MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB"

Transkript

1 MATLAB Kurs 2010 Teil 2 Eine Einführung in die via MATLAB &

2 nhaltsverzeichnis 1 2 3

3 Ziele Kurze Einführung in die -Analyse

4 Ziele Kurze Einführung in die -Analyse MATLAB Routinen für FFT

5 Ziele Kurze Einführung in die -Analyse MATLAB Routinen für FFT Beispiele und Anwendungen

6 Ziele Kurze Einführung in die -Analyse MATLAB Routinen für FFT Beispiele und Anwendungen

7 Theorie 1 Theorem Jede stetige Funktion f kann als Superposition einer Reihe von trigonometrischen Funktionen (Sinus, Kosinus) dargestellt werden.

8 Theorie 1 Theorem Jede stetige Funktion f kann als Superposition einer Reihe von trigonometrischen Funktionen (Sinus, Kosinus) dargestellt werden. f (t) = a a n cos (n t) + b n sin (n t) (1) n=1 n=1

9 Theorie 1 Theorem Jede stetige Funktion f kann als Superposition einer Reihe von trigonometrischen Funktionen (Sinus, Kosinus) dargestellt werden. f (t) = a a n cos (n t) + b n sin (n t) (1) a n = 2 T b n = 2 T n=1 +T /2 T /2 +T /2 T /2 n=1 ( 2π nt f (t) cos T ( 2π nt f (t) sin T ) dt (2) ) dt (3)

10 Beispiel 1 f (x) = 4 π ( ) sin ((2n + 1) x) n=0 2n + 1 Welche Funnktion wird durch diese -Reihe wohl beschrieben? (4)

11 Beispiel 1 f (x) = 4 π ( ) sin ((2n + 1) x) n=0 2n + 1 Welche Funnktion wird durch diese -Reihe wohl beschrieben? (5)

12 Beispiel 1 f (x) = 4 π ( ) sin ((2n + 1) x) n=0 2n + 1 Welche Funnktion wird durch diese -Reihe wohl beschrieben? (6)

13 Beispiel 1 f (x) = 4 π ( ) sin ((2n + 1) x) n=0 2n + 1 Welche Funnktion wird durch diese -Reihe wohl beschrieben? (7)

14 Theorie 1 Theorem Mit e iωt = cos ωt + i sin ωt (Euler-dentität) wird die -Reihe zu: f (t) = + n= c n e int

15 Wobei N die Anzahl der Messpunkte ist, und f n der jeweilige Messwert an der Stelle n. Theorie 1 Theorem Mit e iωt = cos ωt + i sin ωt (Euler-dentität) wird die -Reihe zu: Theorem f (t) = + n= c n e int Die Koeffizienten (Amplituden) der komplexen diskreten Transformation (DFT) lauten: F k = 1 N N 1 n=0 f n e i 2π N n k

16 Experimental 1 MATLAB benütz intern genau diese Formeln, jedoch wird eine andere Methode verwendet, die aus den Messpunkten die zugehörigen Frequenzen und Amplituden herausfiltert: Fast Transformation (FFT): fft

17 Experimental 1: Signal Signal: 2 sin (2π 100 t) + 2 sin (2π 150 t) + 1 sin (2π 200 t)

18 Experimental 1: -Spektrum Signal: 2 sin (2π 100 t) + 2 sin (2π 150 t) + 1 sin (2π 200 t)

19 Experimental 1: -Spektrum Nyquist-Frequenz: Sampling-Rate dividiert durch 2 Frequenzen im Signal sind durch Peaks im Spektrum identifiziert.

20 Experimental 1: -Spektrum Signal: 2 sin (2π 100 t) + 2 sin (2π 150 t) + 1 sin (2π 200 t)

21 Experimental 1: Rücktransformation Signal: 2 sin (2π 100 t) + 2 sin (2π 150 t) + 1 sin (2π 200 t)

22 Experimental 2: Anwendung -Transformation erlaubt: Analyse der Grundfrequenzen in einem Signal

23 Experimental 2: Anwendung -Transformation erlaubt: Analyse der Grundfrequenzen in einem Signal Bearbeitung im -Raum (K-Raum) und anschliessende Rücktransformation kann als Filter benützt werden, um bestimmte Frequenzbereiche zu unterdrücken..

24 Experimental 2: (1/4) file: fourierdata.mat

25 Experimental 2: (2/4) hohe Frequenzen = Rauschen

26 Experimental 2: (3/4) dee: unterdrücke hohe Frequenzen via single-sided Gauss-Funktion

27 Experimental 2: (3/4) dee: unterdrücke hohe Frequenzen via single-sided Gauss-Funktion

28 Experimental 2: (4/4) dee: Rücktransformation (ifft) des gefalteten Frequenz-Spektrums

29 Experimental 2: (4/4) dee: Rücktransformation (ifft) des gefalteten Frequenz-Spektrums

30 Experimental 2: (4/4) Fazit: Technologie (-Analyse) funktioniert in diesem Beispiel sehr gut An den Rändern wird das Signal sehr schlecht rekonstruiert

31 Experimental 2: (4/4) Andere Verfahren zum bzw. glätten von Daten? moving average

32 Experimental 3: moving average

33 Experimental 3: moving average

34 Experimental 3: moving average

35 Experimental 3: moving average

36 Experimental 3: moving average

37 Experimental 3: moving average

38 Experimental 3: moving average

39 Experimental 3: moving average

40 Experimental 3: moving average

41 Experimental 3: moving average

42 Experimental 3: moving average

43 Experimental 3: moving average

44 Experimental 3: moving average

45 Experimental 3: moving average

46 Experimental 3: moving average

47 Experimental 3: moving average

48 Experimental 3: moving average

49 Experimental 3: moving average

50 Experimental 3: moving average

51 Experimental 3: moving average: final

52 : nicht stationäre Spektren Analyse bisher nur möglich, wenn Spektren stationär sind, d.h. zeitlich konstant. Dies ist jedoch in den meisten interessanten Fällen nicht der Fall: Beispiele: Audio: Gesang eines Vogels EEG : REM- und NREM-Schlaf-Phasen

53 : nicht stationäre Spektren dee: analog zum moving average wird während eines kleines Zeitraumes (time window) das Signal als stationär angenommen (engl. short-time Transform, STFT). Zeitfenster jedoch etwas ausgereifter: Hamming Window ( ) 2πn w(n) = cos N 1 Wobei: N die Anzahl der ntervalle und n von ntervall zu ntervall variiert.

54 : Beispiel: Spektrum eines en

55 : MATLAB: [amp, fs, nbits] = wavread( song1.wav )

56 : MATLAB: spectrogram(amp, 256, yaxis )

57 Ende des Vortrages Vielen Dank für die Aufmerksamkeit und viel Freude bei weiteren Experimenten mit MATLAB.

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT) Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher

Mehr

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Fourier-Zerlegung, Fourier-Synthese

Fourier-Zerlegung, Fourier-Synthese Fourier-Zerlegung, Fourier-Synthese Periodische Funktionen wiederholen sich nach einer Zeit T, der Periode. Eine periodische Funktion f(t) mit der Periode T genügt der Beziehung: f( t+ n T) = f( t) für

Mehr

Signale und ihre Spektren

Signale und ihre Spektren Einleitung Signale und ihre Spektren Fourier zeigte, dass man jedes in der Praxis vorkommende periodische Signal in eine Reihe von Sinus- und Cosinusfunktionen unterschiedlicher Frequenz zerlegt werden

Mehr

VAD - Voice Activity Detection -

VAD - Voice Activity Detection - VAD - - erstellt: Robert Schaar s63012 erstellt: Robert Schaar s63012 Mensch-Maschine-Robotik 1. Einleitung 2. Aufbau des Algorithmus 2.1. allgemeiner Aufbau 2.2. Fourier-Transformation 2.3. Short-Time

