Zwei Rechenbeispiele für die einfache lineare Regression

Größe: px
Ab Seite anzeigen:

Download "Zwei Rechenbeispiele für die einfache lineare Regression"

Transkript

1 Einfache Regression mi Ecel Prof. Dr. Peer von der Lippe Zwei Rechenbeispiele für die einfache lineare Regression 1.1. Daen 1. Mindeslöhne Beispiel 1 Ennommen aus Rolf Ackermann, pielball des Lobbyisen, Mindeslöhne schaden nich nur bei Posdiensen sondern in allen Branchen, in: Wirschafswoche Nr. 50 ( ) Es soll gelen i = Höhe des Mindeslohns ( is späer bei einer Erweierung der Aufgabe 1 ), y i = Arbeislosenquoe. Wir haben hier Querschnis-, nich Zeireihendaen, daher der Laufinde i = 1,,,n sa = 1,,,T 1.. Normalgleichungen Die Zahlen sind leich der auf der nächsen eie wiedergegebenen Ecel-Tabelle zu ennehmen Allgemein αn + β = Σy α + β = y Mi den Daen 7 α + β = 45,7 α + 374,06 β = 318,67 Ekurs (kein Muss für Hörer, die diese Darsellungsar nich mögen) In Marischreibweise n α Σ y = β y Die relevanen Marizen und Vekoren in diesem Beispiel sind die Momenenmari 1 1 y1 n X' X = und die Daenmari 1 = X M M sowie der Daenvekor y y =. M 1 n yn 1 Anders als die zweie Aufgabe (Affenaufgabe) wird diese Aufgabe wieder aufgegriffen bei der muliplen Regression.

2 Peer v. d. Lippe, Übungsaufgaben zur einfachen Regression Das Modell laue somi in Marischreibweise y = Xβ + u und die Normalgleichungen als Ergebnis der Mehode der kleinsen Quadrae sind X Xβˆ X' y ˆβ ' = αˆ βˆ und u analog zu y. ' = mi [ ] 1.3. Ecel-Tabelle, Berechnung der Regressionskoeffizienen und ihrer Varianzen A B C D E F y y ^ y^ Irland 8,65 4,4 38,06 74,85 19,36 Frankreich 8, ,96 71, Großbriannien 8, 5,5 45,1 67,4 30,5 Belgien 8,08 8, 66,56 65,864 67,4 Niederlande 8,08 5,5 44,44 65,864 30,5 UA 4,3 4,6 19,78 18,49 1,16 panien 3,4 8,5 9,07 11,6964 7,5 Berechnungen palensumme 45,7 318, , ,5100 Mielwer /n 7,043 6,586 45,54 53, ,9300 Varianz von 4,7785* Ecel 4,0959** eigung -0,08175 Varianz von y 3,8590* Ecel 3,3078** Ordinae 7,10804 Kovarianz -0,3348 Ecel Korrelaion -0,09097 Die Regressionsfunkion laue 7,108 0,08175* Die Variablen sind prakisch nich mieinander korrelier Die Besimmhei is nur 0,0088 * Diese Were errechne Ecel als Varianzen (durch n-1 sa durch n geeil) ** Ecel-Were mi (n-1)/n = 6/7 muliplizier Die eingegebenen Daen sind in hellürkis markier. Man kann besimme Were durch Eingeben einer Berechnungsformel berechnen, ewa die palensummen oder die Mielwere, um hiermi 1 weier zu rechnen, ewa um s = i = 53,4365-(7,043) = 4,0957 (Rundungsfehler, n i vgl. oben 4,0959) zu besimmen, oder man läss dies mi der Ecel Funkion (mi f wählen!) Mielwer bzw. Varianz (oder auch Kovarianz) "auomaisch" berechnen. Bei den Varianzen wird von Ecel jedoch durch n - 1 = 6 geeil (gelb markiere Felder). Um auf die bekannen Formeln 1 s = ( i ) und s y umzurechen is mi 6/7 zu muliplizieren. Hieraus lassen sich Größen n αˆ (Ordinaenabschni), βˆ (eigung), r und r besimmen. Ferner gil (Cramerschen Regel) α ˆ = Σy y n = 45,7 318, , ,0553 und ensprechend für die eigung = 145,5 00,698 = 7,108 Die Berechnung is offenbar sehr fehleranfällig Rundungsfehler!) zumal n sehr klein is und sie erfolg am besen ausgehend von den Normalgleichungen mi der Cramerschen Regel. In dieser Hinsich is das zweie Rechenbeispiel (Affenaufgabe) sehr viel angenehmer, weil hier zwar mi noch weniger, dafür aber "glaeren" Zahlen gearbeie wird.

3 Peer v. d. Lippe, Übungsaufgaben zur einfachen Regression 3 n 7 ˆ 318, β = = = = 0, n 7 00,698 Σy 45,7 374,0553 Die Parameer αˆ, βˆ, r und r kann man auch direk mi den Ecelfunkionen f besimmen. Man erhäl dann: Parameer Ecel Funkion f Ergebnis Ordinaenabschni αˆ "Achsenabschni" 7,10804 eigung βˆ "eigung" -0, Korrelaion r "Pearson" oder "Korrel" -0, Besimmhei r "Besimmheismaß" 0, Das reuungsdiagramm erhäl man als Graphik vom Typ "Punk (XY)" 3. Anders als beim nächsen Beispiel (Affenaufgabe) is hier darauf verziche worden, die von Ecel besimme Regressionsgerade einzuzeichnen. y-were reuungsdiagramm Were * panien schein ein Ausreißer zu sein. Rechne man ohne panien, so is der Korrelaionskoeffizien 0,3748 sa 0,09097 (allerdings is n dann auch nur noch 6). Für die geschäze Varianz und die (geschäze) andardabweichung (sandard deviaion.d. oder "d. Error") von αˆ ergib sich daraus 1 panien* σ ˆ = ˆ mi dem quadrieren quadraischen Miel αˆ σ β ˆ ˆ α ˆ Man kann nun auch die Größen besimmen, die wichig sind für das chäzen und Tesen von Regressionskoeffizienen. Man erhäl (in der ymbolik des Buches von v. Auer) die folgenden Were: yy = 45,93-(6,586) = 3, = r yy = 0, = n = 53,4365, so dass die Varianz σ den Wer 53,4365 0,16018 = 8,5595 annimm ( σˆ α ˆ =,956). Die -Were sind demnach = 7,108/,956 =,483 bei der Hypohesen H 0 : α = 0 und = - 0,08175/0,4003 = - 0,046 bei der H 0 : β = 0. omi is zwar α, nich aber β signifikan von 0 verschieden. Berechnungen dieser Ar (das chäzen und Tesen bereffend) und vor allem eine muliple Regression lassen sich besser mi EViews, sa mi Ecel durchführen. Die Erweierung des Beispiels Mindeslöhne zu einer Aufgabe der muliplen Regression mi den en- = = 3, yy Die geschäze Varianz der örgröße is s ûu 3,804 danach σˆ = = = 0, n 5 Ferner is = 53,4365-(7,043) = 4,09571 σˆ 0,656 und mi σˆ β ˆ = = = 0,16018 erhäl 4,096 man die geschäze Varianz von βˆ und somi für die andardabweichung von βˆ den Wer 0, Wenn man den Bereich markier, auf den sich die Grafik beziehen soll, dann solle man auch die Felder und y mi markieren.

4 Peer v. d. Lippe, Übungsaufgaben zur einfachen Regression 4 sprechenden Berechnungen finde sich in einem weieren Download. Das dor mi EViews ermiele Ergebnis (y in Abhängigkei von = 1 ) sei hier jedoch bereis (verkürz) wiedergegeben (Ergebnisse, die mi den oben [z.t. mi Ecel] berechneen Ergebnissen verglichen werden können sind gelb unerleg): Variable Coefficien d. Error -aisic Prob. C X R-squared Mean dependen var Adjused R-squared D. dependen var *.E. of regression Akaike info crierion um squared resid.9668 chwarz crierion * das is die Wurzel aus 3,8590 in der Ecel-Tabelle auf eie oben..1. Daen. "Affenaufgabe" 4 Die folgenden Daen über den Zusammenhang zwischen Dauer der chwangerschaf und Lebenserwarung (der Mensch als "Ausreißer") sind ennommen aus der Zeischrif Focus X = Dauer der Y = Lebens- chwangerschaf erwarung Lemur Makak 4 6 Gibbon chimpanse Mensch umme 184 Die hier wiedergegebene Abbildung aus FOCU zeig, wie schwierig es is, die Daen versändlich graphisch darzusellen, wenn man glaub, bei den saisisch nich vorgebildeen Lesern nich Gebrauch machen zu können von der Möglichkei eines reuungsdiagramms. Man muss dann wohl mi den verschiedensen Farben operieren und es is sehr fraglich, ob die Dinge so klarer und leicher versändlich werden als mi einem reuungsdiagramm. 4 Voreil dieses Beispiels: sehr wenige und zudem glae Zahlen als Daen, so dass es leich möglich is, alles mi dem Taschenrechner nachzurechnen.

5 Peer v. d. Lippe, Übungsaufgaben zur einfachen Regression 5.. Berechnungen zur Deskripiven aisik, Ecel Tabelle/Grafik und Normalgleichungen Man sieh hier den Bildschirm und die Eingabe der Daen, wobei in den palen D, E und F einige Einfacher Berechnungen durchgeführ werden, die zur Besimmung der Normalgleichungen nowendig sind: Man kann mi diesen Angaben leich die Normalgleichungen zusammensellen und erhäl so 5 α + β = 184 α β = 5868 Die chäzwere αˆ und βˆ erhäl man nach der Cramerschen Regel mi drei Deerminanen wie folg α ˆ = = β ˆ = =, Die Regressionsgerade laue mihin - 8 +,5. Für den Korrelaionskoeffizienen erhäl man mi Ecel den Wer + 0,7857, so dass die Besimmhei r = 0,8864, also 88,64%. Die Regressionsgerade erhäl man als "Trend" wenn man in der Graphik einen y Punk anklick und die reche Mausase drück. Dann komm ein Menü, mi dem man die Trendlinie (mi denen Typen linear, logarihmisch, gleiende Mielwere ec.) wählen kann. Wenn keine Verlängerung "vorwärs" oder "rückwärs" gewähl wird, zeichne Ecel nur die Gerade im Bereich zwischen min und ma. Den eingezeichneen Trend anklicken jez kann man die Trendlinie formaieren (dicker, farbig ec). Man kann auch wie hier geschehen die Opion " Parameer anzeigen " wählen und das dazu gehörige Tefeld mi der Regressionsgleichung, der Besimmhei R (ensprich r ) bearbeien und auch nachräglich den Korrelaionskoeffizienen (Funkion "Pearson") einragen.

6 Peer v. d. Lippe, Übungsaufgaben zur einfachen Regression 6 Ohne Ecel kann man die Parameer αˆ und βˆ sowie r und ˆσ auch wie folg berechnen: Mielwere = /5 = 8, 8 y = 184/5 = 36, 8 Varianzen (und ummen der Abweichungsquadrae) ( 8,8) 50, 56 s = 4400/5 = = Ts = 5 50,56 = 5,8 ( 367,8) 35, 76 sy = 8400/ 5 = yy = 168,8 Kovarianz s = / T y?5868/5 8,8 36,8 113, 76 eigung Ordinaenabschni um squared resid. y y = β ˆ = s y s = 113,76/50,56 =,5 α ˆ = y β ˆ = 36,8,5 8,8 = -8.E. of regression σˆ ( ) = 349 (verschiedene Berechnungsmöglichkeien siehe unen) ) σˆ = σ = T = 349/3 = 116,33 σ ˆ = 116, 33 =10,786 u Korrelaion Zweies Anfangsmomen Es gil und r = s s s = 0,8864 Besimmhei r = 0,78573 y y = T = 4400/5 = T = T s = ŷ ˆ y = β T = =168,8-179,8 = 349 (oder ( ), ferner da ( ) yy is auch = 1 r T s ). y = βˆ = βˆ Ts.3. Berechnungen zur Indukiven aisik a) Konfidenzinervall für die reuung Mi dem α/ sowie dem 1-α/ Quanil (d.h. mi der uneren und obere ignifikanzschranke) der χ Vereilung bei α = 0,05 und 5- = 3 Freiheisgraden z u = 0,16 und z o = 9,348 erhäl man die folgenden Grenzen des 95% Konfidenzinervalls für die unbekanne Varianz σ in der Grundgesamhei: Unergrenze = = 37, 33 und Obergrenze = = 1615, 74. û û 349 û û 349 z 9,348 z 0,16 o Es wird gerne vergessen, dass 5 σ ˆ ˆ u = σ = 349/3 = 116,333 genauso ein zu schäzender Parameer des Modells der einfachen Regression is wie die Parameer αˆ und βˆ. b) Regressionskoeffizienen, H 0 ρ = 0 (Varianzanalyse) Die weieren Größen sind für die Besimmung von Konfidenzinervallen und zur Durchführung von Tess wichig σˆ 116,33 σˆ β ˆ = = = 0, σˆ ˆ = σˆ ˆ = 880 0,46 = 404, 84 σˆ ˆ 13, 49 α β αβ = σ ˆ = β 5,8 Die Mari der (geschäzen) Varianzen und Kovarianzen der Regressionskoeffizienen is demnach 404,84 13,49 Alle weieren Berechnungen (Konfidenzinervalle für α V = σˆ X'X =. und β Prognoseinervall für y 0 und sowie Varianzanalyse) vgl. 13,49 0,46005 Vorlesung. u 5 Man beache, dass 116,333 nich in der Mie lieg zwischen 37,33 und 1615,74. Das lieg daran, dass die χ Vereilung nich symmerisch is.

P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonometrische Datenanalyse" Duisburg

P. v. d. Lippe Häufige Fehler bei Klausuren in Einführung in die ökonometrische Datenanalyse Duisburg P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonomerische Daenanalyse" Duisburg a) Klausur SS 0 Klausuren SS 0 bis SS 03 akualisier 9. Augus 03. Sehr viele Teilnehmer rechnen einfach

Mehr

A. Multiple Choice Teil der Klausur (22 Punkte) Lösungen jeweils in blauer Schrift

A. Multiple Choice Teil der Klausur (22 Punkte) Lösungen jeweils in blauer Schrift A. Muliple Choice eil der Klausur ( Punke) Lösungen jeweils in blauer chrif Punk Lösung: B Homoskedasiziä bedeue dass a) Annahme B gil, d.h. dass die geschäzen örgrößen û über alle Zeipunke gerechne eine

Mehr

Übungsaufgaben zur Entwicklung der Geburten in Deutschland (Excel, EViews)

Übungsaufgaben zur Entwicklung der Geburten in Deutschland (Excel, EViews) Prof. Dr. Peer von der Lippe (Übungsbeispiel F) Übungsaufgaben zur Enwicklung der Geburen in Deuschland (Excel, EViews) (auch Hinweise zur Konfidenzellipse und den "Diagnosic Tess", d.h. den Annahmen B

Mehr

Testen von Regressionskoeffizienten bei multipler Regression (ausführlichere Erläuterungen und Zahlenbeispiele) 1

Testen von Regressionskoeffizienten bei multipler Regression (ausführlichere Erläuterungen und Zahlenbeispiele) 1 Prof. Dr. Peer von der Lippe (aisik) Januar 7 Universiä Duisburg-Essen, Campus Essen Tesen von Regressionskoeffizienen bei mulipler Regression (ausführlichere Erläuerungen und Zahlenbeispiele). Übersich

Mehr

Aufgaben zur Zeitreihenanalyse (Kap. 5)

Aufgaben zur Zeitreihenanalyse (Kap. 5) Prof. Dr. Reinhold Kosfeld Fachbereich Wirschafswissenschafen Aufgaben zur Zeireihenanalyse (Kap. 5) Aufgabe 5.1 Welches Phänomen läss sich mi ARCH-Prozessen modellieren und welche prognosische Relevanz

Mehr

Aufgaben: Repetition Ökonometrie I - Lösungen

Aufgaben: Repetition Ökonometrie I - Lösungen Ökonomerie I - Peer Salder Aufgaben: Repeiion Ökonomerie I - Lösungen Aufgabe (Radiowerbung für Kino): Die Schäzung der Regressionsgleichung U W u U : Wochenumsaz, W : Werbeausgaben ergib: 000, 07., SE

Mehr

Kurzrepetition Ökonometrie I - Lösungen

Kurzrepetition Ökonometrie I - Lösungen . Einführung Ökonomerie II - Peer Salder Kurzrepeiion Ökonomerie I - Lösungen Aufgabe (Inerpreaion von Regressionsergebnissen) a) Der prozenuale Aneil der Varianz der abhängigen Variablen, der durch die

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

3. Signifikanztests und Konfidenzintervalle 3.1 Signifikanztests über einzelne Regressionskoeffizienten

3. Signifikanztests und Konfidenzintervalle 3.1 Signifikanztests über einzelne Regressionskoeffizienten 3. Signifikanzess und Konfidenzinervalle 3.1 Signifikanzess über einzelne Regressionskoeffizienen Wenn das muliple Regressionsmodell mi der ökonomischen Theorie im Einklang seh, is zu erwaren, dass die

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 1 - Grundlagen Einführung in die Verfahren der Zeireihenanalyse (1) Typischerweise beginn man mi einer Beschreibung der jeweils zu unersuchenden Zeireihe (graphisch) Trendverhalen,

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

Ergänzung der Aufgabe "Mindestlöhne" zu einer multiplen Regression

Ergänzung der Aufgabe Mindestlöhne zu einer multiplen Regression Prof. Dr. Peter von der Lippe ( Übungsblatt E) Ergänzung der Aufgabe "Mindestlöhne" zu einer multiplen Regression Das Beispiel "Mindestlöhne" zur einfachen multiplen Regression ergab die folgenden Parameter

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Saisik II Übung 4: Skalierung und asympoische Eigenschafen Diese Übung beschäfig sich mi der Skalierung von Variablen in Regressionsanalysen und mi asympoischen Eigenschafen von OLS. Verwenden Sie dazu

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

Beispiele für Aufgaben in der Ökonometrieklausur in Duisburg

Beispiele für Aufgaben in der Ökonometrieklausur in Duisburg Beispiele für Aufgaben in der Ökonomerieklausur in Duisburg Die Aufgaben sind (z.. modifiziere) asächlich geselle Aufgaben unerschiedlichen Schwierigkeisgrads und daher auch mi unerschiedlicher Punkzahl

Mehr

Zahlungsverkehr und Kontoinformationen

Zahlungsverkehr und Kontoinformationen Zahlungsverkehr und Konoinformaionen Mulibankfähiger Zahlungsverkehr für mehr Flexibilä und Mobiliä Das Zahlungsverkehrsmodul biee Ihnen für Ihre Zahlungsverkehrs- und Konenseuerung eine Vielzahl mulibankenfähiger

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

1 Abtastung, Quantisierung und Codierung analoger Signale

1 Abtastung, Quantisierung und Codierung analoger Signale Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge

Mehr

4.7. Prüfungsaufgaben zum beschränkten Wachstum

4.7. Prüfungsaufgaben zum beschränkten Wachstum .7. Prüfungsaufgaben zum beschränken Wachsum Aufgabe : Exponenielle Abnahme und beschränkes Wachsum In einem Raum befinden sich eine Million Radonaome. Duch radioakiven Zerfall verminder sich die Zahl

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Sequenzanalyse Überblick Sh Schrie der Daenanalyse: Daenvorverarbeiung Problemanalyse Problemlösung Anwendung der Lösung Aggregaion und Selekion von Daen. Inegraion

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie ifo Insiu für Wirschafsforschung an der Universiä München Zeireihenökonomerie Kapiel 6 Nichsaionäre univariae Zeireihenmodelle ifo Insiu für Wirschafsforschung an der Universiä München Nichsaionäre Prozesse

Mehr

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg Kosen der Verzögerung einer Reform der Sozialen Pflegeversicherung Forschungszenrum Generaionenverräge Alber-Ludwigs-Universiä Freiburg 1. Berechnungsmehode Die Berechnung der Kosen, die durch das Verschieben

Mehr

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2)

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2) Unerschied : kurzfrisige vs langfrisige Zinssäze Inermediae Macro - Uni Basel 10 Arbirage implizier: (1) () Es gib eine klare Beziehung zwischen langfrisigen Zinsen und erwareen künfigen Kurzfriszinsen

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Geradendarstellung in Paramterform

Geradendarstellung in Paramterform Vekorrechnung Theorie Manfred Gurner Seie Geradendarellung in Paramerform X X X - X - r r Die Punke auf einer Geraden laen ich folgendermaßen finden: Gegeben ei der Punk und der Richungvekor r. Dann ergib

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Bericht zur Prüfung im Oktober 2008 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2008 über Finanzmathematik und Investmentmanagement Beric zur rüfung im Okober 008 über Finanzmaemaik und Invesmenmanagemen (Grundwissen) eer Albrec (Manneim) Am 7 Okober 008 wurde zum drien Mal eine rüfung im Fac Finanzmaemaik und Invesmenmanagemen nac

Mehr

Kurs 9.3: Forschungsmethoden II

Kurs 9.3: Forschungsmethoden II MSc Banking & Finance Kurs 9.3: Forschungsmehoden II Zeireihenanalyse Lernsequenz 04: Regression zwischen Zeireihen / ARMA-Modelle November 014 Prof. Dr. Jürg Schwarz Folie Inhal Ziele 5 Regression zwischen

Mehr

REX und REXP. - Kurzinformation -

REX und REXP. - Kurzinformation - und P - Kurzinformaion - July 2004 2 Beschreibung von Konzep Anzahl der Were Auswahlkrierien Grundgesamhei Subindizes Gewichung Berechnung Basis Berechnungszeien Gewicheer Durchschniskurs aus synheischen

Mehr

Adaptive multivariate statistische Methoden zur Prozessüberwachung und -vorhersage

Adaptive multivariate statistische Methoden zur Prozessüberwachung und -vorhersage echnische Universiä Darmsad Fachbereich Mahemaik, Arbeisgruppe Sochasik Degussa GmbH Abeilung Verfahrensechnik Auomaisierungsechnik und Produkionsmanagemen Maserarbei Adapive mulivariae saisische Mehoden

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht Akademische Arbeisgemeinschaf Verlag So prüfen Sie die von Ansprüchen nach alem Rech Was passier mi Ansprüchen, deren vor dem bzw. 15. 12. 2004 begonnen ha? Zum (Sichag) wurde das srech grundlegend reformier.

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Institut für Halle Institute for Economic Research Wirtschaftsforschung Halle

Institut für Halle Institute for Economic Research Wirtschaftsforschung Halle Insiu für Halle Insiue for Economic Research Wirschafsforschung Halle Berücksichigung von Schäzunsicherhei bei der Kredirisikobewerung Vergleich des Value a Risk der Verlusvereilung des Kredirisikos bei

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Versuche mit Oszilloskop und Funktionsgenerator

Versuche mit Oszilloskop und Funktionsgenerator Fachhochschule für Technik und Wirschaf Berlin EMT- Labor Versuche mi Oszilloskop und Funkionsgeneraor Sephan Schreiber Olaf Drzymalski Messung am 4.4.99 Prookoll vom 7.4.99 EMT-Labor Versuche mi Oszilloskop

Mehr

Unternehmensbewertung

Unternehmensbewertung Unernehmensbewerung Brush-up Kurs Winersemeser 2015 Unernehmensbewerung 1. Einführung 2. Free Cash Flow 3. Discouned-Cash-Flow-Bewerung (DCF) 4. Weighed average cos of capial (wacc) 5. Relaive Bewerung/

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

7. Modelle mit qualitativen Variablen

7. Modelle mit qualitativen Variablen 7. Modelle mi qualiaiven Variablen 7. Modelle mi qualiaiven Regressoren Qualiaive Regressoren in ökonomerischen Modellen: - unerschiedliche Präferenzen zwischen verschiedenen Gruppen von Wirschafssubjeken,

Mehr

Einführung in die Ökonometrie

Einführung in die Ökonometrie Maerialien zur Vorlesung Einführung in die Ökonomerie Sommersemeser 5 Prof. Dr. Klaus Neusser Universiä Bern Einführung in die Ökonomerie Inhal Einführung 4. Einige Lehrbücher 6. Einige ökonomerische Programmpakee

Mehr

Einfache statistische Auswertungen mit dem TI-Nspire

Einfache statistische Auswertungen mit dem TI-Nspire 1. Neues Dokument und darin eine neue Seite anlegen Als Typ 6: Lists & Spreadsheet wählen. Darin die Messwerte in einer Spalte erfassen. Dies ergibt die Urliste. Wenn mehrere Messwerte vorliegen, die diejenigen,

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

Stochastischer Prozess S(t) z.b. Rauschspannung

Stochastischer Prozess S(t) z.b. Rauschspannung s () () s (2) () s (i) () Sochasischer Prozess S() z.b. Rauschspannung 0 Bild : Analoges zufälliges Signal 2 P(S ) 0, P(S s ) P(S s 2 ) s s 2, P(S ). s() P S (s) b a /2 M b s a Bild 2: Sochasisches Signal

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG)

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) 26. November 2007 DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) Informion zur Anwendung der gesezlichen Regelungen zur Zueilung von Kohlendioxid-Emissionsberechigungen

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Hilfestellung zur inflationsneutralen Berechnung der Erwartungswertrückstellung in der Krankenversicherung nach Art der Lebensversicherung

Hilfestellung zur inflationsneutralen Berechnung der Erwartungswertrückstellung in der Krankenversicherung nach Art der Lebensversicherung Viere Unersuchung zu den quaniaiven Auswirkungen von Solvabiliä II (Quaniaive Impac Sudy 4 QIS 4) Hilfesellung zur inflaionsneuralen Berechnung der Erwarungswerrücksellung in der Krankenversicherung nach

Mehr

Kurs 9.3: Forschungsmethoden II

Kurs 9.3: Forschungsmethoden II MSc Banking & Finance Kurs 9.3: Forschungsmehoden II Zeireihenanalyse Lernsequenz 03: Einführung in die sochasische Modellierung November 014 Prof. Dr. Jürg Schwarz Folie Inhal Ziele 6 Saische vs. dynamische

Mehr

A.24 Funktionsscharen 1

A.24 Funktionsscharen 1 A.4 Funkionsscharen A.4 Funkionsscharen ( ) Bemerkung: Im Buch Kurvenprobleme gib es viel Aufgaben zu Funkionen, die einen Parameer enhalen. Falls Sie hier also nich genug kriegen... A.4.0 Orskurven (

Mehr

Institut für Industriebetriebslehre und Industrielle Produktion (IIP) - Abteilung Arbeitswissenschaft- REFA. Eine Zeitstudie Kapitel 10, S.

Institut für Industriebetriebslehre und Industrielle Produktion (IIP) - Abteilung Arbeitswissenschaft- REFA. Eine Zeitstudie Kapitel 10, S. REA Eine Zeisudie Kapiel 10, S. 1-24 Gliederung Theoreische Grundlagen Ziele von REA Voraussezungen für eine REA-Zeiaufnahme Ablauf einer REA-Zeiaufnahme Vor- und Nacheile Praxiseil REA 2 Theoreische Grundlagen

Mehr

Lehrstuhl für Finanzierung

Lehrstuhl für Finanzierung Lehrsuhl für Finanzierung Klausur im Fach Finanzmanagemen im Winersemeser 1998/99 1. Aufgabe Skizzieren Sie allgemein die von Kassenhalungsproblemen miels (sochasischer) dynamischer Programmierung! Man

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

MEA DISCUSSION PAPERS

MEA DISCUSSION PAPERS Ale und neue Wege zur Berechnung der Renenabschläge Marin Gasche 01-2012 MEA DISCUSSION PAPERS mea Amaliensr. 33_D-80799 Munich_Phone+49 89 38602-355_Fax +49 89 38602-390_www.mea.mpisoc.mpg.de Ale Nummerierung:

Mehr

4.1 OLS a) OLS-Schätzung der Koeffizienten der Strukturform

4.1 OLS a) OLS-Schätzung der Koeffizienten der Strukturform 4. Schäzmehoden 4. 4. OLS a) OLS-Schäzung der Koeffizienen der Srukurform OLS liefer verzerre und nich konsisene Schäzungen der Koeffizienen der Srukurform inerdependener Modelle, weil i.a. Sörvariable

Mehr

SR MVP die Sharpe Ratio des varianzminimalen

SR MVP die Sharpe Ratio des varianzminimalen Prüfung inanzmahemaik und Invesmenmanagemen 4 Aufgabe : (4 Minuen) a) Gegeben seien zwei Akien mi zugehörigen Einperiodenrendien R und R. Es gele < ρ(r,r )

Mehr

12 Schweißnahtberechnung

12 Schweißnahtberechnung 225 12 Schweißnherechnung 12 Schweißnherechnung Die Berechnung der ufreenden Spnnungen in Schweißnähen erfolg im Regelfll mi Hilfe der elemenren Gleichungen der esigkeislehre. Auf weierführende Berechnungsverfhren,

Mehr

Moderne Software zur Erstellung und Verwaltung von PC-gestützten Schweißparametern und Schweißprogrammen für MIG/MAG-Stromquellen

Moderne Software zur Erstellung und Verwaltung von PC-gestützten Schweißparametern und Schweißprogrammen für MIG/MAG-Stromquellen Moderne Sofware zur Ersellung und Verwalung von PC-gesüzen Schweißparameern und Schweißprogrammen für MIG/MAG-Sromquellen S. Kröger, Mündersbach und R. Killing, Solingen Einleiung Jede Schweißaufgabe erforder

Mehr

Sind die griechischen Handelsbilanzdefizite von Deutschland verursacht?

Sind die griechischen Handelsbilanzdefizite von Deutschland verursacht? P. v. d. Lippe (8.03.01) ind die griechischen Handelsbilanzdefizie von Deuschland verursach? (Beispielrechnung für einfache lineare Regression mi Excel) 1. Das inhalliche Problem bei diesem Beispiel Es

Mehr

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen) Berich zur Prüfung i Okober 9 über Grundrinziien der Versicherungs- und Finanzaheaik (Grundwissen Peer lbrech (Mannhei 6 Okober 9 wurde zu vieren Mal eine Prüfung i Fach Grundrinziien der Versicherungs-

Mehr

FKOM Applikationen mit 6LoWPAN

FKOM Applikationen mit 6LoWPAN FKOM Applikaionen mi 6LoWPAN IPv6 LowPower Wireless Personal Area Nework ) RAVEN-LCD-IO-Board-Prooyp Vorlesung FKOM 10.10.2011 Dipl. Inf. ( FH ) Sefan Konrah 6LoWPAN ( IPv6 LowPower Wireless Personal Area

Mehr

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2014

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2014 Prüfung Grundprinzipien der ersicherungs- und Finanzmahemaik 04 Aufgabe : (0 Minuen) a) Gegeben sei ein einperiodiger Sae Space-Mark mi drei usänden, der aus drei Werpapieren besehe, einer sicheren Anlage

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

Übersicht über die Vorlesung. 2 Marketing-Mix und Marktreaktion

Übersicht über die Vorlesung. 2 Marketing-Mix und Marktreaktion Üersich üer die Vorlesung Was is arkeing? arkeing-ix und arkreakion 3 Sraegisches arkeing 4 Produkpoliik 5 Preispoliik 6 Kommunikaionspoliik 7 Disriuionspoliik Gliederung des zweien Kapiels arkeing-ix

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

10 VORBEREITUNG AUF DAS ABITUR

10 VORBEREITUNG AUF DAS ABITUR 4 VORBEREITUNG AUF DAS ABITUR. Aufgaben zur Analysis 5 Golden-Gae-Bridge. Dadurch läss sichdie Symmerie der Brücke ausnuzen.. a) Anach B: Ansaz: y=m x+b liefer LGS: m ( 4) + b = 5 m ( 977) + b =. 5 Lösung:

Mehr

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG ahemaik: ag. Schmid WolfgangLehrerInneneam ARBEITSBLATT - ERITTELN DER KREISGLEICUNG Wir wollen un nun bemühen, die Gleichung pezieller Kreie zu ermieln. Beipiel: Ermile die Gleichung jene Kreie mi dem

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion Wiederholung: Radioakiver Zerfall Radioakive Zerfallsprozesse können durch die Funkion f ( ) c a beschrieben werden. Eine charakerisische Größe hierbei is die Halbwerszei der radioakiven Elemene. Diese

Mehr

Kurs 9.3: Forschungsmethoden II

Kurs 9.3: Forschungsmethoden II Mc Banking & Finance Kurs 9.3: Forschungsmehoden II Zeireihenanalyse Lernsequenz 06: Zeireihen mi sochasischer Volailiä November 04 Prof. Dr. Jürg chwarz Folie Inhal Ziele 5 Einführung 7 chäzung von ARCH(p)-Modellen

Mehr

Universität Stuttgart. Institut für Technische Chemie

Universität Stuttgart. Institut für Technische Chemie Universiä Sugar Insiu für Technische Chemie Technisch-Chemisches Prakikum Versuch 5: Verweilzei-Vereilungscharakerisiken von Reakoren 8/1 Verweilzei-Vereilungscharakerisiken von Reakoren 1. Einleiung Die

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe 1

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe.. Skizzier man sich mi Hilfe des GTR drei Schaubilder der Schar (z.b. für =, = und = 4) ergeben sich folgende Skizzen:

Mehr

und zeigen Sie, dass der Punkt P auf g liegt. (c) Bestimmen Sie den Schnittwinkel der Ebenen E und E

und zeigen Sie, dass der Punkt P auf g liegt. (c) Bestimmen Sie den Schnittwinkel der Ebenen E und E Übungen zum ABI 8 Geomerie (Lineare Algebra) - Lösung eie von 7 Aufgaben incl Lösungen: Aufgabe G Gegeben sind eine Ebenenscar E :( + ) x+ x + ( ) x+ + = mi, eine Ebene E: x+ x + = und der Punk P( ) (a)

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung:

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung: mi RAM- und Flash- peicherbänken Abb. (L- Nr. 2.600) Auf einen Blick: 16 peicheradressen für prachaufzeichnung: - bis zu 8 Bänke im RAM- peicher (flüchig) - bis zu 8 Bänke im Flash- peicher (permanen)

Mehr

BESTIMMUNG DER ANZAHLVERTEILUNG VON TRACERPARTIKELN

BESTIMMUNG DER ANZAHLVERTEILUNG VON TRACERPARTIKELN Fachagung Lasermehoden in der Srömungsmessechnik 5. 7. Sepember 2006, Braunschweig BESTIMMUNG DER ANZAHLVERTEILUNG VON TRACERPARTIKELN Dipl.-Ing. (FH) Leander Möler Palas GmbH, Greschbachsr. 3b, 76229

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve AVWL II, Prof. Dr. T. Wollmershäuser Kapiel 5 Die Phillipskurve Version: 22.11.2010 Der empirische Befund in den 60er Jahren Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 : 1931-1939 In

Mehr

Ökonomische Potenziale einer Online-Kundenwertanalyse zur gezielten Kundenansprache im Internet

Ökonomische Potenziale einer Online-Kundenwertanalyse zur gezielten Kundenansprache im Internet Ökonomische Poenziale einer Online-Kundenweranalyse zur gezielen Kundenansprache im Inerne von Julia Heidemann, Mahias Klier, Andrea Landherr, Florian Probs Dezember 2011 in: D. C. Mafeld, S. Robra-Bissanz

Mehr