Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung

Größe: px
Ab Seite anzeigen:

Download "Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung"

Transkript

1 Dispersion DADOS Problemstellung Für ie Auswertung von Spektren ist es notwenig, ie Nichtlinearität er Wellenlängenskala auf em CCD Chip zu berücksichtigen. Dies wir hier am Beispiel es DADOS urchgerechnet, ist aber natürlich auch auf anere Spektrometer anwenbar. Es wir gezeigt, wie gross er Fehler bei linearer, quaratischer un kubischer Interpolation wir. Zum Vergleich wir ie Dispersion in er Brennebene er Kamera mit er aus einer einfachen Formel berechneten verglichen. Technische Daten, DADOS Für ie folgenen Rechnungen wuren ie Eigenschaften es DADOS verwenet, entnommen aus er Gebrauchsanleitung: Gitter: 2 resp. 9 L/mm Brennweite es Objektivs: 96 mm Winkel Kollimator Kamera: 9 Gesichtsfel Kamera: 2 mm (entspricht etwa Canon 35D) für Gitter mit 9 L/mm resp. 12 mm für Gitter 2 L/mm, ausreichen für Wellenlängenbereich 4 8 Å Rechnung Die Rechnung wure in einem EXCEL Datenblatt ausgeführt, basieren auf SIMSPEC.XLS von Christian Buil un für ie vorliegene Fragestellung moifiziert. Die Rechnung basiert auf er Gittergleichung G*m*λ = sin α + sin β (1) Wobei G ie Gitterkonstante (Linien/mm) m ie Gitterornung un α resp. β Ein- un Ausfallswinkel arstellen. Dabei sin ie richtigen Vorzeichen zu wählen, in unserem Fall α ca. 5 un β ca. 4, somit α β = 9. Für as Gitter mit 9 L/mm wir α entsprechen grösser, ca. 65. Mit ieser Winkelwahl ergibt sich auch ie in er Anleitung spezifizierte Dispersion (run 4 resp. 1 nm/mm). Für ie Winkelispersion kann folgene Formel verwenet weren D = β / λ = m * G / cos β, (2) welche urch Differenzieren er 1. Gleichung erhalten wir (Die Formel wuren em Diffraction Grating Hanbook entnommen, welches auf er Newport Webseite heruntergelaen weren kann). Diese Formeln gelten insbesonere im Bilzentrum er CCD Kamera,.h. für ie Zentralwellenlänge.λ Ist iese un somit α festgelegt, können für anere Wellenlängen λ ie entsprechenen Winkel β berechnet weren un in Detektorkoorinaten x umgerechnet weren, wobei x = em Bilzentrum un somit λ entspricht. Dabei gilt bei verzeichnungsfreier Abbilung es Objektivs: tan(β β) = x/f, wobei f ie Brennweite es Objektivs ist. Somit kann für jee Wellenlänge λ un gegebenem α (bestimmt urch λ ) er zugehörige Winkel β un weiter x bestimmt weren. Durch Ableitung von x nach λ (numerisch) kann ie Linearispersion über en CCD Chip bestimmt weren. Die berechneten Werte λ(x) können nun urch eine lineare, quaratische oer kubische Funktion approximiert weren: λ = a +b*x+c*x^2+*x^3, wobei für ie lineare Interpolation nur a un b variiert weren, c un zu Null gesetzt weren, für ie quaratische Interpolation noch c verwenet wir. Dies wure mit em Solver von Excel urchgeführt, kann aber auch mit einer linearen, quaratischen oer kubischen Trenlinie im Diagramm erzielt weren. M. Dubs Seite 1/5 Dispersion DADOS2.oc,

2 Resultate Gitter 9 L/mm Fitparameter linear fit qua fit kub fit a b c e-3 rms Fehler (Dasselbe für λ = 4 nm: a b c e-3 rms Fehler Die Rechnungen wuren für einen grossen Chip urchgeführt mit 2 mm Länge es Spektrums (z.b. Canon 35D), bei em ie Nichtlinearität natürlich besoneres gut sichtbar ist. Für eine anere Zentralwellenlänge sin ie quaratischen un kubischen Korrekturen relativ ähnlich,. h. bei einer wenig geänerten Zentralwellenlänge sollte es ausreichen sein, ie lineare Dispersion mit zwei Kalibrierlinien anzupassen.) In er folgenen Abbilung sin ie Fehler er verschieenen Interpolationen über en Wellenlängenbereich argestellt, bei optimaler Wahl er Kalibrierparameter DADOS 9 L/mm elta Dispersion [A/mm] lin Fehler qua Fehler kub Fehler Dispersion Wie man sieht, ist eine lineare Interpolation nicht zulässig, bei quaratischer Interpolation sin ie Fehler im Mittel etwa 1 Å, eine kubische Interpolation ist ausreichen. Dazu sollten minestens etwa 5 Linien über en Spektralbereich zur Kalibrierung verwenet weren. Bei ungünstiger Wahl er Kalibrierwellenlängen weren ie Fehler noch grösser als hier argestellt. Im folgenen Diagramm ist noch ie lineare Dispersion in Å/mm argestellt, einmal exakt für en ebenen CCD Chip un anererseits berechnet mit er obigen Formel aus er Gittergleichung allein abgeleitet. Für ein Objektiv mit Verzeichnung würe wieer eine anere Kurve herauskommen, am einfachsten ist es also, ie Wellenlängenkalibrierung mit einem geeigneten Eichspektrum einmal sorgfältig experimentell zu bestimmen. 98 M. Dubs Seite 2/5 Dispersion DADOS2.oc,

3 112 DADOS 9 L/mm 11 Dispersion CCD Dispersion Gleichung Dispersion [A/mm] Die Dispersion variiert über en Bereich Å um run 1%, azu ist er Einfluss er Umwanlung es Winkels auf ie Bilebene es CCD eutlich sichtbar. Der letztere Effekt ist bei allen Spektrometern vorhanen, welche ein ebenes Bilfel aufweisen. Gitter 2 L/mm Fitparameter linear fit qua fit kub fit a b c E-2 rms Fehler DADOS 2 L/mm 3 elta lin Fehler qua Fehler kub Fehler Für en grösseren Spektralbereich ist ie lineare Interpolation noch schlechter, hingegen sin ie quaratische un kubische Interpolation vergleichbar mit em Gitter höherer Auflösung. M. Dubs Seite 3/5 Dispersion DADOS2.oc,

4 Dispersion [A/mm] Dispersion CCD DADOS 2 L/mm Dispersion Gleichung Bei er kleineren Dispersion un em kleineren CCD Chip +/- 6 mm von er Zentralwellenlänge ist er Einfluss es Tangens es Bilwinkels kleiner. Um ie Kalibrierung mit mehreren Wellenlängen nicht jees Mal urchführen zu müssen, ist es empfehlenswert, immer bei er gleichen Zentralwellenlänge zu arbeiten, inem as Gitter so eingestellt wir, ass eine bekannte Wellenlänge immer an er gleichen Position auf em CCD erscheint. Dann reicht eine Kalibrierung mit einer Linie (vorausgesetzt, ass nichts an er Fokussierung geänert wir, was irekt in ie Dispersion eingeht). Vergleich mit gemessenem Spektrum Urs Flükiger hat mir verankenswerterweise Spektren zur Verfügung gestellt, mit enen iese Berechnungen überprüft weren konnten. Als Beispiel sei hier ein Neonspektrum, gemessen mit em Gitter mit 9 L/mm un aufgenommen mit einer ATIK ATK 314 L, Pixelgrösse 6.45 mu, 1392 x 14 Pixel Spektrallinien von Å. Die Peakpositionen wuren mit IRIS bestimmt un eine kubische Kalibriergleichung mit EXCEL gefittet. Dabei wure zum Vergleich mit en Rechnungen er Nullpunkt er x-achse in en Mittelpunkt es Biles gelegt (Pixel 7, 6865 Å). Die Restfehler λ λ(fit) es kubischen Fit sin im folgenen Diagramm argestellt: M. Dubs Seite 4/5 Dispersion DADOS2.oc,

5 Fehler [A] DADOS, Neon Kalibrierspektrum Lamba [A] Im unteren Wellenlängenbereich waren ie Linien nicht sehr scharf, eshalb ie etwas grösseren Fehler, aber wesentlich kleiner als 1 Pixel (.7 Å). Zum Vergleich mit er Theorie ie Koeffizienten es kubischen Polynoms: Neonspektrum Theorie für 6865 Å a Zentralwellenlänge b Dispersion Å/Pixel c 9.38E E-6 Quaratische Korrektur -1.77E E-9 Kubische Korrektur Die Zentralwellenlänge er Theorie wure auf ganze nm gerunet, ie Dispersion stimmt fast genau, exakt für 95.5 anstatt 96 mm Objektivbrennweite. Auch ie Übereinstimmung er restlichen Koeffizienten ist sehr gut. Zum Schluss sin ie Daten es kubischen Fit auf as Neonspektrum noch verglichen mit en theoretischen Fehlern mit verschieenen Approximationen für iesen Wellenlängenbereich, er im Vergleich zu en Rechnungen oben kleiner gewählt wure. Die Restfehler sin von gleicher Grössenornung wie ie Fehler er quaratischen Interpolation. 2 DADOS 9 L/mm 1.5 elta lin Fehler qua Fehler kub Fehler Neonspektrum Schlussfolgerung Eine Zweiwellenlängenkalibrierung ist in er Regel nicht ausreichen, ausser es wir nur ein sehr kleiner Spektralbereich beobachtet un ie Kalibrierlinien sin in er Nähe er Räner ieses Bereichs, oer ie quaratischen un kubischen Korrekturen weren auf Grun früherer Messungen hinzugefügt. M. Dubs Seite 5/5 Dispersion DADOS2.oc,

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

Optische Abbildung mit Einzel- und Tandemobjektiven

Optische Abbildung mit Einzel- und Tandemobjektiven Optische Abbilung mit Einzel- un Tanemobjektiven. Wirkungsgra einer Abbilung mit einem Einzelobjektiv Mit einem Einzelobjektiv wir ein strahlener egenstan er Fläche A [m ] un er Ausstrahlung M W m au ein

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Eigene Farbskala erstellen

Eigene Farbskala erstellen Farben er Präsentation bestimmen 210 Eigene Farbskala erstellen Im vorigen Kapitel haben Sie gesehen, wie Sie einer gesamten Präsentation oer einzelnen Folien einer Präsentation eine anere Farbskala zuweisen.

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Einführung in die Chaostheorie

Einführung in die Chaostheorie Einführung in ie Chaostheorie Die sogenannte Chaostheorie befasst sich mit er Erforschung nichtlinearer ynamischer Systeme, ie chaotisches Verhalten zeigen können. Chaotisches Verhalten liegt u.a. ann

Mehr

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946 Pro Dr-Ing hena Krawietz Beispiel ür ie Berechnung es Wärmeurchgangskoeizienten eines zusammengetzten Bauteiles nach DIN EN ISO 6946 DIN EN ISO 6946: Bauteile - Wärmeurchlasswierstan un Wärmeurchgangskoeizient

Mehr

Der Bauablauf bei freistehenden Trockenmauern Version Januar 2008

Der Bauablauf bei freistehenden Trockenmauern Version Januar 2008 Der Bauablauf bei freistehenen Trockenmauern Version Januar 2008 2008 Gerhar Stoll Trockenmaurer / Dipl. Arch. ETH/SIA Hüeblistrasse 28 8636 Wal / Switzerlan +41/55/246'34'55 +41/78/761'38'18 info@stonewalls.ch

Mehr

Verkleinerung bei der Abbildung mit einer Sammelli n- reelles Bild. identische Abbildung mit einer Sammellinse, reelles Bild

Verkleinerung bei der Abbildung mit einer Sammelli n- reelles Bild. identische Abbildung mit einer Sammellinse, reelles Bild 1 Messungen am Mikroskop Wie gut sich Einzelheiten an einem Gegenstan erkennen lassen, hängt avon ab, unter welchem Sehwinkel sie em Auge erscheinen. Für ie Angabe er Vergrößerung wure eine eutliche Sehweite

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

Lehrbrief 1 Technik Seite 1 von 7

Lehrbrief 1 Technik Seite 1 von 7 Lehrbrief 1 Technik Seite 1 von 7 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Es ist nunmal ein technisches Hobby, einige grunlegene mathematische Kenntnisse sin

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 04/05 Thomas Maier, Alexaner Wolf Lösung Optische Abbilungen Aufgabe : Vergrößerungslinse Mit einer (ünnen) Linse soll ein Gegenstan G so auf einen 3m entfernten

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.2: Wellenlängenbestimmung mit dem Gitter- und Prismenspektrometer Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

Logik / Kombinatorik - Hinweise zur Lösungsfindung

Logik / Kombinatorik - Hinweise zur Lösungsfindung Logik / Kombinatorik Hinweise zur Lösungsfinung Aufgabe 1) Günstige Bezeichnungen einführen; Tabelle anfertigen un ie unmittelbaren Folgerungen aus bis eintragen (siehe linke Tabelle). Da ies noch nicht

Mehr

Polynomfunktionen - Fundamentalsatz der Algebra

Polynomfunktionen - Fundamentalsatz der Algebra Schule / Institution Titel Seite 1 von 7 Peter Schüller peter.schueller@bmbwk.gv.at Polynomfunktionen - Funamentalsatz er Algebra Mathematische / Fachliche Inhalte in Stichworten: Polynomfunktionen, Funamentalsatz

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

1 Verbindungsleitungen

1 Verbindungsleitungen 1 Verbinungsleitungen Für ie Funktion aller elektronischen Schaltungen sin Verbinungsleitungen zischen en Bauelementen unverzichtbar. Ihre Aufgabe ist es, Signale von einem Baustein zum nächsten zu transportieren.

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

Telezentrische Meßtechnik

Telezentrische Meßtechnik Telezentrische Meßtechnik Beidseitige Telezentrie - eine Voraussetzung für hochgenaue optische Meßtechnik Autor : Dr. Rolf Wartmann, Bad Kreuznach In den letzten Jahren erlebten die Techniken der berührungslosen,

Mehr

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 199 0,7...6... 200 1,0...9... 201 1,25... 10...

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 199 0,7...6... 200 1,0...9... 201 1,25... 10... Stirnahnräer, gerae verahnt, Übersicht Stirnahnräer: Aetalhar gespritt gerae verahnt, Stirnahnräer: POM weiß, gefräst gerae verahnt, Stirnahnräer: POM schwar, gefräst gerae verahnt, Stirnahnräer: Kunststoff

Mehr

Kristallographisches Praktikum I

Kristallographisches Praktikum I Kristallographisches Praktikum I 3 Kristallographisches Praktikum I Versuch G1: Optisches Zweikreisgoniometer 1. Erläuterungen zum Zweikreis-Reflexionsgoniometer Nach em Gesetz er Winkelkonstanz (Nicolaus

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

Cluster 1: Kabelverlauf

Cluster 1: Kabelverlauf Teil B Seite 1 / 6 Doris Schönorfer Cluster 1: Kabelverlauf zum Menü Hinweis: Cluster 1 bezieht sich auf Höhere Technische Lehranstalten (HTL) für ie Ausbilungsrichtungen Bautechnik, Holztechnik & Innenraumgestaltung

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls un Drehimpuls es elektromagnetischen Feles 8.1 Energie In Abschnitt.5 hatten wir em elektrostatischen Fel eine Energie zugeornet, charakterisiert urch ie Energieichte ω el ɛ 0 E. (8.1

Mehr

2.5 Kondensatoren und Feldenergie

2.5 Kondensatoren und Feldenergie 30 KAPITEL 2. ELEKTOSTATIK 2.5 Konensatoren un Felenergie Aus en echnungen für eine unenlich ausgeehnte Platte mit homogener Laungsichte, ie wir in en Abschnitten 2.2 un 2.4 vorgenommen haben, können wir

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Frierich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 26/7 en Blatt 8.2.26 ektorräume: Basen un lineare Unabhängigkeit Zentralübungsaufgaben

Mehr

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 187 0,7...6... 188 1,0...9... 189 1,25... 10...

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 187 0,7...6... 188 1,0...9... 189 1,25... 10... Stirnzahnräer, gerae verzahnt, Üersicht Stirnzahnräer: Azetalharz gespritzt gerae verzahnt, mit Nae Stirnzahnräer: POM gefräst gerae verzahnt, mit Nae Stirnzahnräer: Kunststoff mit Kern aus Stahl un Eelstahl,

Mehr

Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt

Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt Gesucht Stuenten, ie minestens ie Vorlesungen aus en ersten 2

Mehr

Schwarz Herwig herwig.schwarz@htl-kapfenberg.ac.at Florian Grabner florian.grabner@gmx.at Druckverlust in Rohrleitungen

Schwarz Herwig herwig.schwarz@htl-kapfenberg.ac.at Florian Grabner florian.grabner@gmx.at Druckverlust in Rohrleitungen HTBL-Kapfenberg Drucverlust in Rohrleitungen Seite von 8 Schwarz Herwig herwig.schwarz@htl-apfenberg.ac.at Florian Grabner florian.grabner@gmx.at Drucverlust in Rohrleitungen Mathematische / Fachliche

Mehr

1. Bestimmung der Wellenlänge des Laserlichtes

1. Bestimmung der Wellenlänge des Laserlichtes . Betimmung er Wellenlänge e Laerlichte Um mit em Veruch anfangen zu können wure al erte er Laer jutiert, inem er Veruchaufbau o veränert wure, a er Laer exakt gerae un waagerecht auf en Schirm traf. Die

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Praktikum MI Mikroskop

Praktikum MI Mikroskop Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen

Mehr

SINAMICS S120. Nachweis des Performance Levels e gemäß EN ISO 13849-1

SINAMICS S120. Nachweis des Performance Levels e gemäß EN ISO 13849-1 I DT MC Anwenerbeschreibung SINAMICS S20 Nachweis es Performance Levels e gemäß EN ISO 3849- Dokument Projekt Status: release Organisation: I DT MC Baseline:.2 Ort: Erl F80 Datum: 24.09.2009 Copyright

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

3 Boxdimension. 3.1 Wozu denn noch ein Dimensionsbegriff?

3 Boxdimension. 3.1 Wozu denn noch ein Dimensionsbegriff? 26 3 imension 3.1 Wozu enn noch ein Dimensionsbegriff? Im letzten Kapitel haben wir Fraktale betrachtet, ie exakt selbstähnlich sin. Die Selbstähnlichkeitsimension eignete sich in hervorragener Weise,

Mehr

PC & Mac Education Ltd W01GL1DM

PC & Mac Education Ltd  W01GL1DM 388 sin nützliche Helfer, um Text oer Zahlen millimetergenau untereinaner auszurichten un so kleine Aufstellungen zu gestalten: mit em Tabstopp efinieren Sie eine Position in er Horizontalen, an welcher

Mehr

Auswertung P2-10 Auflösungsvermögen

Auswertung P2-10 Auflösungsvermögen Auswertung P2-10 Auflösungsvermögen Michael Prim & Tobias Volkenandt 22 Mai 2006 Aufgabe 11 Bestimmung des Auflösungsvermögens des Auges In diesem Versuch sollten wir experimentell das Auflösungsvermögen

Mehr

Implementierung einer aktiven Dämpfung bei einem Gleichstrommotor zur Untersuchung der haptischen Wahrnehmung von viskoser Reibung

Implementierung einer aktiven Dämpfung bei einem Gleichstrommotor zur Untersuchung der haptischen Wahrnehmung von viskoser Reibung Hefei Heilbronn Workshop on Research an Eucation in Mechatronics June 17 th 18 th 2010, Heilbronn, Germany Implementierung einer aktiven Dämpfung bei einem Gleichstrommotor zur Untersuchung er haptischen

Mehr

da U E d W. Stark; Berufliche Oberschule Freising W12 U12

da U E d W. Stark; Berufliche Oberschule Freising  W12 U12 .4 Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators n ie positive Platte eins Konensators, er mit einer Stromquelle er Spannung verbunen ist, wir ein zunächst elektrisch neutrales

Mehr

1 Lokale Umkehrbarkeit und implizite Funktionen

1 Lokale Umkehrbarkeit und implizite Funktionen Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 2016 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar ist oer

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 013 an en Realschulen in ayern athematik II usterlösung Lösung iese Lösung wure erstellt von ornelia anzenbacher. ie ist keine offizielle Lösung es ayerischen taatsministeriums für Unterricht

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: 23.1.12 Jungius 9, Hörs 2 1 Mathey Einführung in ie

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

3 Trennungs- und Stützeigenschaften, sowie elementare Hilfssätze

3 Trennungs- und Stützeigenschaften, sowie elementare Hilfssätze U BREHM: Konvegeoetrie 3-1 3 Trennungs- un Stützeigenschaften, sowie eleentare Hilfssätze Zunächst einige Hilfssätze, in enen Begriffe aus er Konveität it topologischen Eigenschaften zusaengebracht weren

Mehr

Messung des Strömungswiderstandes in Rohrbögen

Messung des Strömungswiderstandes in Rohrbögen Messung 6 Messung es Strömungswierstanes in Rohrbögen 1. EINLEITUNG In er Ingenieurpraxis ist er Großteil er vorkommenen Strömungen Rohrströmung - man enke z.b. an Wasserleitungen, Abwasserkanäle, Eröl-

Mehr

Superförster. Deutschland sucht den. Spieldauer: etwa 20 Minuten. 2 bis 4 Spieler ab 9 Jahren. Ein Kartenspiel für. Begeisterung wecken

Superförster. Deutschland sucht den. Spieldauer: etwa 20 Minuten. 2 bis 4 Spieler ab 9 Jahren. Ein Kartenspiel für. Begeisterung wecken Ein Kartenspiel für 2 bis 4 Spieler ab 9 Jahren Spielauer: etwa 20 Minuten Worum geht s? Ihr sei Förster un versucht, le eure Aufgaben im W zu erleigen. Für Klimaschutz un Nachhtigkeit gibt es Pluspunkte;

Mehr

Spektralanalyse mit Tracker

Spektralanalyse mit Tracker Spektralanalyse mit Tracker Überarbeitete und ergänzte Kursarbeit von Michael Czuray und Tobias Kuehner Schritt-für Schritt Schüleranleitung: Aufbau: Benötigt werden: Verschiedene LED-Lichter und Glühbirnen

Mehr

Braggsche Reflexion am Einkristall

Braggsche Reflexion am Einkristall Fachhochschule Bielefel Fachbereich Elektrotechnik Physikalisches Praktikum Kurzanleitung Internet: Braggsche Reflexion am Einkristall 1. Physikalische Grunlagen: In er Röntgenröhre weren ie an er Kathoe

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 10. Übungsblatt - 10. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (6 Punkte) a)

Mehr

D U A L - S Y S T E M. DOS für Einsteiger

D U A L - S Y S T E M. DOS für Einsteiger D U A L - S Y S T E M VHS-Kurs von Uwe Koch Das DUAL-System Uwe Koch Seite 1 Zur Darstellung von Zahlen gibt es verschieene Zahlensysteme. So unterscheiet man zunächst zwischen Aitionssystemen un Stellenwertsystemen.

Mehr

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I Die Fellinien es Feles eines stromurchflossenen,

Mehr

BV: Hotel Augsburger Straße. Details Bodenaufbau Küche

BV: Hotel Augsburger Straße. Details Bodenaufbau Küche BV: Hotel Augsburger Straße Details Boenaufbau Küche Inex: Stan: 28.09.04 Hinweis: Die Detailblätter, auch neu hinzugekommene oer nicht geänerte, sin urchgängig mit em Inex bezeichnet. Schraml+Partner

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.1 Auflösungsvermögen von Spektralapparaten Sitchwörter: Geometrische Optik, Wellenoptik, Auflösungsvermögen, Rayleigh Kriterium, Spektrograph,

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

AlZAGK-Seminar: Pellsche Gleichung: Kettenbruchverfahren und das Archimedische problema bovinum

AlZAGK-Seminar: Pellsche Gleichung: Kettenbruchverfahren und das Archimedische problema bovinum AlZAGK-Seminar: Pellsche Gleichung: Kettenbruchverfahren un as Archimeische roblema bovinum Claas Grenzebach 25. Juni 2002 Die Pellsche Gleichung Wenn Harols Streitkräfte, ie in 3 Quarate aufgeteilt waren,

Mehr

DRAHTGEWEBE TECHNISCHE LISTE. 0,025 MM BIS 50 MM MASCHENWEITE.

DRAHTGEWEBE TECHNISCHE LISTE. 0,025 MM BIS 50 MM MASCHENWEITE. DRAHTGEWEBE TECHNISCHE LISTE. 0,0 MM BIS 0 MM MASCHENWEITE. Drahtgeebe-Terminologie nach DIN ISO 90 Webarten un Formen Mascheneite, : Abstan zischen zei benachbarten Kett- oer Schussrähten, in er Projektionsebene

Mehr

Fortgeschrittenenpraktikum für Lehramt Spektrometer. KIT - Karlsruher Institut für Technologie

Fortgeschrittenenpraktikum für Lehramt Spektrometer. KIT - Karlsruher Institut für Technologie Fortgeschrittenenpraktikum für Lehramt Spektrometer KIT - Karlsruher Institut für Technologie 1 Wichtige Hinweise: ˆ Die Gitter sind hochempndlich. Bitte niemals direkt ins Gitter fassen! ˆ Selbiges gilt

Mehr

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de 1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de Man sollte eine Excel-Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte

Mehr

Meeting of Styles Winterthur 2008

Meeting of Styles Winterthur 2008 Meeting of Styles Winterthur 28 i Inhalt Meeting of Styles International... 1 Meeting of Styles Winterthur... 2 Geläne... 3 Programm... 4 Organisation... 5 MOS Team 8... 6 Graffiti-Crew...7 Sponsoring...

Mehr

PH Heidelberg, Fach Mathematik Modulprüfung 2, Einführung in die Geometrie, Wintersemester 09/10, Name Vorname Matrikelnummer

PH Heidelberg, Fach Mathematik Modulprüfung 2, Einführung in die Geometrie, Wintersemester 09/10, Name Vorname Matrikelnummer Moulprüfung, Einführung in ie Geometrie, Wintersemester 09/0,.0.000 ufgae (Multiple hoice) a) Klaus, Gera, Max un Steffi führen inirekte eweise in er asoluten Geometrie. aei verwenen sie ie nachfolgenen

Mehr

Fehlerrechnung. Allgemeines Version: 27. Juli 2004

Fehlerrechnung. Allgemeines Version: 27. Juli 2004 Allgemeines Version: 27. Juli 2004 Fehlerrechnung Aufgabe einer physikalischen Messung ist es, en Zahlenwert einer physikalischen Größe festzustellen. Weil aber einerseits ie Schärfe er menschlichen Sinneswahrnehmungen

Mehr

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn Zahlentheorie Kaitel 14 Quaratische Zahlkörer Markus Klenke un Fabian Mogge Universität Paerborn 9. Mai 008 Inhaltsverzeichnis 14 Quaratische Zahlkörer 0 Vorwort............................... A Wieerholung...........................

Mehr

Versuchsvorbereitung P2-13: Interferenz

Versuchsvorbereitung P2-13: Interferenz Versuchsvorbereitung P2-13: Interferenz Michael Walz, Kathrin Ender Gruppe 10 26. Mai 2008 Inhaltsverzeichnis 1 Newton'sche Ringe 2 1.1 Bestimmung des Krümmungsradius R...................... 2 1.2 Brechungsindex

Mehr

Anforderungen an den Versand und Transport von kleinen Lithiumbatterien gemäß Sondervorschrift 188 ADR

Anforderungen an den Versand und Transport von kleinen Lithiumbatterien gemäß Sondervorschrift 188 ADR Anforerungen an en Versan un Transport von kleinen Lithiumbatterien gemäß Sonervorschrift 188 ADR Zu Buchstabe a) Kenngrößen für Zellen a Lithium-Ionen-Zellen Jee Zelle er Kategorie Lithium-Ionen-Zelle

Mehr

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion Samstag, 17. Januar 2015 Praktikum "Physik für Biologen und Zweifach-Bachelor Chemie" Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion von Olaf Olafson Tutor: --- Einführung: Der fünfte Versuchstag

Mehr

Viel Spaß im Studium!

Viel Spaß im Studium! Fakultät für Informations- un Kognitionswissenschaften Wilhelm-Schickar-Institut für Informatik Vorkurs Mathematik Barbara Rakitsch un Thomas Nestmeyer April 0 Vorwort Dieses Skript ist für en Vorbereitungskurs

Mehr

IV. Dielektrische Werkstoffe. 1. Klassifizierung

IV. Dielektrische Werkstoffe. 1. Klassifizierung IV. Dielektrische Werkstoffe 1. Klassifizierung Dielektrische Werkstoffe, oer kurz Dielektrika genannt, begegnen uns, ob gewollt oer ungewollt, in allen elektrischen Bauelementen, Baugruppen un Geräten.

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Labor Technische Optik

Labor Technische Optik Labor Physik und Photonik Labor Technische Optik Prof. Dr. Alexander Hornberg, Dipl.-Phys. Hermann Bletzer Abb. 1. von Fa. Möller & Wedel.doc Stand: 10.10.013 Prof. Dr. Alexander Hornberg, Dipl.-Phys.

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #24 02/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Frage des Tages wie kann man CD von DVD unterscheiden? λ=532 nm (grüner Laser) 633 nm (roter Laser)

Mehr

8. Uninformierte Suche

8. Uninformierte Suche 8. Uninformierte Suche Prof. Dr. Ruolf Kruse University of Mageurg Faculty of Computer Science Mageurg, Germany ruolf.kruse@cs.uni-mageurg.e S otationen () otationen: Graph Vorgänger (ancestor) von Knoten

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

HSI Kamera VIS / VNIR

HSI Kamera VIS / VNIR HSI Kamera VIS / VNIR» High Performance Hyper Spectral Imaging» Datenblatt Das HSI VIS / VNIR Kamera-System ist ein integriertes Laborgerät für die kombinierte Farb- und chemische Analyse. Das System setzt

Mehr

Gitterspektrometer: Bestimmung der Wellenlänge und des Spektrums I( ) von Licht durch Messung des Beugungswinkels bei bekannter Gitterkonstante.

Gitterspektrometer: Bestimmung der Wellenlänge und des Spektrums I( ) von Licht durch Messung des Beugungswinkels bei bekannter Gitterkonstante. 40_Beugung2_BAx.oc - 1/9 7.4.1 Gitterspektroeter - Gitteronochroator Gitterspektroeter: Bestiung er Wellenlänge un es Spektrus I() von Licht urch Messung es Beugungswinkels bei bekannter Gitterkonstante.

Mehr

Hardwarepraktikum WS 1997/98. Versuch 2. Kombinatorische Systeme I

Hardwarepraktikum WS 1997/98. Versuch 2. Kombinatorische Systeme I Harwarepraktikum WS 1997/98 Versuch 2 Kombinatorische Systeme I Jan Horbach, 17518 Chris Hübsch, 17543 Lars Joran, 17560 Seite 1 1. Aufgabe: Gegenstan es Versuchs ist ie BOOLEsche Funktion f = x1 x2 x3

Mehr

Physik II Übung 10 - Lösungshinweise

Physik II Übung 10 - Lösungshinweise Physik II Übung 0 - Lösungshinweise Stefan Reutter SoSe 202 Moritz Kütt Stan: 04.07.202 Franz Fujara Aufgabe Lolli Die kleine Carla hat von einem netten Onkel einen großen, runen Lolli geschenkt bekommen.

Mehr

Optik. Beugung am Doppelspalt und an Mehrfachspalten. LD Handblätter Physik P5.3.1.2. 0713-Bi. Wellenoptik Beugung. Versuchsziele.

Optik. Beugung am Doppelspalt und an Mehrfachspalten. LD Handblätter Physik P5.3.1.2. 0713-Bi. Wellenoptik Beugung. Versuchsziele. Optik Wellenoptik Beugung LD Hnblätter Physik Beugung m Doppelsplt un n Mehrfchsplten Versuchsziele! Untersuchung er Beugung m Doppelsplt bei verschieenen Spltbstänen.! Untersuchung er Beugung m Doppelsplt

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Versuch P2-13: Interferenz. Auswertung. Von Jan Oertlin und Ingo Medebach. 3. Mai 2010

Versuch P2-13: Interferenz. Auswertung. Von Jan Oertlin und Ingo Medebach. 3. Mai 2010 Versuch P2-13: Interferenz Auswertung Von Jan Oertlin und Ingo Medebach 3. Mai 2010 Inhaltsverzeichnis 1 Newtonsche Ringe 2 1.1 Krümmungsradius R einer symmetrischen sphärischen Bikonvexlinse..........

Mehr

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht.

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht. Aufgaben Konensator 57. Zwei kreisförmige Metallplatten mit em Raius 0 cm, ie parallel im Abstan von 0 cm angeornet sin, bilen einen Plattenkonensator. In er Mitte zwischen en Platten hängt an einem ünnen

Mehr

8. Projektionsarten und Perspektive

8. Projektionsarten und Perspektive 8. Projektionsarten un Perspektive Projektionen: transformieren 3D-Objekte in 2D-Biler (mathematisch: lineare Abb., aber nicht bijektiv ugehörige Matri singulär,.h. Determinante ) Projektion ist Grunaufgabe

Mehr

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6 Physikalisches Grundpraktikum Versuch 18 Das Mikroskop Praktikant: Tobias Wegener Christian Gass Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de

Mehr

2. Goldener Schnitt. Der Goldene Schnitt ist das wohl berühmteste Zahlenverhältnis.

2. Goldener Schnitt. Der Goldene Schnitt ist das wohl berühmteste Zahlenverhältnis. 8 2. Golener Schnitt Die Geometrie birgt zwei grosse Schätze: er eine ist er Satz von Pythagoras, er anere ist er Golene Schnitt. Den ersten können wir mit einem Scheffel Gol vergleichen, en zweiten ürfen

Mehr

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen.

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen. 1 5. Enliche Körper Z iel: Klassifikation enlicher Körper un ihrer Beziehungen. 1 5. 1. Situation: K sei eine enliche Erweiterung es Körpers F p = Z/ p, p P, [ K: F p ] = n #( K = p n = : q K ist zyklisch

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : estimmun er rennweite einer inse mittels er Methoe nach essel estimmun er rennweite einer inse mittels er Methoe nach essel Klasse : Name : Datum : Um im letzten Versuch es letzten Praktikums ie rennweite

Mehr

Infos: Buffons Nadel 05/2013

Infos:  Buffons Nadel 05/2013 Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 7; LK 05/013 Buffons Nael Infos: www.mue.e Im 18. Jahrhunert beteiligten sich eine Reihe von Aeligen an er Weiterentwicklung er Naturwissenschaften

Mehr

Vertriebspartner/In sein

Vertriebspartner/In sein Beginnen Sie eine neue Zukunft. Wir begleiten Sie! Freuvoll! Chancenreich! Fair! Was kann ich tun? urch! Sie Starten Vertriebspartner/In weren Vertriebspartner/In sein Ihre Chance für mehr Einkommen, Freiheit

Mehr

a 1 a = 1 f HAUPTEBENEN BEI OBJEKTIVEN (Versuch D) f = f 1 f 2 f 1 H 2 H 1 H =e f H = e f f 2 Grundlagen:

a 1 a = 1 f HAUPTEBENEN BEI OBJEKTIVEN (Versuch D) f = f 1 f 2 f 1 H 2 H 1 H =e f H = e f f 2 Grundlagen: HAUPTEBENEN BEI OBJEKTIVEN (Versuch D) Grundlagen: Stellt man aus einzelnen Linsen ein mehrstufiges System zusammen, so kann man seine Gesamtwirkung wieder durch seine Brennweite und die Lage der Hauptpunkte

Mehr

Dr. Neidhardt Thema: Parabeln. [ein Bindeglied zwischen Geometrie und Algebra ] Referent: Christian Schuster

Dr. Neidhardt Thema: Parabeln. [ein Bindeglied zwischen Geometrie und Algebra ] Referent: Christian Schuster Dr. Neihart 14.11.03 Thema: Parabeln [ein Bineglie zwischen Geometrie un Algebra ] Referent: Christian Schuster Glieerung: Anwenungsgebiete un Vorkommen von Parabel Erscheinungen in er Natur Parabeln:

Mehr

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003 F 23 Beta-Zähler Wolfgang Unger, Robert Wagner 25. Juni 2003 Inhaltsverzeichnis 1 Auswertung 2 1.1 Eichung des Proportionalzählers mit 55 F e............. 2 1.2 Energieverlust von 40K im Zählrohr................

Mehr