.

8 Theorie 1 Theorem Jede stetige Funktion f kann als Superposition einer Reihe von trigonometrischen Funktionen (Sinus, Kosinus) dargestellt werden. f (t) = a a n cos (n t) + b n sin (n t) (1) n=1 n=1

9 Theorie 1 Theorem Jede stetige Funktion f kann als Superposition einer Reihe von trigonometrischen Funktionen (Sinus, Kosinus) dargestellt werden. f (t) = a a n cos (n t) + b n sin (n t) (1) a n = 2 T b n = 2 T n=1 +T /2 T /2 +T /2 T /2 n=1 ( 2π nt f (t) cos T ( 2π nt f (t) sin T ) dt (2) ) dt (3)

10 Beispiel 1 f (x) = 4 π ( ) sin ((2n + 1) x) n=0 2n + 1 Welche Funnktion wird durch diese -Reihe wohl beschrieben? (4)

11 Beispiel 1 f (x) = 4 π ( ) sin ((2n + 1) x) n=0 2n + 1 Welche Funnktion wird durch diese -Reihe wohl beschrieben? (5)

12 Beispiel 1 f (x) = 4 π ( ) sin ((2n + 1) x) n=0 2n + 1 Welche Funnktion wird durch diese -Reihe wohl beschrieben? (6)

13 Beispiel 1 f (x) = 4 π ( ) sin ((2n + 1) x) n=0 2n + 1 Welche Funnktion wird durch diese -Reihe wohl beschrieben? (7)

14 Theorie 1 Theorem Mit e iωt = cos ωt + i sin ωt (Euler-dentität) wird die -Reihe zu: f (t) = + n= c n e int

15 Wobei N die Anzahl der Messpunkte ist, und f n der jeweilige Messwert an der Stelle n. Theorie 1 Theorem Mit e iωt = cos ωt + i sin ωt (Euler-dentität) wird die -Reihe zu: Theorem f (t) = + n= c n e int Die Koeffizienten (Amplituden) der komplexen diskreten Transformation (DFT) lauten: F k = 1 N N 1 n=0 f n e i 2π N n k

16 Experimental 1 MATLAB benütz intern genau diese Formeln, jedoch wird eine andere Methode verwendet, die aus den Messpunkten die zugehörigen Frequenzen und Amplituden herausfiltert: Fast Transformation (FFT): fft

17 Experimental 1: Signal Signal: 2 sin (2π 100 t) + 2 sin (2π 150 t) + 1 sin (2π 200 t)

18 Experimental 1: -Spektrum Signal: 2 sin (2π 100 t) + 2 sin (2π 150 t) + 1 sin (2π 200 t)

19 Experimental 1: -Spektrum Nyquist-Frequenz: Sampling-Rate dividiert durch 2 Frequenzen im Signal sind durch Peaks im Spektrum identifiziert.

20 Experimental 1: -Spektrum Signal: 2 sin (2π 100 t) + 2 sin (2π 150 t) + 1 sin (2π 200 t)

21 Experimental 1: Rücktransformation Signal: 2 sin (2π 100 t) + 2 sin (2π 150 t) + 1 sin (2π 200 t)

22 Experimental 2: Anwendung -Transformation erlaubt: Analyse der Grundfrequenzen in einem Signal

23 Experimental 2: Anwendung -Transformation erlaubt: Analyse der Grundfrequenzen in einem Signal Bearbeitung im -Raum (K-Raum) und anschliessende Rücktransformation kann als Filter benützt werden, um bestimmte Frequenzbereiche zu unterdrücken..

24 Experimental 2: (1/4) file: fourierdata.mat

25 Experimental 2: (2/4) hohe Frequenzen = Rauschen

26 Experimental 2: (3/4) dee: unterdrücke hohe Frequenzen via single-sided Gauss-Funktion

27 Experimental 2: (3/4) dee: unterdrücke hohe Frequenzen via single-sided Gauss-Funktion

28 Experimental 2: (4/4) dee: Rücktransformation (ifft) des gefalteten Frequenz-Spektrums

29 Experimental 2: (4/4) dee: Rücktransformation (ifft) des gefalteten Frequenz-Spektrums

30 Experimental 2: (4/4) Fazit: Technologie (-Analyse) funktioniert in diesem Beispiel sehr gut An den Rändern wird das Signal sehr schlecht rekonstruiert

31 Experimental 2: (4/4) Andere Verfahren zum bzw. glätten von Daten? moving average

32 Experimental 3: moving average

33 Experimental 3: moving average

34 Experimental 3: moving average

35 Experimental 3: moving average

36 Experimental 3: moving average

37 Experimental 3: moving average

38 Experimental 3: moving average

39 Experimental 3: moving average

40 Experimental 3: moving average

41 Experimental 3: moving average

42 Experimental 3: moving average

43 Experimental 3: moving average

44 Experimental 3: moving average

45 Experimental 3: moving average

46 Experimental 3: moving average

47 Experimental 3: moving average

48 Experimental 3: moving average

49 Experimental 3: moving average

50 Experimental 3: moving average

51 Experimental 3: moving average: final

52 : nicht stationäre Spektren Analyse bisher nur möglich, wenn Spektren stationär sind, d.h. zeitlich konstant. Dies ist jedoch in den meisten interessanten Fällen nicht der Fall: Beispiele: Audio: Gesang eines Vogels EEG : REM- und NREM-Schlaf-Phasen

53 : nicht stationäre Spektren dee: analog zum moving average wird während eines kleines Zeitraumes (time window) das Signal als stationär angenommen (engl. short-time Transform, STFT). Zeitfenster jedoch etwas ausgereifter: Hamming Window ( ) 2πn w(n) = cos N 1 Wobei: N die Anzahl der ntervalle und n von ntervall zu ntervall variiert.

54 : Beispiel: Spektrum eines en

55 : MATLAB: [amp, fs, nbits] = wavread( song1.wav )

56 : MATLAB: spectrogram(amp, 256, yaxis )

57 Ende des Vortrages Vielen Dank für die Aufmerksamkeit und viel Freude bei weiteren Experimenten mit MATLAB.

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Signale und ihre Spektren

Signale und ihre Spektren Einleitung Signale und ihre Spektren Fourier zeigte, dass man jedes in der Praxis vorkommende periodische Signal in eine Reihe von Sinus- und Cosinusfunktionen unterschiedlicher Frequenz zerlegt werden

Mehr

Fourier-Zerlegung, Fourier-Synthese

Fourier-Zerlegung, Fourier-Synthese Fourier-Zerlegung, Fourier-Synthese Periodische Funktionen wiederholen sich nach einer Zeit T, der Periode. Eine periodische Funktion f(t) mit der Periode T genügt der Beziehung: f( t+ n T) = f( t) für

Mehr

Signalverarbeitung - Filterung, PSD, Korrelationen

Signalverarbeitung - Filterung, PSD, Korrelationen 9. Dezember 2010 1 Signalverarbeitung - Filterung, PSD, Korrelationen Messtechnik Vorlesung 9. Dezember 2010 9. Dezember 2010 2 Zurück zur Schnellen Fourier-Transformation (FFT) Ein FFT-Beispiel mit zwei

Mehr

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr

NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB]

NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB] NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB] Schnelle diskrete Fourier-Transformation (Fast Fourier Transform FFT) Darstellung der Methode: Skriptum Kap. 3.3 und 3.4. Die Berechnungen

Mehr

Die Fourier-Transformation

Die Fourier-Transformation 1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden

Mehr

Skriptum zur 4. Laborübung. Spektren

Skriptum zur 4. Laborübung. Spektren Elektrotechnische Grundlagen der Informatik (LU 182.085) Skriptum zur 4. Laborübung Spektren Christof Pitter Wolfgang Puffitsch Technische Universität Wien Institut für Technische Informatik (182) 1040,

Mehr

VAD - Voice Activity Detection -

VAD - Voice Activity Detection - VAD - - erstellt: Robert Schaar s63012 erstellt: Robert Schaar s63012 Mensch-Maschine-Robotik 1. Einleitung 2. Aufbau des Algorithmus 2.1. allgemeiner Aufbau 2.2. Fourier-Transformation 2.3. Short-Time

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

Fourier - Transformation

Fourier - Transformation Fourier - Transformation Kurzversion 2. Sem. Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim, Tiefenbronner Str. 65 75175 Pforzheim Überblick / Anwendungen / Motivation: Die Fourier-Transformation

Mehr

Broadband EMI Noise Measurement in Time Domain

Broadband EMI Noise Measurement in Time Domain Broadband EMI Noise Measurement in Time Domain Florian Krug, Peter Russer Institute for High-Frequency Engineering Technische Universität München fkrug@ieee.org 1 Inhalt Einführung Time-Domain Electromagnetic

Mehr

Spektralanalyse

Spektralanalyse 4. Spektralanalyse Die Spektralanalyse ermittelt, welche Beiträge die einzelnen Frequenzen zu einem Signal liefern. Je nach Art des Zeitsignals wird der Frequenzgehalt durch die Fourier-Transformation,

Mehr

Wave-Datei-Analyse via FFT

Wave-Datei-Analyse via FFT Wave-Datei-Analyse via FFT Wave-Dateien enthalten gesampelte Daten, die in bestimmten Zeitabständen gespeichert wurden. Eine Fourier-Transformation über diesen Daten verrät das Frequenz-Spektrum der zugrunde

Mehr

Modulationsanalyse. Amplitudenmodulation

Modulationsanalyse. Amplitudenmodulation 10/13 Die liefert Spektren der Einhüllenden von Teilbändern des analysierten Signals. Der Anwender kann damit Amplitudenmodulationen mit ihrer Frequenz, ihrer Stärke und ihrem zeitlichen Verlauf erkennen.

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

Hauptkomponentenanalyse. Principal Component Analysis (PCA)

Hauptkomponentenanalyse. Principal Component Analysis (PCA) Hauptkomponentenanalyse Principal Component Analysis (PCA) Principal Component Analysis (PCA) Welche Ziele verfolgt man bei der Verwendung einer PCA? Repräsentation multidimensionaler Daten mit einer geringeren

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Visual Computing Filtering, Fourier Transform, Aliasing

Visual Computing Filtering, Fourier Transform, Aliasing Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Zu loesen bis: 16. Mai 2006 Prof. M. Gross Remo Ziegler / Christian Voegeli / Daniel Cotting Ziele Visual Computing

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Lokale Frequenzanalyse

Lokale Frequenzanalyse Lokale Frequenzanalyse Fourieranalyse bzw. Powerspektrum liefern globale Maße für einen Datensatz (mittleres Verhalten über die gesamte Länge des Datensatzes) Wiederkehrdiagramme zeigten, dass Periodizitäten

Mehr

5. Übung für Übungsgruppen Musterlösung

5. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, Department Informatik der Universität Hamburg) 5. Übung für Übungsgruppen Musterlösung (U. Köthe, Department Informatik,

Mehr

V 322 Überlagerung und Modulation /AD-Wandler

V 322 Überlagerung und Modulation /AD-Wandler V 322 Überlagerung und Modulation /AD-Wandler 1. Aufgaben 1.1 Digitalisieren Sie ein analoges Signal und experimentieren mit der Abtastrate und Sampleanzahl. 1.2 Überlagern Sie 2 Frequenzen und beobachten

Mehr

Kybernetik Laplace Transformation

Kybernetik Laplace Transformation Kybernetik Laplace Transformation Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 50 2453 mohamed.oubbati@uni-ulm.de 08. 05. 202 Laplace Transformation Was ist eine Transformation? Was ist

Mehr

3 Diskrete Fourier-Transformation

3 Diskrete Fourier-Transformation 33 3 Diskrete Fourier-Transformation Inhalt 3 Diskrete Fourier-Transformation... 33 3. Grundlagen... 34 3.. Diskrete Fourier-Transformation... 34 3..2 Eigenschaften der diskreten Fourier-Transformation...

Mehr

Fourier-Reihe mit komplexer Exponentialfunktion

Fourier-Reihe mit komplexer Exponentialfunktion Fourier-Reihe mit komplexer Exponentialfunktion Jörn Loviscach Versionsstand: 9. Juni 2010, 15:54 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Überlagung sinusförmiger

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Inhaltsverzeichnis 1 Einführung 2 FFT 3 Anwendungen 4 Beschränkungen 5 Zusammenfassung Definition Fouriertransformation

Mehr

Faltung, Korrelation, Filtern

Faltung, Korrelation, Filtern Faltung, Korrelation, Filtern Wie beschreibe ich lineare Systeme (z.b. Seismometer) -> Faltung, Konvolution, Dekonvolution? Wie quantifiziere ich die Ähnlichkeit von Zeitreihen (-> Korrelation) Wie quantifiziere

Mehr

Analogmultiplexer als Amplitudenmodulatoren

Analogmultiplexer als Amplitudenmodulatoren Analogmultiplexer als Amplitudenmodulatoren Dipl.-Phys. Jochen Bauer 09.11.014 Einführung und Motivation Mit dem zunehmenden Verschwinden von Mittel- und Langwellensendern ergibt sich die Notwendigkeit

Mehr

Seminar Digitale Signalverarbeitung

Seminar Digitale Signalverarbeitung Universität Koblenz-Landau Institut für integrierte aturwissenschaften Abteilung Physik Dr. Merten Joost Seminar Digitale Signalverarbeitung Thema: Fast Fourier Transformation Praktische Durchführung einer

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

5.8.8 Michelson-Interferometer ******

5.8.8 Michelson-Interferometer ****** 5.8.8 ****** Motiation Ein wird mit Laser- bzw. mit Glühlampenlicht betrieben. Durch Verschieben eines der beiden Spiegel werden Intensitätsmaxima beobachtet. Experiment S 0 L S S G Abbildung : Aufsicht

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

GT- Labor. Inhaltsverzeichnis

GT- Labor. Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Versuchsvorbereitung 2 1.1 Qualitatives Spektrum der Ausgangsspannung des Eintaktmodulators 2 1.2 Spektrum eines Eintaktmodulators mit nichtlinearem Element 2 1.3 Bandbreite

Mehr

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum.

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum. Messtechnik-Praktikum 10.06.08 Spektrumanalyse Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie die Schaltung für eine Einweggleichrichtung entsprechend Abbildung 1 auf. Benutzen Sie dazu

Mehr

Biosignalverarbeitung (Schuster)

Biosignalverarbeitung (Schuster) Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 6 146 2. Teil Ziele der Filteranwendung Signal-Trennung (z.b. EKG eines Kindes im Mutterleib, Spektralanalyse) Signal-Restauration (z.b. unscharfes

Mehr

Formelsammlung für Automatisierungstechnik 1 & 2

Formelsammlung für Automatisierungstechnik 1 & 2 Formelsammlung für Automatisierungstechnik & 2 Aus Gründen der Vereinheitlichung, der gleichen Chancen bw. um etwaigen Diskussionen vorubeugen, sind als Prüfungsunterlagen für die Vorlesungsklausuren aus

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines Sinussignals

1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines Sinussignals Audiotechnik II Digitale Audiotechnik: 2. utorium Prof. Dr. Stefan Weinzierl 5. November 213 Musterlösung: 5. November 213, 18:25 1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines

Mehr

Fourier-Spektroskopie. Vortrag am 22.07.03 Elektrische und optische Sensoren

Fourier-Spektroskopie. Vortrag am 22.07.03 Elektrische und optische Sensoren Fourier-Spektroskopie Vortrag am 22.07.03 Elektrische und optische Sensoren Inhaltsverzeichnis 1. Einführung 2. Benötigte Grundlagen der Optik 3. Das Michelson-Interferometer 4. Probleme der Realisierung

Mehr

Echtzeit-Analyse/Synthese von Sprachsignalen unter Berücksichtigung des Sprachverständlichkeitsindex (SII)

Echtzeit-Analyse/Synthese von Sprachsignalen unter Berücksichtigung des Sprachverständlichkeitsindex (SII) Allgemeine Nachrichtentechnik Prof. Dr.-Ing. Udo Zölzer Echtzeit-Analyse/Synthese von Sprachsignalen unter Berücksichtigung des Sprachverständlichkeitsindex (SII) Von Sayak Ghosh Choudhury Prof. Dr.-Ing.

Mehr

DSO. Abtastrate und Wiedergabegenauigkeit

DSO. Abtastrate und Wiedergabegenauigkeit DSO Abtastrate und Wiedergabegenauigkeit Inhalt Inhalt...- 0 - Sind eine hohe Abtastrate sowie Bandbreite notwendig?...- 2 - Ein Blick auf die messtechnischen Grundlagen...- 7 - Von Abtastrate und Bandbreite

Mehr

Der Ton macht die Musik

Der Ton macht die Musik Der Ton macht die Musik Analyse von Tonsignalen mittels Fourier-Transformationen Teilnehmer: Tobias Berchner Holger Hesse Yasir Kaynar Dieu Thuy Linh Tran Viet Son Pham Jonas Pohl Henry Salfner Heinrich-Hertz-Oberschule,

Mehr

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier- Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;

Mehr

A-118 NOISE / RANDOM. 1. Einführung. doepfer System A NOISE / RANDOM A-118

A-118 NOISE / RANDOM. 1. Einführung. doepfer System A NOISE / RANDOM A-118 doepfer System A - 100 NOISE / A-118 1. Einführung A-118 NOISE / Lev el Das Modul A-118 (NOISE / ) ist ein Rauschund Zufallsspannungs-Generator (engl. noise / random voltage generator). Der A-118 generiert

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Schwingungen Wellen Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Schwingungen beim Federpendel Schwingungen beim Federpendel Wichtige

Mehr

Das Michelson-Interferometer als Fourier-Spektrometer

Das Michelson-Interferometer als Fourier-Spektrometer Fortgeschrittenenpraktikum der Physik Das Michelson-Interferometer Versuch 1 Durchführung: 8 Juli 008 Erste Abgabe: 05.08.008 Gruppe: 717 Betreuer: Katrin Hübner Tobias Meisch tobias.meisch@uni-ulm.de

Mehr

4 Erzeugung von Tonsignalen

4 Erzeugung von Tonsignalen 4 Erzeugung von Tonsignalen 4.1 Etwas Theorie: Sample, Samplefrequenz, Abtasten Zeit in ms u1(t) 0 0 1 3,09 2 5,88 3 8,09 4 9,51 5 10 6 9,51 7 8,09 8 5,88 9 3,09 10 0 11-3,09 12-5,88 13-8,09 14-9,51 15-10

Mehr

Lesen von Sonagrammen I: Grundlagen. Uwe Reichel IPS, LMU München 16. November 2007

Lesen von Sonagrammen I: Grundlagen. Uwe Reichel IPS, LMU München 16. November 2007 Lesen von Sonagrammen I: Grundlagen Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. November 2007 Inhalt Das Sonagramm: Allgemeines Gewinnung des Sonagramms Zeitsignal Spektrum Spektrogramm

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 5 8 Aus ontinuierlichem Signal werden in onstanten Zeitintervallen Daten entnommen ontinuierliches Signal x(t) Einheitsimpulsfuntion Gewichtete

Mehr

Berechnung von digitalen Signalen. Jonathan Harrington

Berechnung von digitalen Signalen. Jonathan Harrington Berechnung von digitalen Signalen Jonathan Harrington Analog Signale 1. Digitalisierung: Abtasten, Quantisierung Praat Digitale Zeitsignale 2. Anwendung von einem Fenster EMU-tkassp Zeitsignal-Aufteilung

Mehr

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

Installation & erste Schritte

Installation & erste Schritte Installation & erste Schritte Inhalt: Vorraussetzung: PC oder Notebook, Windows (XP), Pappradio, serielle Schnittstelle eingebaut oder per Wandler. 1. Installation: 1.1 Pappradio Software installieren

Mehr

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das

Mehr

HTL 1, Innsbruck Amplitudenmodulation Seite 1 von 16

HTL 1, Innsbruck Amplitudenmodulation Seite 1 von 16 HTL, Innsbruck Amplitudenmodulation Seite von 6 Robert Salvador salvador@htlinn.ac.at Amplitudenmodulation Mathematische / Fachliche Inhalte in Stichworten: Modulation, trigonometrische Summensätze, Spektralanalyse,

Mehr

Frank Sichla. Experimente mit Datenlogger und USB-Scope

Frank Sichla. Experimente mit Datenlogger und USB-Scope Frank Sichla Experimente mit Datenlogger und USB-Scope 1. Auflage 2009, 500 Meilhaus Electronic, Puchheim Alle Rechte vorbehalten Gestaltung Titel und Klappe: beam-verlag, Marburg Satz: Frank Sichla Printed

Mehr

Elektrotechnik II: Kolloquium 4

Elektrotechnik II: Kolloquium 4 Elektrotechnik II: Kolloquium 4 Digitalschaltungen Hubert Abgottspon: abgottspon@eeh.ee.ethz.ch Markus Imhof: imhof@eeh.ee.ethz.ch Inhalt des Kolloquium: Digitale Messkette Sensor 1) Filter S&H- Versträker

Mehr

Mathematik und Musik: Fourieranalyse

Mathematik und Musik: Fourieranalyse Mathematik und Musik: Fourieranalyse Matheseminar JKU Linz WS2015/16 Peter Gangl Linz 5. Februar 2016 1 / 20 Outline 1 Musik mathematisch betrachtet 2 2 / 20 Outline 1 Musik mathematisch betrachtet 2 2

Mehr

StatStream : Statistical Monitoring of Thousands of Data Streams in Real Time Yunyue Zhu,Dennis Sasha. Vorgetragen von Matthias Altmann

StatStream : Statistical Monitoring of Thousands of Data Streams in Real Time Yunyue Zhu,Dennis Sasha. Vorgetragen von Matthias Altmann StatStream : Statistical Monitoring of Thousands of Data Streams in Real Time Yunyue Zhu,Dennis Sasha Vorgetragen von Matthias Altmann Mehrfache Datenströme Beispiel Luft und Raumfahrttechnik: Space Shuttle

Mehr

Titel: Darstellung und Analyse abgetasteter Signale Titel-Kürzel: ABT

Titel: Darstellung und Analyse abgetasteter Signale Titel-Kürzel: ABT Titel: Darstellung und Analyse abgetasteter Signale Titel-Kürzel: ABT Autoren: Niklaus Schmid, sni Koautor: U. Gysel, gys Version: v2.0 31. Dezember 2005 v2.1 7. Januar 2006 Korrekturen von G. Lekkas verarbeitet

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

Analoge CMOS-Schaltungen

Analoge CMOS-Schaltungen Analoge CMOS-Schaltungen PSPICE: Fourier-Analyse 12. Vorlesung Einführung 1. Vorlesung 8. Vorlesung: Inverter-Verstärker, einige Differenzverstärker, Miller-Verstärker 9. Vorlesung: Miller-Verstärker als

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation 18 Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 28. März 2015, 21:30 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos:

Mehr

Ordnungsanalyse. Einleitung

Ordnungsanalyse. Einleitung 10/13 Einleitung Bei der Analyse von Motorgeräuschen ist es nahe liegend, dass die Drehzahl des Motors bei der Entwicklung dieser Geräusche die wichtigste Rolle spielt: Bestimmte, je nach Drehwinkel erzeugte

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Diskrete Fourier-Transformation

Diskrete Fourier-Transformation Universität Koblenz-Landau Institut für integrierte Naturwissenschaften Abteilung Physik Dozent: Dr. Merten Joost Seminar Digitale Signalverarbeitumg im Sommersemester 2005 Diskrete Fourier-Transformation

Mehr

Korrekt normierte FFT eines Zeitsignals A(t) und analytische Bildung des Spektrums F F T ( d dta(t)) (mittels Matlab)

Korrekt normierte FFT eines Zeitsignals A(t) und analytische Bildung des Spektrums F F T ( d dta(t)) (mittels Matlab) Korrekt normierte FFT eines Zeitsignals A(t) und analytische Bildung des Spektrums F F T ( d dta(t)) (mittels Matlab) Jan-Philip Gehrcke, 5. März 9 Abstract Bei der Untersuchung des Frequenzspektrums eines

Mehr

Datenverarbeitung in der Geophysik. Digitalisierung, Diskretisierung

Datenverarbeitung in der Geophysik. Digitalisierung, Diskretisierung Datenverarbeitung in der Geophysik Digitalisierung, Diskretisierung Seismische Zeitreihen -> Seismogramme Samplingrate, Taktfrequenz Nyquistfrequenz zeitliche, räumliche Frequenzen Binäre Zahlendarstellung

Mehr

Argumente für die diskrete Realisierung der Fourierintegrale

Argumente für die diskrete Realisierung der Fourierintegrale Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich

Mehr

Störungen von elektrischen Signalen

Störungen von elektrischen Signalen Überblick Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien Elektronische Messgeräte im Elektronikpraktikum Passive Filter Signaltransport im Kabel Transistor Operationsverstärker PID-Regler Sensorik

Mehr

Blatt 5. - Lösungsvorschlag

Blatt 5. - Lösungsvorschlag Fautät für Physi der LMU München Lehrstuh für Kosoogie, Prof Dr V Muhanov Übungen zu Kassischer Mechani (T) i SoSe Batt 5 - Lösungsvorschag Aufgabe 5 Binäres Sternsyste a) Wieviee Freiheitsgrade hat das

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich André Grüneberg Janko Lötzsch Mario Apitz Friedemar Blohm Versuch: 19. Dezember 2001 Protokoll: 6. Januar

Mehr

3.6 Analog-Digital-Umsetzung

3.6 Analog-Digital-Umsetzung 3.6 AnalogDigitalUmsetzung 1 Abtastung von Signalen FlashUmsetzer (ParallelUmsetzer) Stufenumsetzer (Successive Approximation) Integrierende Umsetzer DeltaSigma Umsetzer Anhang Abtastung 2 Abtastung (Sampling):

Mehr

Sinneswahrnehmungen des Menschen

Sinneswahrnehmungen des Menschen Sinneswahrnehmungen des Menschen Tastsinn Gleichgewicht Geruch Sehen Gehör Sprache Aktion Multimedia - Kanäle des Menschen Techniken für Medien im Wandel Multimediale Kommunikation Text : Bücher, Zeitschriften

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

Herzlich Willkommen. zum Fachvortrag. von Harald Bonsel. ACOUSTICON Hörsysteme GmbH Ihr Spezialist für audiologische Messtechnik

Herzlich Willkommen. zum Fachvortrag. von Harald Bonsel. ACOUSTICON Hörsysteme GmbH Ihr Spezialist für audiologische Messtechnik Herzlich Willkommen zum Fachvortrag Mess-Signale und Mess-Strategien von Harald Bonsel ACOUSTICON Hörsysteme GmbH Ihr Spezialist für audiologische Messtechnik Harald Bonsel Fachvortrag: Messsignale und

Mehr

Physikalisches Fortgeschrittenenpraktikum Versuch 59: Modulation und Demodulation elektrischer Schwingungen

Physikalisches Fortgeschrittenenpraktikum Versuch 59: Modulation und Demodulation elektrischer Schwingungen Physikalisches Fortgeschrittenenpraktikum Versuch 59: Modulation und Demodulation elektrischer Schwingungen Sebastian Rollke 103095 webmaster@rollke.com und Daniel Brenner 105292 daniel.brenner@uni-dortmund.de

Mehr

5.9.301 Brewsterscher Winkel ******

5.9.301 Brewsterscher Winkel ****** 5.9.301 ****** 1 Motivation Dieser Versuch führt vor, dass linear polarisiertes Licht, welches unter dem Brewsterwinkel auf eine ebene Fläche eines durchsichtigen Dielektrikums einfällt, nur dann reflektiert

Mehr

Fourier-Reihe und -Spektrum

Fourier-Reihe und -Spektrum SiSy, Fourier-Reihen / Fourier-Reihe und -Spektrum Fourier-Darstellung periodischer Funktionen. Einleitung In vielen technischen Anwendungen sind die zeitlichen Verläufe von Signalen wie z.b. Spannung

Mehr

2. Eigenschaften digitaler Nachrichtensignale

2. Eigenschaften digitaler Nachrichtensignale FH OOW / Fachb. Technik / Studiengang Elektrotechnik u. Automatisierungstechnik Seite 2-2. Eigenschaften digitaler Nachrichtensignale 2. Abgrenzung zu analogen Signalen Bild 2.- Einteilung der Signale

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Elektrotechnik-Grundlagen Teil 2 Messtechnik

Elektrotechnik-Grundlagen Teil 2 Messtechnik Version 1.0 2005 Christoph Neuß Inhalt 1. ZIEL DER VORLESUNG...3 2. ALLGEMEINE HINWEISE ZU MESSAUFBAUTEN...3 3. MESSUNG ELEMENTARER GRÖßEN...3 3.1 GLEICHSTROMMESSUNG...3 3.2 WECHSELSTROMMESSUNG...4 4.

Mehr

Where Analog Meets Digital

Where Analog Meets Digital Where Analog Meets Digital Roland Küng, 2011 1 Applikationsbeispiel No Limits? 2 3 Wandler und ihre linearen Fehler Bisherige Charakterisierung 4 Nichtlineare Wandlerfehler Bisherige Charakterisierung

Mehr

Grundlagen der Videotechnik. Redundanz

Grundlagen der Videotechnik. Redundanz Grundlagen der Videotechnik Redundanz Redundanz beruht auf: - statistischen Abhängigkeiten im Signal, - Information, die vorher schon gesendet wurde - generell eine Art Gedächtnis im Signal Beispiel: Ein

Mehr

Wechselstromwiderstände - Formeln

Wechselstromwiderstände - Formeln Wechselstromwiderstände - Formeln Y eitwert jω Induktiver Widerstand jω j ω Kapazitiver Widerstand X ω Induktiver Blindwiderstand X ω Kapazitiver Blindwiderstand U U U I di dt Idt Teilspannungen an Widerstand,

Mehr

Das Frequenzverhalten von RC-Gliedern (E17)

Das Frequenzverhalten von RC-Gliedern (E17) Das Frequenzverhalten von RC-Gliedern (E17) Ziel des Versuches Die Hintereinanderschaltung von ohmschem Widerstand und Kondensator wirkt als Filter für Signale unterschiedlicher Frequenz. In diesem Versuch

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Lennart Schmidt, Steffen Maurus 07.09.2011 Aufgabe 1: Leiten Sie aus der integralen Formulierung des Induktionsgesetzes, U ind = d dt A B da, (0.1)

Mehr