Mehr

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

Signalverarbeitung - Filterung, PSD, Korrelationen

Signalverarbeitung - Filterung, PSD, Korrelationen 9. Dezember 2010 1 Signalverarbeitung - Filterung, PSD, Korrelationen Messtechnik Vorlesung 9. Dezember 2010 9. Dezember 2010 2 Zurück zur Schnellen Fourier-Transformation (FFT) Ein FFT-Beispiel mit zwei

Mehr

Spektralanalyse physiologischer Signale

Spektralanalyse physiologischer Signale Spektralanalyse physiologischer Signale Dr. rer. nat. Axel Hutt Vorlesung 1 - WS 2016/17 über mich Studium der Physik an U Stuttgart Promotion: Nichtlineare Dynamik in Gehirnsignalen Forschung in Neurowissenschaften

Mehr

Modulationsanalyse. Amplitudenmodulation

Modulationsanalyse. Amplitudenmodulation 10/13 Die liefert Spektren der Einhüllenden von Teilbändern des analysierten Signals. Der Anwender kann damit Amplitudenmodulationen mit ihrer Frequenz, ihrer Stärke und ihrem zeitlichen Verlauf erkennen.

Mehr

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung Erarbeiten der Diskreten Fourier Transormation (GFT) unter Verwendung von Scilab zur Veranschaulichung 1. Das Prinzip verstehen 2. DFT beschreiben 3. DFT mit Scilab testen 4. Umsetzung der DFT ür einen

Mehr

Lokale Frequenzanalyse

Lokale Frequenzanalyse Lokale Frequenzanalyse Fourieranalyse bzw. Powerspektrum liefern globale Maße für einen Datensatz (mittleres Verhalten über die gesamte Länge des Datensatzes) Wiederkehrdiagramme zeigten, dass Periodizitäten

Mehr

NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB]

NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB] NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB] Schnelle diskrete Fourier-Transformation (Fast Fourier Transform FFT) Darstellung der Methode: Skriptum Kap. 3.3 und 3.4. Die Berechnungen

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Digitale Signalverarbeitung mit MATLAB

Digitale Signalverarbeitung mit MATLAB Martin Werner Digitale Signalverarbeitung mit MATLAB Grundkurs mit 16 ausführlichen Versuchen 4., durchgesehene und ergänzte Auflage Mit 180 Abbildungen und 76 Tabellen STUDIUM VIEWEG+ TEUBNER 1 Erste

Mehr

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v.

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v. Fourier-Reihen für periodische Funktionen Sei periodisch, mit Periode L: Auch für diesen Fall gilt die Fourier- Reihen-Darstellung (b.3), mit : (b.3) (und stückweise stetig differenzierbar) (c.5) Integral

Mehr

Die Fourier-Transformation

Die Fourier-Transformation 1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

Biosignalverarbeitung

Biosignalverarbeitung Peter Husar Biosignalverarbeitung Springer Inhaltsverzeichnis 1 Entstehung bioelektrischer Signale 9 1.1 Das Neuron 9 1.2 Elektrische Erregungsleitung und Projektion 15 2 Verstärkung und analoge Filterung

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Wave-Datei-Analyse via FFT

Wave-Datei-Analyse via FFT Wave-Datei-Analyse via FFT Wave-Dateien enthalten gesampelte Daten, die in bestimmten Zeitabständen gespeichert wurden. Eine Fourier-Transformation über diesen Daten verrät das Frequenz-Spektrum der zugrunde

Mehr

Analogmultiplexer als Amplitudenmodulatoren

Analogmultiplexer als Amplitudenmodulatoren Analogmultiplexer als Amplitudenmodulatoren Dipl.-Phys. Jochen Bauer 09.11.014 Einführung und Motivation Mit dem zunehmenden Verschwinden von Mittel- und Langwellensendern ergibt sich die Notwendigkeit

Mehr

Spektralanalyse

Spektralanalyse 4. Spektralanalyse Die Spektralanalyse ermittelt, welche Beiträge die einzelnen Frequenzen zu einem Signal liefern. Je nach Art des Zeitsignals wird der Frequenzgehalt durch die Fourier-Transformation,

Mehr

Broadband EMI Noise Measurement in Time Domain

Broadband EMI Noise Measurement in Time Domain Broadband EMI Noise Measurement in Time Domain Florian Krug, Peter Russer Institute for High-Frequency Engineering Technische Universität München fkrug@ieee.org 1 Inhalt Einführung Time-Domain Electromagnetic

Mehr

Visual Computing Filtering, Fourier Transform, Aliasing

Visual Computing Filtering, Fourier Transform, Aliasing Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Zu loesen bis: 16. Mai 2006 Prof. M. Gross Remo Ziegler / Christian Voegeli / Daniel Cotting Ziele Visual Computing

Mehr

5.8.8 Michelson-Interferometer ******

5.8.8 Michelson-Interferometer ****** 5.8.8 ****** Motiation Ein wird mit Laser- bzw. mit Glühlampenlicht betrieben. Durch Verschieben eines der beiden Spiegel werden Intensitätsmaxima beobachtet. Experiment S 0 L S S G Abbildung : Aufsicht

Mehr

Kybernetik Laplace Transformation

Kybernetik Laplace Transformation Kybernetik Laplace Transformation Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 50 2453 mohamed.oubbati@uni-ulm.de 08. 05. 202 Laplace Transformation Was ist eine Transformation? Was ist

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Seminar Digitale Signalverarbeitung

Seminar Digitale Signalverarbeitung Universität Koblenz-Landau Institut für integrierte aturwissenschaften Abteilung Physik Dr. Merten Joost Seminar Digitale Signalverarbeitung Thema: Fast Fourier Transformation Praktische Durchführung einer

Mehr

Fourier - Transformation

Fourier - Transformation Fourier - Transformation Kurzversion 2. Sem. Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim, Tiefenbronner Str. 65 75175 Pforzheim Überblick / Anwendungen / Motivation: Die Fourier-Transformation

Mehr

Multimediale Werkzeuge 1, Audio-Berabeitung. normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1

Multimediale Werkzeuge 1, Audio-Berabeitung. normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1 Multimediale Werkzeuge 1, Audio-Berabeitung normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1 Beachte: Teilbänder werden nach den Unter-Abtasten "aufgeblasen" (siehe

Mehr

Hauptkomponentenanalyse. Principal Component Analysis (PCA)

Hauptkomponentenanalyse. Principal Component Analysis (PCA) Hauptkomponentenanalyse Principal Component Analysis (PCA) Principal Component Analysis (PCA) Welche Ziele verfolgt man bei der Verwendung einer PCA? Repräsentation multidimensionaler Daten mit einer geringeren

Mehr

<is web> Information Systems & Semantic Web

<is web> Information Systems & Semantic Web Information Systems University of Koblenz Landau, Germany Feature Extraktion staab@uni-koblenz.de 2 staab@uni-koblenz.de 3 staab@uni-koblenz.de 4 staab@uni-koblenz.de 5 staab@uni-koblenz.de 6 staab@uni-koblenz.de

Mehr

:. (engl.: first harmonic frequency)

:. (engl.: first harmonic frequency) 5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man

Mehr

5. Übung für Übungsgruppen Musterlösung

5. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, Department Informatik der Universität Hamburg) 5. Übung für Übungsgruppen Musterlösung (U. Köthe, Department Informatik,

Mehr

Schwingungen und ihre Filterung unter Verwendung von Ergebnissen aus FEM-Rechnungen

Schwingungen und ihre Filterung unter Verwendung von Ergebnissen aus FEM-Rechnungen Schwingungen und ihre Filterung unter Verwendung von Ergebnissen aus FEM-Rechnungen AG Qualität im Fachbereich Mathematik Universität Hannover, Welfengarten, D - 3067 Hannover Telephon: +49-5-762-3336

Mehr

V 322 Überlagerung und Modulation /AD-Wandler

V 322 Überlagerung und Modulation /AD-Wandler V 322 Überlagerung und Modulation /AD-Wandler 1. Aufgaben 1.1 Digitalisieren Sie ein analoges Signal und experimentieren mit der Abtastrate und Sampleanzahl. 1.2 Überlagern Sie 2 Frequenzen und beobachten

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Inhaltsverzeichnis 1 Einführung 2 FFT 3 Anwendungen 4 Beschränkungen 5 Zusammenfassung Definition Fouriertransformation

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Übung: Computergrafik 1

Übung: Computergrafik 1 Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Fouriertransformation Organisatorisches Neue Abgabefrist für Blatt

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 SYS_A - ANALYSIEREN Statistik Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 Histogramm (Praxis) Realisierung Lage Streuung Zufallsvariable Dichte der Normalverteilung Verteilungsfunktion Fläche

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Fourier-Reihe mit komplexer Exponentialfunktion

Fourier-Reihe mit komplexer Exponentialfunktion Fourier-Reihe mit komplexer Exponentialfunktion Jörn Loviscach Versionsstand: 9. Juni 2010, 15:54 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Überlagung sinusförmiger

Mehr

Fourier-Spektroskopie. Vortrag am 22.07.03 Elektrische und optische Sensoren

Fourier-Spektroskopie. Vortrag am 22.07.03 Elektrische und optische Sensoren Fourier-Spektroskopie Vortrag am 22.07.03 Elektrische und optische Sensoren Inhaltsverzeichnis 1. Einführung 2. Benötigte Grundlagen der Optik 3. Das Michelson-Interferometer 4. Probleme der Realisierung

Mehr

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier- Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;

Mehr

Skriptum zur 4. Laborübung. Spektren

Skriptum zur 4. Laborübung. Spektren Elektrotechnische Grundlagen der Informatik (LU 182.085) Skriptum zur 4. Laborübung Spektren Christof Pitter Wolfgang Puffitsch Technische Universität Wien Institut für Technische Informatik (182) 1040,

Mehr

Low Level Descriptoren. Anne Scheidler

Low Level Descriptoren. Anne Scheidler Low Level Descriptoren Anne Scheidler Aufbau des Vortrags LLD Kategorien Signaldarstellung Zeitbasierte Signaldarstellung und Merkmalsextraktion Transformation zwischen Signaldarstellungen Frequenzbasierte

Mehr

Faltung, Korrelation, Filtern

Faltung, Korrelation, Filtern Faltung, Korrelation, Filtern Wie beschreibe ich lineare Systeme (z.b. Seismometer) -> Faltung, Konvolution, Dekonvolution? Wie quantifiziere ich die Ähnlichkeit von Zeitreihen (-> Korrelation) Wie quantifiziere

Mehr

Auswertung dynamischer Druckdaten von Experimenten an der HF- Brennkammer mit der Hilbert-Huangund der Fourier-Transformation

Auswertung dynamischer Druckdaten von Experimenten an der HF- Brennkammer mit der Hilbert-Huangund der Fourier-Transformation Auswertung dynamischer Druckdaten von Experimenten an der HF- Brennkammer mit der Hilbert-Huangund der Fourier-Transformation C. Pegg, M. Oschwald DLR C. Pegg, M. Oschwald > DIV3 > 11. Oktober 27 > 1 HF-Brennkammer

Mehr

Formelsammlung für Automatisierungstechnik 1 & 2

Formelsammlung für Automatisierungstechnik 1 & 2 Formelsammlung für Automatisierungstechnik & 2 Aus Gründen der Vereinheitlichung, der gleichen Chancen bw. um etwaigen Diskussionen vorubeugen, sind als Prüfungsunterlagen für die Vorlesungsklausuren aus

Mehr

DSO. Abtastrate und Wiedergabegenauigkeit

DSO. Abtastrate und Wiedergabegenauigkeit DSO Abtastrate und Wiedergabegenauigkeit Inhalt Inhalt...- 0 - Sind eine hohe Abtastrate sowie Bandbreite notwendig?...- 2 - Ein Blick auf die messtechnischen Grundlagen...- 7 - Von Abtastrate und Bandbreite

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Echtzeit-Analyse/Synthese von Sprachsignalen unter Berücksichtigung des Sprachverständlichkeitsindex (SII)

Echtzeit-Analyse/Synthese von Sprachsignalen unter Berücksichtigung des Sprachverständlichkeitsindex (SII) Allgemeine Nachrichtentechnik Prof. Dr.-Ing. Udo Zölzer Echtzeit-Analyse/Synthese von Sprachsignalen unter Berücksichtigung des Sprachverständlichkeitsindex (SII) Von Sayak Ghosh Choudhury Prof. Dr.-Ing.

Mehr

Berechnung von digitalen Signalen. Jonathan Harrington

Berechnung von digitalen Signalen. Jonathan Harrington Berechnung von digitalen Signalen Jonathan Harrington Analog Signale 1. Digitalisierung: Abtasten, Quantisierung Praat Digitale Zeitsignale 2. Anwendung von einem Fenster EMU-tkassp Zeitsignal-Aufteilung

Mehr

Biosignalverarbeitung (Schuster)

Biosignalverarbeitung (Schuster) Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,

Mehr

GT- Labor. Inhaltsverzeichnis

GT- Labor. Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Versuchsvorbereitung 2 1.1 Qualitatives Spektrum der Ausgangsspannung des Eintaktmodulators 2 1.2 Spektrum eines Eintaktmodulators mit nichtlinearem Element 2 1.3 Bandbreite

Mehr

Fourier-Transformation und Saitenschwingung

Fourier-Transformation und Saitenschwingung F-Praktikum Versuch 1.1 Diego Semmler, Nils Höres Seite 1/13 Fortgeschrittenen-Praktikum Fourier-Transformation und Saitenschwingung Diego Semmler, Nils Höres diego@messenger.dsemmler.de nils@hoeres.de

Mehr

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum.

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum. Messtechnik-Praktikum 10.06.08 Spektrumanalyse Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie die Schaltung für eine Einweggleichrichtung entsprechend Abbildung 1 auf. Benutzen Sie dazu

Mehr

3 Diskrete Fourier-Transformation

3 Diskrete Fourier-Transformation 33 3 Diskrete Fourier-Transformation Inhalt 3 Diskrete Fourier-Transformation... 33 3. Grundlagen... 34 3.. Diskrete Fourier-Transformation... 34 3..2 Eigenschaften der diskreten Fourier-Transformation...

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Fourierreihen und Spektrenanalyse Protokoll 11

Fourierreihen und Spektrenanalyse Protokoll 11 Fourierreihen und Spektrenanalyse Protokoll 11 Messtechnik II für KEB, TFH Berlin, Gruppe D 17. Januar 27 Torben Zech 738845 Martin Henning 73615 Abdurrahman Namdar 73968 Inhaltsverzeichnis 1 Grundgedanke

Mehr

Grundlagen der Videotechnik. Redundanz

Grundlagen der Videotechnik. Redundanz Grundlagen der Videotechnik Redundanz Redundanz beruht auf: - statistischen Abhängigkeiten im Signal, - Information, die vorher schon gesendet wurde - generell eine Art Gedächtnis im Signal Beispiel: Ein

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung Audio Signal Audio-Bearbeitung Ampl Vor Unterabtastung Teilband Grenzen Normierte Frequenz (normierte Abtastrate, maximale Frequenz ist pi oder 1) Teilbänder Diese Freq. Anteile «verschwinden» nach dem

Mehr

Das magische Quadrat für stochastische Prozesse

Das magische Quadrat für stochastische Prozesse . Geodätische Woche Das magische Quadrat für stochastische Prozesse 1 Institut für Geodäsie und Geoinformation Professur für Theoretische Geodäsie - Universität Bonn Ina Krasbutter, Boris Kargoll, Wolf-Dieter

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1 4. Signalverarbeitung 4.1 Grundbegrie 4.2 Frequenzspektren, Fourier-Transormation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterührende Literatur (z.b.): Beate Meert, Ola Hochmuth: Werkzeuge der

Mehr

univariate/multivariate Zeitreihenanalyse

univariate/multivariate Zeitreihenanalyse univariate/multivariate Zeitreihenanalyse lineare Verfahren - statistische Momente - Fourier Transformation - Hilbert Transformation - Wavelet Transformation - Auto- / Kreuzkorrelationsfunktion - ARMA-Modelle

Mehr

Leitungscodierung. Modulation , G. Hirsch. bit. Slide 1

Leitungscodierung. Modulation , G. Hirsch. bit. Slide 1 Leitungscodierung bit Slide 1 Spektren leitungscodierter Signale bit Slide 2 Übertragungsfunktion des Cosinus- Rolloff Filters -f g f g Im Fall von NRZ ist: f g 1 2 T bit Slide 3 Augendiagramm Die nachstehenden

Mehr

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner Datenaquisition Sensor Verstärker Filter ADC Objekt Rechner Datenaquisition Verstärker: - linearer Arbeitsbereich - linearer Frequenzgang - Vorkehrungen gegen Übersteuerung (trends, shot noise) - Verstärkerrauschen

Mehr

Installation & erste Schritte

Installation & erste Schritte Installation & erste Schritte Inhalt: Vorraussetzung: PC oder Notebook, Windows (XP), Pappradio, serielle Schnittstelle eingebaut oder per Wandler. 1. Installation: 1.1 Pappradio Software installieren

Mehr

Runde 9, Beispiel 57

Runde 9, Beispiel 57 Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische

Mehr

Datenverarbeitung in der Geophysik. Digitalisierung, Diskretisierung

Datenverarbeitung in der Geophysik. Digitalisierung, Diskretisierung Datenverarbeitung in der Geophysik Digitalisierung, Diskretisierung Seismische Zeitreihen -> Seismogramme Samplingrate, Taktfrequenz Nyquistfrequenz zeitliche, räumliche Frequenzen Binäre Zahlendarstellung

Mehr

Blatt 5. - Lösungsvorschlag

Blatt 5. - Lösungsvorschlag Fautät für Physi der LMU München Lehrstuh für Kosoogie, Prof Dr V Muhanov Übungen zu Kassischer Mechani (T) i SoSe Batt 5 - Lösungsvorschag Aufgabe 5 Binäres Sternsyste a) Wieviee Freiheitsgrade hat das

Mehr

Argumente für die diskrete Realisierung der Fourierintegrale

Argumente für die diskrete Realisierung der Fourierintegrale Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich

Mehr

Klatschen vs. Pfeifen

Klatschen vs. Pfeifen Klatschen vs. Pfeifen Verwendung akustischer Signale zur Steuerung elektrischer Systeme Referat für das Projektlabor 2006/07 TU Berlin von Christian Rudat am Mo, den 6. November 2006 1 Übersicht Theorie

Mehr

Frequenzanalyse in der Praxis

Frequenzanalyse in der Praxis Gitarrensaiten, Audio-Verstärker, Filter oder rotierende Wellen technisch gesehen, alles eines: Signalquellen. Und die besitzen beträchtlichen Informationsgehalt. Entschlüsselt wird dieser bei der oszilloskopischen

Mehr

Schnelle Fouriertransformation (FFT)

Schnelle Fouriertransformation (FFT) Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 2017 / 2018 Institut für Informatik Univ-Prof Dr Hans-Joachim Bungartz Michael Obersteiner Philipp Samfass Numerisches Programmieren, Übungen 5 Übungsblatt: Diskrete

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 2016 / 2017 Institut für Informatik Prof Dr Daniel Cremers Dr Frank Schmidt Nikola Tchipev Michael Rippl Numerisches Programmieren, Übungen 7 Übungsblatt: Diskrete Fourier-Transformation,

Mehr

Multimediale Werkzeuge, Audio: Formate, Tools. -Sound/Audio Objekte. Formate, Beispiele:

Multimediale Werkzeuge, Audio: Formate, Tools. -Sound/Audio Objekte. Formate, Beispiele: Multimediale Werkzeuge, Audio: Formate, Tools -Sound/Audio Objekte Formate, Beispiele: - Mp3 (Kurz für MPEG1/2 Layer 3) - PCM (z.b. Wave Datei), übliche Formate: CD: 44100 HZ Abtastrate, 16 Bits/Abtastwert.

Mehr

1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines Sinussignals

1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines Sinussignals Audiotechnik II Digitale Audiotechnik: 2. utorium Prof. Dr. Stefan Weinzierl 5. November 213 Musterlösung: 5. November 213, 18:25 1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines

Mehr

Das Michelson-Interferometer als Fourier-Spektrometer

Das Michelson-Interferometer als Fourier-Spektrometer Fortgeschrittenenpraktikum der Physik Das Michelson-Interferometer Versuch 1 Durchführung: 8 Juli 008 Erste Abgabe: 05.08.008 Gruppe: 717 Betreuer: Katrin Hübner Tobias Meisch tobias.meisch@uni-ulm.de

Mehr

Störgeräuschreduktion bei stimmhaften Sprachsignalen

Störgeräuschreduktion bei stimmhaften Sprachsignalen Störgeräuschreduktion bei stimmhaften Sprachsignalen Einkanaliges Mikrofon Nutzsignal Störgeräusche Allgemein: einkanalige Störgeräuschreduktion Folie 1 Gliederung Störgeräuschreduktion: Arten und Einsatzgebiete

Mehr

2. Eigenschaften digitaler Nachrichtensignale

2. Eigenschaften digitaler Nachrichtensignale FH OOW / Fachb. Technik / Studiengang Elektrotechnik u. Automatisierungstechnik Seite 2-2. Eigenschaften digitaler Nachrichtensignale 2. Abgrenzung zu analogen Signalen Bild 2.- Einteilung der Signale

Mehr

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich André Grüneberg Janko Lötzsch Mario Apitz Friedemar Blohm Versuch: 19. Dezember 2001 Protokoll: 6. Januar

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

Signale und Systeme. Martin Werner

Signale und Systeme. Martin Werner Martin Werner Signale und Systeme Lehr- und Arbeitsbuch mit MATLAB -Übungen und Lösungen 3., vollständig überarbeitete und erweiterte Auflage Mit 256 Abbildungen, 48 Tabellen und zahlreichen Beispielen,

Mehr

Der Ton macht die Musik

Der Ton macht die Musik Der Ton macht die Musik Analyse von Tonsignalen mittels Fourier-Transformationen Teilnehmer: Tobias Berchner Holger Hesse Yasir Kaynar Dieu Thuy Linh Tran Viet Son Pham Jonas Pohl Henry Salfner Heinrich-Hertz-Oberschule,

Mehr

Kapitel 3 Trigonometrische Interpolation

Kapitel 3 Trigonometrische Interpolation Kapitel 3 Trigonometrische Interpolation Einführung in die Fourier-Reihen Trigonometrische Interpolation Schnelle Fourier-Transformation (FFT) Zusammenfassung Numerische Mathematik II Herbsttrimester 212

Mehr

A-118 NOISE / RANDOM. 1. Einführung. doepfer System A NOISE / RANDOM A-118

A-118 NOISE / RANDOM. 1. Einführung. doepfer System A NOISE / RANDOM A-118 doepfer System A - 100 NOISE / A-118 1. Einführung A-118 NOISE / Lev el Das Modul A-118 (NOISE / ) ist ein Rauschund Zufallsspannungs-Generator (engl. noise / random voltage generator). Der A-118 generiert

Mehr

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr