Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung"

Transkript

1 Dispersion DADOS Problemstellung Für ie Auswertung von Spektren ist es notwenig, ie Nichtlinearität er Wellenlängenskala auf em CCD Chip zu berücksichtigen. Dies wir hier am Beispiel es DADOS urchgerechnet, ist aber natürlich auch auf anere Spektrometer anwenbar. Es wir gezeigt, wie gross er Fehler bei linearer, quaratischer un kubischer Interpolation wir. Zum Vergleich wir ie Dispersion in er Brennebene er Kamera mit er aus einer einfachen Formel berechneten verglichen. Technische Daten, DADOS Für ie folgenen Rechnungen wuren ie Eigenschaften es DADOS verwenet, entnommen aus er Gebrauchsanleitung: Gitter: 2 resp. 9 L/mm Brennweite es Objektivs: 96 mm Winkel Kollimator Kamera: 9 Gesichtsfel Kamera: 2 mm (entspricht etwa Canon 35D) für Gitter mit 9 L/mm resp. 12 mm für Gitter 2 L/mm, ausreichen für Wellenlängenbereich 4 8 Å Rechnung Die Rechnung wure in einem EXCEL Datenblatt ausgeführt, basieren auf SIMSPEC.XLS von Christian Buil un für ie vorliegene Fragestellung moifiziert. Die Rechnung basiert auf er Gittergleichung G*m*λ = sin α + sin β (1) Wobei G ie Gitterkonstante (Linien/mm) m ie Gitterornung un α resp. β Ein- un Ausfallswinkel arstellen. Dabei sin ie richtigen Vorzeichen zu wählen, in unserem Fall α ca. 5 un β ca. 4, somit α β = 9. Für as Gitter mit 9 L/mm wir α entsprechen grösser, ca. 65. Mit ieser Winkelwahl ergibt sich auch ie in er Anleitung spezifizierte Dispersion (run 4 resp. 1 nm/mm). Für ie Winkelispersion kann folgene Formel verwenet weren D = β / λ = m * G / cos β, (2) welche urch Differenzieren er 1. Gleichung erhalten wir (Die Formel wuren em Diffraction Grating Hanbook entnommen, welches auf er Newport Webseite heruntergelaen weren kann). Diese Formeln gelten insbesonere im Bilzentrum er CCD Kamera,.h. für ie Zentralwellenlänge.λ Ist iese un somit α festgelegt, können für anere Wellenlängen λ ie entsprechenen Winkel β berechnet weren un in Detektorkoorinaten x umgerechnet weren, wobei x = em Bilzentrum un somit λ entspricht. Dabei gilt bei verzeichnungsfreier Abbilung es Objektivs: tan(β β) = x/f, wobei f ie Brennweite es Objektivs ist. Somit kann für jee Wellenlänge λ un gegebenem α (bestimmt urch λ ) er zugehörige Winkel β un weiter x bestimmt weren. Durch Ableitung von x nach λ (numerisch) kann ie Linearispersion über en CCD Chip bestimmt weren. Die berechneten Werte λ(x) können nun urch eine lineare, quaratische oer kubische Funktion approximiert weren: λ = a +b*x+c*x^2+*x^3, wobei für ie lineare Interpolation nur a un b variiert weren, c un zu Null gesetzt weren, für ie quaratische Interpolation noch c verwenet wir. Dies wure mit em Solver von Excel urchgeführt, kann aber auch mit einer linearen, quaratischen oer kubischen Trenlinie im Diagramm erzielt weren. M. Dubs Seite 1/5 Dispersion DADOS2.oc,

2 Resultate Gitter 9 L/mm Fitparameter linear fit qua fit kub fit a b c e-3 rms Fehler (Dasselbe für λ = 4 nm: a b c e-3 rms Fehler Die Rechnungen wuren für einen grossen Chip urchgeführt mit 2 mm Länge es Spektrums (z.b. Canon 35D), bei em ie Nichtlinearität natürlich besoneres gut sichtbar ist. Für eine anere Zentralwellenlänge sin ie quaratischen un kubischen Korrekturen relativ ähnlich,. h. bei einer wenig geänerten Zentralwellenlänge sollte es ausreichen sein, ie lineare Dispersion mit zwei Kalibrierlinien anzupassen.) In er folgenen Abbilung sin ie Fehler er verschieenen Interpolationen über en Wellenlängenbereich argestellt, bei optimaler Wahl er Kalibrierparameter DADOS 9 L/mm elta Dispersion [A/mm] lin Fehler qua Fehler kub Fehler Dispersion Wie man sieht, ist eine lineare Interpolation nicht zulässig, bei quaratischer Interpolation sin ie Fehler im Mittel etwa 1 Å, eine kubische Interpolation ist ausreichen. Dazu sollten minestens etwa 5 Linien über en Spektralbereich zur Kalibrierung verwenet weren. Bei ungünstiger Wahl er Kalibrierwellenlängen weren ie Fehler noch grösser als hier argestellt. Im folgenen Diagramm ist noch ie lineare Dispersion in Å/mm argestellt, einmal exakt für en ebenen CCD Chip un anererseits berechnet mit er obigen Formel aus er Gittergleichung allein abgeleitet. Für ein Objektiv mit Verzeichnung würe wieer eine anere Kurve herauskommen, am einfachsten ist es also, ie Wellenlängenkalibrierung mit einem geeigneten Eichspektrum einmal sorgfältig experimentell zu bestimmen. 98 M. Dubs Seite 2/5 Dispersion DADOS2.oc,

3 112 DADOS 9 L/mm 11 Dispersion CCD Dispersion Gleichung Dispersion [A/mm] Die Dispersion variiert über en Bereich Å um run 1%, azu ist er Einfluss er Umwanlung es Winkels auf ie Bilebene es CCD eutlich sichtbar. Der letztere Effekt ist bei allen Spektrometern vorhanen, welche ein ebenes Bilfel aufweisen. Gitter 2 L/mm Fitparameter linear fit qua fit kub fit a b c E-2 rms Fehler DADOS 2 L/mm 3 elta lin Fehler qua Fehler kub Fehler Für en grösseren Spektralbereich ist ie lineare Interpolation noch schlechter, hingegen sin ie quaratische un kubische Interpolation vergleichbar mit em Gitter höherer Auflösung. M. Dubs Seite 3/5 Dispersion DADOS2.oc,

4 Dispersion [A/mm] Dispersion CCD DADOS 2 L/mm Dispersion Gleichung Bei er kleineren Dispersion un em kleineren CCD Chip +/- 6 mm von er Zentralwellenlänge ist er Einfluss es Tangens es Bilwinkels kleiner. Um ie Kalibrierung mit mehreren Wellenlängen nicht jees Mal urchführen zu müssen, ist es empfehlenswert, immer bei er gleichen Zentralwellenlänge zu arbeiten, inem as Gitter so eingestellt wir, ass eine bekannte Wellenlänge immer an er gleichen Position auf em CCD erscheint. Dann reicht eine Kalibrierung mit einer Linie (vorausgesetzt, ass nichts an er Fokussierung geänert wir, was irekt in ie Dispersion eingeht). Vergleich mit gemessenem Spektrum Urs Flükiger hat mir verankenswerterweise Spektren zur Verfügung gestellt, mit enen iese Berechnungen überprüft weren konnten. Als Beispiel sei hier ein Neonspektrum, gemessen mit em Gitter mit 9 L/mm un aufgenommen mit einer ATIK ATK 314 L, Pixelgrösse 6.45 mu, 1392 x 14 Pixel Spektrallinien von Å. Die Peakpositionen wuren mit IRIS bestimmt un eine kubische Kalibriergleichung mit EXCEL gefittet. Dabei wure zum Vergleich mit en Rechnungen er Nullpunkt er x-achse in en Mittelpunkt es Biles gelegt (Pixel 7, 6865 Å). Die Restfehler λ λ(fit) es kubischen Fit sin im folgenen Diagramm argestellt: M. Dubs Seite 4/5 Dispersion DADOS2.oc,

5 Fehler [A] DADOS, Neon Kalibrierspektrum Lamba [A] Im unteren Wellenlängenbereich waren ie Linien nicht sehr scharf, eshalb ie etwas grösseren Fehler, aber wesentlich kleiner als 1 Pixel (.7 Å). Zum Vergleich mit er Theorie ie Koeffizienten es kubischen Polynoms: Neonspektrum Theorie für 6865 Å a Zentralwellenlänge b Dispersion Å/Pixel c 9.38E E-6 Quaratische Korrektur -1.77E E-9 Kubische Korrektur Die Zentralwellenlänge er Theorie wure auf ganze nm gerunet, ie Dispersion stimmt fast genau, exakt für 95.5 anstatt 96 mm Objektivbrennweite. Auch ie Übereinstimmung er restlichen Koeffizienten ist sehr gut. Zum Schluss sin ie Daten es kubischen Fit auf as Neonspektrum noch verglichen mit en theoretischen Fehlern mit verschieenen Approximationen für iesen Wellenlängenbereich, er im Vergleich zu en Rechnungen oben kleiner gewählt wure. Die Restfehler sin von gleicher Grössenornung wie ie Fehler er quaratischen Interpolation. 2 DADOS 9 L/mm 1.5 elta lin Fehler qua Fehler kub Fehler Neonspektrum Schlussfolgerung Eine Zweiwellenlängenkalibrierung ist in er Regel nicht ausreichen, ausser es wir nur ein sehr kleiner Spektralbereich beobachtet un ie Kalibrierlinien sin in er Nähe er Räner ieses Bereichs, oer ie quaratischen un kubischen Korrekturen weren auf Grun früherer Messungen hinzugefügt. M. Dubs Seite 5/5 Dispersion DADOS2.oc,

Optische Abbildung mit Einzel- und Tandemobjektiven

Optische Abbildung mit Einzel- und Tandemobjektiven Optische Abbilung mit Einzel- un Tanemobjektiven. Wirkungsgra einer Abbilung mit einem Einzelobjektiv Mit einem Einzelobjektiv wir ein strahlener egenstan er Fläche A [m ] un er Ausstrahlung M W m au ein

Mehr

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

Eigene Farbskala erstellen

Eigene Farbskala erstellen Farben er Präsentation bestimmen 210 Eigene Farbskala erstellen Im vorigen Kapitel haben Sie gesehen, wie Sie einer gesamten Präsentation oer einzelnen Folien einer Präsentation eine anere Farbskala zuweisen.

Mehr

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946 Pro Dr-Ing hena Krawietz Beispiel ür ie Berechnung es Wärmeurchgangskoeizienten eines zusammengetzten Bauteiles nach DIN EN ISO 6946 DIN EN ISO 6946: Bauteile - Wärmeurchlasswierstan un Wärmeurchgangskoeizient

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Lehrbrief 1 Technik Seite 1 von 7

Lehrbrief 1 Technik Seite 1 von 7 Lehrbrief 1 Technik Seite 1 von 7 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Es ist nunmal ein technisches Hobby, einige grunlegene mathematische Kenntnisse sin

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

5. Bildauflösung ICT-Komp 10

5. Bildauflösung ICT-Komp 10 5. Bildauflösung ICT-Komp 10 Was sind dpi? Das Maß für die Bildauflösung eines Bildes sind dpi. Jeder spricht davon, aber oft weiß man gar nicht genau was das ist. Die Bezeichnung "dpi" ist ein Maß, mit

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Einführung in die Chaostheorie

Einführung in die Chaostheorie Einführung in ie Chaostheorie Die sogenannte Chaostheorie befasst sich mit er Erforschung nichtlinearer ynamischer Systeme, ie chaotisches Verhalten zeigen können. Chaotisches Verhalten liegt u.a. ann

Mehr

Telezentrische Meßtechnik

Telezentrische Meßtechnik Telezentrische Meßtechnik Beidseitige Telezentrie - eine Voraussetzung für hochgenaue optische Meßtechnik Autor : Dr. Rolf Wartmann, Bad Kreuznach In den letzten Jahren erlebten die Techniken der berührungslosen,

Mehr

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003 F 23 Beta-Zähler Wolfgang Unger, Robert Wagner 25. Juni 2003 Inhaltsverzeichnis 1 Auswertung 2 1.1 Eichung des Proportionalzählers mit 55 F e............. 2 1.2 Energieverlust von 40K im Zählrohr................

Mehr

Der Bauablauf bei freistehenden Trockenmauern Version Januar 2008

Der Bauablauf bei freistehenden Trockenmauern Version Januar 2008 Der Bauablauf bei freistehenen Trockenmauern Version Januar 2008 2008 Gerhar Stoll Trockenmaurer / Dipl. Arch. ETH/SIA Hüeblistrasse 28 8636 Wal / Switzerlan +41/55/246'34'55 +41/78/761'38'18 info@stonewalls.ch

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

3. Verpackungskünstler. Berechnungen am Quader, Umgang mit Termen, räumliche Vorstellung

3. Verpackungskünstler. Berechnungen am Quader, Umgang mit Termen, räumliche Vorstellung Berechnungen am Quader, Umgang mit Termen, räumliche Vorstellung Päckchen, die man verschenken möchte, werden gerne mit Geschenkband verschnürt. Dazu wird das Päckchen auf seine größte Seite gelegt, wie

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de 1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de Man sollte eine Excel-Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Biochemisches Grundpraktikum

Biochemisches Grundpraktikum Biochemisches Grundpraktikum Versuch Nummer G-01 01: Potentiometrische und spektrophotometrische Bestim- mung von Ionisationskonstanten Gliederung: I. Titrationskurve von Histidin und Bestimmung der pk-werte...

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Physik 4, Übung 11, Prof. Förster

Physik 4, Übung 11, Prof. Förster Physik 4, Übung 11, Prof. Förster Christoph Hansen Emailkontakt ieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Konfiguration der Messkanäle. Konfiguration der Zeitachse. Abb. 3: Konfigurationsmenü des Sensoreingangs A. Abb. 4: Messparameter Konfigurationsmenü

Konfiguration der Messkanäle. Konfiguration der Zeitachse. Abb. 3: Konfigurationsmenü des Sensoreingangs A. Abb. 4: Messparameter Konfigurationsmenü Anleitung zum Programm CASSY Lab für den Versuch E12 Starten Sie das Programm CASSY Lab durch Doppelklick auf das Icon auf dem Windows- Desktop. Es erscheint ein Fenster mit Lizensierungsinformationen,

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Optimales Zusammenspiel von Kamera und Optik. Carl Zeiss AG, Udo Schellenbach, PH-V

Optimales Zusammenspiel von Kamera und Optik. Carl Zeiss AG, Udo Schellenbach, PH-V Trivialitäten Nicht mehr ganz so trivial Geheimwissen Welchen Stellenwert nimmt die Optik bei Bildverarbeitern oft ein? Trivialitäten: Wie groß ist der Sensor der Kamera? Deckt der Bildkreis des Objektivs

Mehr

Barocker Kontrapunkt Invention: idealtypische ( akademische ) Form

Barocker Kontrapunkt Invention: idealtypische ( akademische ) Form Hans Peter Reutter: Invention 1 Baroker Kontrapunkt Invention: iealtypishe ( akaemishe ) Form Bis zum Ene er Barokzeit sin ie Bezeihnungen für polyphone Formen eigentlih ziemlih austaushbar: Fuge, Rierar,

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Verkleinerung bei der Abbildung mit einer Sammelli n- reelles Bild. identische Abbildung mit einer Sammellinse, reelles Bild

Verkleinerung bei der Abbildung mit einer Sammelli n- reelles Bild. identische Abbildung mit einer Sammellinse, reelles Bild 1 Messungen am Mikroskop Wie gut sich Einzelheiten an einem Gegenstan erkennen lassen, hängt avon ab, unter welchem Sehwinkel sie em Auge erscheinen. Für ie Angabe er Vergrößerung wure eine eutliche Sehweite

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 20/2 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 9.0.2,

Mehr

Schwarz Herwig herwig.schwarz@htl-kapfenberg.ac.at Florian Grabner florian.grabner@gmx.at Druckverlust in Rohrleitungen

Schwarz Herwig herwig.schwarz@htl-kapfenberg.ac.at Florian Grabner florian.grabner@gmx.at Druckverlust in Rohrleitungen HTBL-Kapfenberg Drucverlust in Rohrleitungen Seite von 8 Schwarz Herwig herwig.schwarz@htl-apfenberg.ac.at Florian Grabner florian.grabner@gmx.at Drucverlust in Rohrleitungen Mathematische / Fachliche

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

M4 Oberflächenspannung Protokoll

M4 Oberflächenspannung Protokoll Christian Müller Jan Philipp Dietrich M4 Oberflächenspannung Protokoll Versuch 1: Abreißmethode b) Messergebnisse Versuch 2: Steighöhenmethode b) Messergebnisse Versuch 3: Stalagmometer b) Messergebnisse

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test?

Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test? Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test? Auch wenn die Messungsmethoden ähnlich sind, ist das Ziel beider Systeme jedoch ein anderes. Gwenolé NEXER g.nexer@hearin gp

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen.

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen. Medizintechnik MATHCAD Kapitel. Einfache Rechnungen mit MATHCAD ohne Variablendefinition In diesem kleinen Kapitel wollen wir die ersten Schritte mit MATHCAD tun und folgende Aufgaben lösen: 8 a: 5 =?

Mehr

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität Übung 5 : Theorie : In einem Boden finden immer Temperaturausgleichsprozesse statt. Der Wärmestrom läßt sich in eine vertikale und horizontale Komponente einteilen. Wir betrachten hier den Wärmestrom in

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Physiklabor 4 Michel Kaltenrieder 10. Februar

Mehr

1 Verbindungsleitungen

1 Verbindungsleitungen 1 Verbinungsleitungen Für ie Funktion aller elektronischen Schaltungen sin Verbinungsleitungen zischen en Bauelementen unverzichtbar. Ihre Aufgabe ist es, Signale von einem Baustein zum nächsten zu transportieren.

Mehr

Kostenfunktion - Der Cournotsche Punkt

Kostenfunktion - Der Cournotsche Punkt Kostenfunktion Seite 1 von 8 Wilfrie Rohm Kostenfunktion - Der Cournotsche Punkt Der Cournotsche Punkt C beschreibt ie gewinnmaximale Preis-Mengen-Kombination mit en Koorinaten C(p c ; x c ). Er sagt aus,

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Kurzanleitung. MEYTON Aufbau einer Internetverbindung. 1 Von 11

Kurzanleitung. MEYTON Aufbau einer Internetverbindung. 1 Von 11 Kurzanleitung MEYTON Aufbau einer Internetverbindung 1 Von 11 Inhaltsverzeichnis Installation eines Internetzugangs...3 Ist mein Router bereits im MEYTON Netzwerk?...3 Start des YAST Programms...4 Auswahl

Mehr

Wellen. 3.&6. November 2008. Alexander Bornikoel, Tewje Mehner, Veronika Wahl

Wellen. 3.&6. November 2008. Alexander Bornikoel, Tewje Mehner, Veronika Wahl 1 Übungen Seismik I: 3.&6. November 2008 1. Torsionswellenkette Die Torsionswellenkette ist ein oft verwendetes Modell zur Veranschaulichung der ausbreitung. Sie besteht aus zahlreichen hantelförmigen

Mehr

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung 4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

1. Geld und Anlagen. 1.1 Einleitung. 1.2 Historische Erfahrungen. Inhaltverzeichnis

1. Geld und Anlagen. 1.1 Einleitung. 1.2 Historische Erfahrungen. Inhaltverzeichnis Page 2 of 6 Inhaltverzeichnis 1. Geld und Anlagen... 2 1.1 Einleitung... 2 1.2 Historische Erfahrungen... 2 1.3 Finanzmarkttheorie... 4 1.4 Das einfachste Modell... 4 1.5 Disclaimer... 6 1. Geld und Anlagen

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHISCHE UIVERSITÄT MÜCHE Zentrum Mathematik PRF. R.R. JÜRGE RICHTER-GEBERT, VAESSA KRUMMECK, MICHAEL PRÄHFER Höhere Mathematik für Informatiker I (Wintersemester 003/004) Aufgabenblatt 1 (4. ktober 003)

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls un Drehimpuls es elektromagnetischen Feles 8.1 Energie In Abschnitt.5 hatten wir em elektrostatischen Fel eine Energie zugeornet, charakterisiert urch ie Energieichte ω el ɛ 0 E. (8.1

Mehr

Dossier: Rechnungen und Lieferscheine in Word

Dossier: Rechnungen und Lieferscheine in Word www.sekretaerinnen-service.de Dossier: Rechnungen und Lieferscheine in Word Es muss nicht immer Excel sein Wenn Sie eine Vorlage für eine Rechnung oder einen Lieferschein erstellen möchten, brauchen Sie

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Fortgeschrittenenpraktikum für Lehramt Spektrometer. KIT - Karlsruher Institut für Technologie

Fortgeschrittenenpraktikum für Lehramt Spektrometer. KIT - Karlsruher Institut für Technologie Fortgeschrittenenpraktikum für Lehramt Spektrometer KIT - Karlsruher Institut für Technologie 1 Wichtige Hinweise: ˆ Die Gitter sind hochempndlich. Bitte niemals direkt ins Gitter fassen! ˆ Selbiges gilt

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Arbeitspunkt einer Diode

Arbeitspunkt einer Diode Arbeitspunkt einer Diode Liegt eine Diode mit einem Widerstand R in Reihe an einer Spannung U 0, so müssen sich die beiden diese Spannung teilen. Vom Widerstand wissen wir, dass er bei einer Spannung von

Mehr

Spektralanalyse mit Tracker

Spektralanalyse mit Tracker Spektralanalyse mit Tracker Überarbeitete und ergänzte Kursarbeit von Michael Czuray und Tobias Kuehner Schritt-für Schritt Schüleranleitung: Aufbau: Benötigt werden: Verschiedene LED-Lichter und Glühbirnen

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

8. Berechnung der kalkulatorischen Zinsen

8. Berechnung der kalkulatorischen Zinsen 8. Berechnung der kalkulatorischen Zinsen 8.1. Allgemeines In der laufenden Rechnung werden im Konto 322.00 Zinsen nur die ermittelten Fremdkapitalzinsen erfasst. Sobald aber eine Betriebsabrechnung erstellt

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

Grundpraktikum I Fernrohr

Grundpraktikum I Fernrohr Grunpraktikum I Fernrohr 6.Versuch Datum: 08.05.2006 Thomas Hemmelmayr (#0455761 un Michael Drack (#0457224 1. Keplersches (astronomisches Fernrohr 1.1. Versuchsaufbau us zwei Sammellinsen soll ein Fernrohr,

Mehr

DeltaVision Computer Software Programmierung Internet Beratung Schulung

DeltaVision Computer Software Programmierung Internet Beratung Schulung Zertifikate von DeltaVision für Office Projekte 1 Einleitung: Digitale Zertifikate für VBA-Projekte DeltaVision signiert ab 2009 alle seine VBA Projekte. So ist für den Anwender immer klar, dass der Code

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement 1. Einleitung Die Wheatstonesche Brücke ist eine Brückenschaltung zur Bestimmung von Widerständen. Dabei wird der zu messende Widerstand

Mehr

8. Uninformierte Suche

8. Uninformierte Suche 8. Uninformierte Suche Prof. Dr. Ruolf Kruse University of Mageurg Faculty of Computer Science Mageurg, Germany ruolf.kruse@cs.uni-mageurg.e S otationen () otationen: Graph Vorgänger (ancestor) von Knoten

Mehr

Wir basteln einen Jahreskalender mit MS Excel.

Wir basteln einen Jahreskalender mit MS Excel. Wir basteln einen Jahreskalender mit MS Excel. In meinen Seminaren werde ich hin und wieder nach einem Excel-Jahreskalender gefragt. Im Internet findet man natürlich eine ganze Reihe mehr oder weniger

Mehr

Bulletin. Gebrochener Stab. Martin Lieberherr Mathematisch Naturwissenschaftliches Gymnasium Rämibühl, 8001 Zürich

Bulletin. Gebrochener Stab. Martin Lieberherr Mathematisch Naturwissenschaftliches Gymnasium Rämibühl, 8001 Zürich ulletin DPK Gebrochener Stab Martin Lieberherr Mathematisch Naturwissenschaftliches Gymnasium Rämibühl, 8001 Zürich Einleitung Hält man einen geraden Wanderstab in einen spiegelglatten, klaren ergsee,

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Alle gehören dazu. Vorwort

Alle gehören dazu. Vorwort Alle gehören dazu Alle sollen zusammen Sport machen können. In diesem Text steht: Wie wir dafür sorgen wollen. Wir sind: Der Deutsche Olympische Sport-Bund und die Deutsche Sport-Jugend. Zu uns gehören

Mehr

MTV-Klausurvorbereitung, TFH Berlin, Cornelius Bradter

MTV-Klausurvorbereitung, TFH Berlin, Cornelius Bradter Modulation Die Modulation ist ein technischer Vorgang, bei dem ein oder mehrere Merkmale einer Trägerschwingung entsprechend dem Signal einer zu modulierenden Schwingung verändert werden. Mathematisch

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Anleitung zur Daten zur Datensicherung und Datenrücksicherung. Datensicherung

Anleitung zur Daten zur Datensicherung und Datenrücksicherung. Datensicherung Anleitung zur Daten zur Datensicherung und Datenrücksicherung Datensicherung Es gibt drei Möglichkeiten der Datensicherung. Zwei davon sind in Ges eingebaut, die dritte ist eine manuelle Möglichkeit. In

Mehr

Sich einen eigenen Blog anzulegen, ist gar nicht so schwer. Es gibt verschiedene Anbieter. www.blogger.com ist einer davon.

Sich einen eigenen Blog anzulegen, ist gar nicht so schwer. Es gibt verschiedene Anbieter. www.blogger.com ist einer davon. www.blogger.com Sich einen eigenen Blog anzulegen, ist gar nicht so schwer. Es gibt verschiedene Anbieter. www.blogger.com ist einer davon. Sie müssen sich dort nur ein Konto anlegen. Dafür gehen Sie auf

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr