Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Größe: px
Ab Seite anzeigen:

Download "Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot"

Transkript

1 Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Prüfuge abgegebe sowet erforderlch. Stad 1. Jul Äderuge vorbehalte. Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech

2 Ihaltsverzechs Formelsammlug Umrechug vo efache stetge Redte...6 Umrechug vo stetge efache Redte...6 Zseszsberechug (Zukuftswert oder auch Future Value) be efache Redte...6 Zseszsberechug be stetge Redte...7 Barwertberechug (Gegewartswert oder auch Preset Value) auf Grud küftgem Kaptalbedarf (efache Werte)...7 Barwertberechug auf Grud küftgem Kaptalbedarf (stetge Werte)...7 Berechug der efache Gesamtredte...8 Berechug der stetge Gesamtredte...8 Berechug der efache durchschttlche Jahresredte (Überjährgket)...8 Berechug der stetge durchschttlche Jahresredte (Überjährgket)...8 Berechug der efache durchschttlche Jahresredte (Uterjährgket)...9 Berechug der stetge durchschttlche Jahresredte (Uterjährgket)...9 Uterschedlche efache Peroderedte; Berechug der efache Gesamtredte...9 Uterschedlche stetge Peroderedte; Berechug der stetge Gesamtredte...9 Berechug der zetgewchtete Durchschttsredte...10 Berechug der geldgewchtete Redte...10 Berechug der mathematsch korrekte Realredte...11 Berechug der ugefähre Realredte (Aäherugsberechug)...11 Berechug des Emssospreses be eer Geldmarktbuchforderug...11 Berechug der Jahresredte be vorhadeem Emssospres...12 Peroderedte eer Oblgato...12 Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 2 vo 31

3 Couporedte eer Oblgato...12 Presredte eer Oblgato...12 Drekte Redte eer Oblgato...13 Berechug der Verfallredte ach Praktkermethode (guter Schätzwert)...13 Berechug der Verfallredte (Aäherugsberechug)...13 Berechug der exakte Verfallredte...14 Marchzsberechug be eer Oblgato...14 Wadelpres eer Wadeloblgato...14 Wadelpartät eer Wadeloblgato...14 Wadelpräme über ee Wadeloblgato...15 Wadelpräme über ee Wadeloblgato auf Jahresbass...15 Redteberegtes Kursrsko eer Wadeloblgato...15 Optospartät eer Optosoblgato...15 Optospräme über ee Optosoblgato...16 Optospräme über ee Optosoblgato auf Jahresbass...16 Barwertberechug eer Oblgato...16 Berechug des ugefähre Barwertes eer Oblgato (Aäherugsberechug)...16 Berechug der Macaulay Durato...17 Berechug der Modfed Durato...17 Berechug der approxmatve Presäderug eer Oblgato...17 Aussagekraft der approxmatve Presäderug...18 Berechug des Break-eve-Wechselkurses...18 Berechug der Währugsredte...18 Berechug der währugsberegte Gesamtredte...19 Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 3 vo 31

4 Berechug Wert Bezugsrecht be eer Aktekaptalerhöhug...19 Berechug theoretscher Aktekurs ach Kaptalerhöhug...20 Gewredte eer Akte...20 Payout-Rato eer Gesellschaft...20 Dvdederedte eer Akte...21 Cash-Flow Redte eer Akte...21 Egekaptalredte eer Akte...21 Kurs-Gew-Verhälts (KGV/ PE) mt aktuellem Gew...21 Kurs-Gew-Verhälts (KGV/ PE) mt zuküftgem Gew (Gewschätzug)...22 Kurs-Gew-Verhälts uter Berückschtgug des küftge Gewwachstumes (% ausgedrückt) (PEG; Prce-Eargs to Growth Rato)...22 Kurs-Umsatz-Verhälts (KUV/ PS)...22 Kurs-Buchwert-Verhälts (KUB/ PB)...22 Kurs-Substazwert-Verhälts (KSV)...23 Sparplaberechug achschüssg (Jahrespräme)...23 Sparplaberechug achschüssg (Moatspräme)...23 Sparplaberechug vorschüssg (Jahrespräme)...23 Sparplaberechug vorschüssg (Moatspräme)...24 Erforderlche achschüssge Sparquote (auf Jahresbass) für bestmmte Edwert...24 Erforderlche achschüssge Sparquote (auf Moatsbass) für bestmmte Edwert...24 Erforderlche vorschüssge Sparquote (auf Jahresbass) für bestmmte Edwert...25 Erforderlche vorschüssge Sparquote (auf Moatsbass) für bestmmte Edwert...25 Kaptalbedarf für gewüschte Rete (achschüssg auf Jahresbass) über ee bestmmte Zetraum (Autät)...25 Kaptalbedarf für gewüschte Rete (achschüssg auf Moatsbass) über ee bestmmte Zetraum (Autät)...26 Kaptalbedarf für gewüschte Rete (vorschüssg auf Jahresbass) über ee bestmmte Zetraum (Autät)...26 Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 4 vo 31

5 Kaptalbedarf für gewüschte Rete (vorschüssg auf Moatsbass) über ee bestmmte Zetraum (Autät)...26 Retehöhe (achschüssg auf Jahresbass) be vorhadeem Kaptal über ee bestmmte Zetraum...27 Retehöhe (achschüssg auf Moatsbass) be vorhadeem Kaptal über ee bestmmte Zetraum...27 Retehöhe (vorschüssg auf Jahresbass) be vorhadeem Kaptal über ee bestmmte Zetraum...27 Retehöhe (vorschüssg auf Moatsbass) be vorhadeem Kaptal über ee bestmmte Zetraum...28 Berechug der Sharpe Rato...28 Berechug der Treyor Rato...28 Berechug des Jese s Alpha...29 Berechug der Iformato Rato...29 Berechug der Portfoloredte, bezoge auf das Marktrsko...29 Berechug des Portfolobetas...30 Ierer Wert pro Callopto (be Rato)...30 Ierer Wert pro Callopto (be Bezugsverhälts)...30 Zetwert pro Callopto...30 Ierer Wert pro Putopto (be Rato)...31 Ierer Wert pro Putopto (be Bezugsverhälts)...31 Zetwert pro Putopto...31 Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 5 vo 31

6 WAS FORMEL ZAHLENBEISPIEL Umrechug vo efache stetge Redte l(1 + R) = stetge Redte l( ) = = 8.41% l = logarthmus aturals R = efache Peroderedte mathematscher Schrebwese; Bespel 8.77% = Umrechug vo stetge efache Redte e = euler sche Zahl ( ) stetge Redte mathematscher Schrebwese; Bespel 8.406% = e stetge Redte = efache Redte e = = 8.77% Zseszsberechug (Zukuftswert oder auch Future Value) be efache Redte ( 1 R) ( ) = = B + B = Barwert, m Bespel 100 = Gesamtlaufzet, m Bespel 3 Jahre R = efache Redte, m Bespel 2.75%, geschrebe mathematscher Schrebwese = Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 6 vo 31

7 Zseszsberechug be stetge Redte B = Barwert, m Bespel 100 = Gesamtlaufzet, m Bespel 3 Jahre R = efache Redte, m Bespel 2.75%, des etsprcht eer stetge Redte vo 2.713% r = stetge Redte, m Bespel 2.713% = B + ( r x ) ( ) = = e = = 8.48% Barwertberechug (Gegewartswert oder auch Preset Value) auf Grud küftgem Kaptalbedarf (efache Werte) K R) ) 3 = 100 K = Kaptalbedarf zum Zetpukt X (Zukuft), m Bespel CHF = Gesamtlaufzet, m Bespel 3 Jahre R = efache Redte (Dskoterugssatz), m Bespel 2.75%, geschrebe mathematscher Schrebwese = Barwertberechug auf Grud küftgem Kaptalbedarf (stetge Werte) K = Kaptalbedarf zum Zetpukt X (Zukuft), m Bespel CHF = Gesamtlaufzet, m Bespel 3 Jahre R = efache Redte (Dskoterugssatz), m Bespel 2.75%, des etsprcht eer stetge Redte vo 2.71% = 2.71 r = stetge Redte, m Bespel 2.71% = 2.71 K r = 100 Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 7 vo 31

8 Berechug der efache Gesamtredte Edkaptal Afagskaptal = = 11.11% 100 Berechug der stetge Gesamtredte LN = logarthmus aturals l Edkaptal l = = 10.54% Afagskaptal 100 e = = 11.11% Berechug der efache durchschttlche Jahresredte (Überjährgket) = Gesamtlaufzet, m Bespel 3 Jahre Edkaptal Afagskaptal ( 1/ ) oder ( ) /3 = % 100 = Edkaptal Afagskaptal = % 100 = Berechug der stetge durchschttlche Jahresredte (Überjährgket) = Gesamtlaufzet, m Bespel 3 Jahre l Edkaptal Afagskaptal l = = 3.51% e = = 3.57% Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 8 vo 31

9 Berechug der efache durchschttlche Jahresredte (Uterjährgket) Edkaptal Afagskaptal = % 100 = = Zetperode für Jahresbass m Bespel 4 Moate (3 x 4 = 12 Moate) Berechug der stetge durchschttlche Jahresredte (Uterjährgket) = Zetperode für Jahresbass m Bespel 4 Moate (3 x 4 = 12 Moate) Edkaptal l 3 = = 31.61% l Zetperode 100 Afagskaptal e = = 37.17% Uterschedlche efache Peroderedte; Berechug der efache Gesamtredte ( + R ) R )... R ) ( ) ) = = 8.16% 1 Z1 Z2 ZN R = efache Peroderedte mathematscher Schrebwese; Bespel 3.75% = % = Uterschedlche stetge Peroderedte; Berechug der stetge Gesamtredte R= efache Peroderedte mathematscher Schrebwese; Bespel 3.75% = % = R ) + l R ) l( 1 R ) l ) + l ) = = 7.84% l + Z1 Z2 ZN e = = 8.16% Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 9 vo 31

10 oder we berets stetge Redte vorhade sd r = stetge Peroderedte mathematscher Schrebwese; Bespel 3.68% = % = r + r r = = 7.84% Z1 Z2 ZN e = = 8.16% Berechug der zetgewchtete Durchschttsredte R = efache Peroderedte mathematscher Schrebwese; Bespel 3.75% = % = = Zetperode für Jahresbass, m Bespel 3.75 (etsprcht 3 Jahre ud 9 Moate, da 9/12 = = 3.75) R ) R )... R ) ) ) = = 2.11% Z1 Z2 ZN De Zetredte st um de Zahlugsströme beregt ud wderspegelt ausschlesslch de erwrtschaftete durchschttlche Ertrag auf dem schwakede Vermögesbestad m Zetablauf. De zetgewchtete Gesamtredte errechet sch aalog der Berechug eer efache Gesamtredte. Berechug der geldgewchtete Redte De formale Darstellug st we folgt: E professoeller Tascherecher übermmt de Iteratosprozess (Aäherugsprozess) ud berechet de Geldredte. Ohe ee solche Tascherecher st mttels Schätzuge der Iteratosprozess selbst durchzuführe. K T 1 = K 0 + IRR t= 1 T t IRR) + Trasaktoe ( 1 ) T Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 10 vo 31

11 Be der Geldredte wrd das Afagsvermöge ( K 0) ud alle bs zum Stchtag agefallee Trasaktoe mt der ee zu bestmmede Geldredte (IRR) aufgezst, sodass de Edsumme ( K 1) deser Trasaktoe dem Portfolo-Edwert etsprcht. Berechug der mathematsch korrekte Realredte R = Zssatz mathematscher Schrebwese; Bespel 5.35% = I = Iflatosrate mathematscher Schrebwese; Bespel 2.21% = ( 1 + R) = Realredte ) I) ) = = 3.07% Berechug der ugefähre Realredte (Aäherugsberechug) R I Realredte 5.35% 2.21% 3.14% R = Zssatz, Bespel 5.35% I = Iflato, Bespel 2.21% Berechug des Emssospreses be eer Geldmarktbuchforderug R = gewüschte Jahresredte mathematscher Schrebwese, m Bespel = 2.75% = T = Laufzet der Geldmarktbuchalage, m Bespel 270 Tage = Tage x R = % = 97.98% 270 x Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 11 vo 31

12 Berechug der Jahresredte be vorhadeem Emssospres Rückzahlugspres st aller Regel zu 100% Emssospres m Bespel = 97.98% Laufzet m Bespel = 270 Tage Rückzahlugspres - Emssospres Emssospres = = 2.75% Laufzet der Geldmarktbuchalage 270 Peroderedte eer Oblgato Edkurs m Bespel % = Afagskurs m Bespel % = C = Coupo, m Bespel 3% = 3 Edkurs Afagskurs + C Afagskurs = = 3.72% Couporedte eer Oblgato C = Coupo, m Bespel 3% = 3 Oblgatoekurs vor eem Jahr m Bespel % = C Oblgatoekursvor eemjahr = = 2.98% Presredte eer Oblgato Pres Edperode m Bespel % = Pres Afagsperode m Bespel % = PresEdperode- PresAfagsperode PresAfagsperode = = 0.74% Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 12 vo 31

13 Drekte Redte eer Oblgato C = Coupo, m Bespel 3% = 3 Aktueller Oblgatoekurs m Bespel % = C aktueller Oblgatoekurs 3 = = 2.96% Berechug der Verfallredte ach Praktkermethode (guter Schätzwert) C = Coupo, m Bespel 4% = 4 Rückzahlugspres m Bespel 100% = 100 Tagespres; m Bespel % = = Restlaufzet, m Bespel 3 Jahre = 3 Rückzahlugspres- Tagespres C + Rückzahlugspres + Tagespres = = 2.02% Berechug der Verfallredte (Aäherugsberechug) Rückzahlugspres Tagespres C = = 2.08% 3 C = Coupo, m Bespel 4% = 4 Rückzahlugspres m Bespel 100% = 100 Tagespres m Bespel % = = Restlaufzet, m Bespel 3 Jahre = 3 Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 13 vo 31

14 Berechug der exakte Verfallredte C C C C + R Egabe m HP we folgt: (teratver Prozess, professoelle Tasche- V) V) V) V) Barwert = recher esetze) Edwert = 100 Rate = 4 C = Coupo Laufzet = 3 V = gesuchte Verfallredte Modus = Ed = Laufzet Auflösug ach = = 2.00% R = Rückzahlugspres Im HP17 st de Auflösug auch m Bodrecher möglch. Marchzsberechug be eer Oblgato N = Nomalwert, m Bespel CHF C = Coupo, m Bespel 4% = 0.04 = Laufzet, m Bespel 165 Tage N C ' = 1' Wadelpres eer Wadeloblgato Notwedger Nomalbetrag m Bespel CHF = Azahl Basswerte m Bespel Notwedger Nomalbet rag AzahlBasswerte 5' = = Wadelpartät eer Wadeloblgato NN = Notwedger Nomalbetrag, m Bespel CHF = Oblgatoekurs m Bespel 102% = 1.02 Azahl Basswerte m Bespel NN Oblgatoekurs AzahlBasswerte 5' = = Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 14 vo 31

15 Wadelpräme über ee Wadeloblgato Wadelpartät m Bespel Börsekurs Basswert m Bespel Wadelpartät BörsekursBasswert = = 11.34% Wadelpräme über ee Wadeloblgato auf Jahresbass Wadelpartät m Bespel 11.34% = (Rest)-Laufzet 3 Jahre ud 9 Moate = 3.75 Wadelpräme (Rest)- Laufzet Wadeloblg ato = = 3.02% 3.75 Redteberegtes Kursrsko eer Wadeloblgato Kurs der Wadeloblgato m Bespel 102% = 1.02 Barwert m Bespel 98% = 0.98 Kurs der Wadeloblgato - Barwert Kurs der Wadeloblgato = = 3.92% 1.02 Optospartät eer Optosoblgato Azahl Optoe OP + A = Azahl Optoe, m Bespel 50 OP = Optospres, m Bespel 0.75 A = Ausübugspres, m Bespel Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 15 vo 31

16 Optospräme über ee Optosoblgato Optospartät m Bespel Börsekurs Basswert m Bespel Optospartät BörsekursBasswert = = 8.70% Optospräme über ee Optosoblgato auf Jahresbass Optospräme (Rest)- Laufzet der Optosoblgato = = 25.46% Optospräme m Bespel 8.70% = (Rest)-Laufzet 4 Moate ud 3 Tage = Barwertberechug eer Oblgato C = Coupo, m Bespel 4% = 4 = aktueller Marktzs, m Bespel 2% = 0.02 = Laufzet, m Bespel 3 Jahre Rückzahlugspres st aller Regel 100% C ) + ) ) Rückzahlugspres ) ) ) 4 3 = = % Berechug des ugefähre Barwertes eer Oblgato (Aäherugsberechug) ( C - ) + Rückzahlugspres ( 4-2) = % C = Coupo, m Bespel 4% = 4 = aktueller Marktzs, m Bespel 2% = 0.02 = Laufzet, m Bespel 3 Jahre Rückzahlugspres st aller Regel 100% Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 16 vo 31

17 Berechug der Macaulay Durato = aktueller Marktzs, m Bespel 2% = 0.02 = Laufzet, m Bespel 3 Jahre = 3 C = Coupo, m Bespel 4% = 4 R = Rückzahlugspres, m Bespel 100% 1 + C + R - ) ) C ) + R ) ( ) ( ) = = 2.89 Jahre 3 Berechug der Modfed Durato D = Macaulay Durato, m Bespel 2.89 Y = bsherge Verfallredte, m Bespel 2% = 0.02 D 1+ Y 2.89 = = Berechug der approxmatve Presäderug eer Oblgato M a = = 0.71% M = Modfed Durato, m Bespel 2.83 a = Apassug der Verfallredte, m Bespel erhöht sch de Verfallredte um 0.25% Berechug der approxmatve Presäderug eer Oblgato M a = = 0.71% M = Modfed Durato, m Bespel 2.83 a = Apassug der Verfallredte, m Bespel reduzert sch de Verfallredte um 0.25% Merke: Für de Berechug wrd de Modfed Durato mmer mt eem Muszeche verwedet. Des st auf de mathematsche Gegebehete zurückzuführe. Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 17 vo 31

18 Aussagekraft der approxmatve Presäderug B ( 1 P) ( ) = % = B = Barwert %, m Bespel % Der Barwert vo % reduzert sch be eer P = Presäderug, m Bespel -0.71% = Erhöhug der Verfallredte vo 0.25% um 0.71%, desem Bespel auf % B = Barwert %, m Bespel % P= Presäderug, m Bespel 0.71% = ( 1 P) B ) = % = Der Barwert vo % erhöht sch be eer Redukto der Verfallredte vo 0.25% um 0.71%, desem Bespel auf = % Berechug des Break-eve-Wechselkurses R = Redte mathematscher Schrebwese, m Bespel für CHF 2.75% (0.0275) ud für FW 5.55% (0.0555) = Restlaufzet, m Bespel 6 Jahre aw = aktueller Bref-Wechselkurs, m Bespel Jahre ) ) CHF aw Jahre ) ) FW = Berechug der Währugsredte W t= aktueller Wechselkurs, m Bespel W = Wechselkurs m Kaufzetpukt t 1 m Bespel W W t t = = % Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 18 vo 31

19 Berechug der währugsberegte Gesamtredte [( + R ) R )] [( ) ( ) ] = = -1.18% 1 w R = Lokalredte, m Bespel 10.87% = R = Währugsredte, m Bespel % = w Berechug Wert Bezugsrecht be eer Aktekaptalerhöhug aktueller Börsekurs - KB (BV) (13 : 2) + 1 = 1.00 Aktueller Börsekurs, m Bespel KB = Bezugspres für eue Akte, m Bespel BV = Bezugsverhälts, m Bespel 13:2 oder ab = aktueller Börsekurs, m Bespel AaA = Azahl Alter Akte, m Bespel 13 AA = Azahl euer Akte, m Bespel 2 BP = Bezugspres für de eue Akte, m Bespel ab (AaA x ab + AA x BP) AaA + AA (13 x x 42.00) = Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 19 vo 31

20 Berechug theoretscher Aktekurs ach Kaptalerhöhug (AaA x ab + AA x BP) AaA + AA AaA = Azahl Alter Akte, m Bespel 13 ab = aktueller Börsekurs, m Bespel AA = Azahl euer Akte, m Bespel 2 BP = Bezugspres für de eue Akte, m Bespel oder (13 x x 42.00) = BV = Bezugsverhälts, m Bespel 13:2 ab = aktueller Börsekurs, m Bespel BP = Bezugspres für de eue Akte, m Bespel BV x ab + BP (BV) + 1 (13 : 2) x = (13 : 2) Gewredte eer Akte Gew m Bespel 6.25 Börsekurs m Bespel Gew Börsekurs (pro Akte) (pro Akte) = = 6.17% Payout-Rato eer Gesellschaft Bruttodvdede m Bespel 2.75 Gew pro Akte m Bespel 6.25 Bruttodvdede Gew (proakte) (proakte) = 0.40= 40.00% 2.75 = 0.44 = 44.00% 6.25 Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 20 vo 31

21 Dvdederedte eer Akte Bruttodvdede m Bespel 2.75 Börsekurs m Bespel Bruttodv dede(proakte) = = 2.71 % Börsekurs (proakte) Cash-Flow Redte eer Akte Cash-Flow m Bespel 7.35 Börsekurs m Bespel Egekaptalredte eer Akte Gew pro Akte m Bespel 6.25 Durchschttlches Egekaptal pro Akte m Bespel Cash Flow Börsekurs (proakte) (proakte) Gew proakte Durchsch ttlchesegekapt al (proakte) 7.35 = = 7.25% = 0.10 = 10.00% Kurs-Gew-Verhälts (KGV / PE) mt aktuellem Gew Börsekurs m Bespel Gew m Bespel 6.25 (astelle des Gewes ka auch der Cash Flow pro Akte egesetzt werde, da dese weger mapulerbar st) oder Prozetualer Gew m Bespel % = Börsekurs Gew (pro Akte) (pro Akte) 1 Prozetual er Gew (proakte) = = Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 21 vo 31

22 Kurs-Gew-Verhälts (KGV / PE) mt zuküftgem Gew (Gewschätzug) Börsekurs m Bespel Zuküftger Gew m Bespel 6.85 (Schätzug) Börsekurs (proakte) Zuküftgem (geschätzter)gew (proakte) = Kurs-Gew-Verhälts uter Berückschtgug des küftge Gewwachstumes ( % ausgedrückt) (PEG; Prce-Eargs to Growth Rato) P/E m Bespel 14.8 Gewwachstum m Bespel 12% = 12 P/E Gewwachstum pro Akte 14.8 = = Kurs-Umsatz-Verhälts (KUV / PS) Börsekurs m Bespel = Umsatz m Bespel = Kurs-Buchwert-Verhälts (KUB / PB) Börsekurs m Bespel = Buchwert m Bespel = Börsekurs Umsatz Börsekurs Buchwert pro Akte (pro Akte) (pro Akte) (pro Akte) = = = = Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 22 vo 31

23 Kurs-Substazwert-Verhälts (KSV) Börsekurs m Bespel = Substazwert m Bespel = (m Substazwert sd ebst dem Buchwert och de stlle Reserve ethalte) Börsekurs Substazwert pro Akte (pro Akte) = = Sparplaberechug achschüssg (Jahrespräme) R = efache Jahresredte, m Bespel 3.75% = = Laufzet, m Bespel 20 Jahre S = Jährlcher Sparbetrag, m Bespel R) ) R S ' = 139' Sparplaberechug achschüssg (Moatspräme) R = efache Moatsredte, m Bespel % = /12 = Laufzet, m Bespel 240 Moate (20 Jahre) S = Moatlcher Sparbetrag, m Bespel R) ) R S = 142' Sparplaberechug vorschüssg (Jahrespräme) R = efache Jahresredte, m Bespel 3.75% = = Laufzet, m Bespel 20 Jahre S = Jährlcher Sparbetrag, m Bespel R) ) R) ) R S 20 ( ) R) ' = 144' Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 23 vo 31

24 Sparplaberechug vorschüssg (Moatspräme) R) ) R) ) R S 240 ( ) ) = 143' R = efache Moatsredte, m Bespel % = /12 = Laufzet, m Bespel 240 Moate (20 Jahre) S = Moatlcher Sparbetrag, m Bespel Erforderlche achschüssge Sparquote (auf Jahresbass) für bestmmte Edwert R be R) ) ) ' = 4' ( ) R = efache Jahresredte, m Bespel 3.75% = = Laufzet, m Bespel 20 Jahre be= bestmmter Edwert, m Bespel Erforderlche achschüssge Sparquote (auf Moatsbass) für bestmmte Edwert R be R) ) ) ' = ( ) R = efache Jahresredte, m Bespel % = /12 = Laufzet, m Bespel 240 Moate be= bestmmter Edwert, m Bespel Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 24 vo 31

25 Erforderlche vorschüssge Sparquote (auf Jahresbass) für bestmmte Edwert R be R) ) R) ) ' = 4' ( ) ) R = efache Jahresredte, m Bespel 3.75% = = Laufzet, m Bespel 20 Jahre be= bestmmter Edwert, m Bespel Erforderlche vorschüssge Sparquote (auf Moatsbass) für bestmmte Edwert R be R) ) R) ) ' = ( ) ) R = efache Jahresredte, m Bespel % = /12 = Laufzet, m Bespel 240 Moate be= bestmmter Edwert, m Bespel Kaptalbedarf für gewüschte Rete (achschüssg auf Jahresbass) über ee bestmmte Zetraum (Autät) R) ) RB 20 R) R ) 20 24' = 333' R = efache Jahresredte, m Bespel 3.75% = = Laufzet, m Bespel 20 Jahre RB = Retebezug, m Bespel Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 25 vo 31

26 Kaptalbedarf für gewüschte Rete (achschüssg auf Moatsbass) über ee bestmmte Zetraum (Autät) R) ) RB 240 R) R ) 240 2' = 337' R = efache Moatsredte, m Bespel % = /12 = Laufzet, m Bespel 240 Moate RB = Retebezug, m Bespel Kaptalbedarf für gewüschte Rete (vorschüssg auf Jahresbass) über ee bestmmte Zetraum (Autät) 20 R) R) ) ) RB 20 R) R ) ' = 346' R = efache Jahresredte, m Bespel 3.75% = = Laufzet, m Bespel 20 Jahre RB = Retebezug, m Bespel Kaptalbedarf für gewüschte Rete (vorschüssg auf Moatsbass) über ee bestmmte Zetraum (Autät) 240 ( ) ( ) ) ) 1+ R 1+ R RB 240 R) ) R 2' = 338' R = efache Moatsredte, m Bespel % = /12 = Laufzet, m Bespel 240 Moate RB = Retebezug, m Bespel Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 26 vo 31

27 Retehöhe (achschüssg auf Jahresbass) be vorhadeem Kaptal über ee bestmmte Zetraum 20 R) R ) K R) ) ' = 24' R = efache Jahresredte, m Bespel 3.75% = = Laufzet, m Bespel 20 Jahre K = vorhadees Kaptal, m Bespel Retehöhe (achschüssg auf Moatsbass) be vorhadeem Kaptal über ee bestmmte Zetraum 240 R) R ) K R) ) ' = 2' R = efache Moatsredte, m Bespel % = /12 = Laufzet, m Bespel 240 Moate K = vorhadees Kaptal, m Bespel Retehöhe (vorschüssg auf Jahresbass) be vorhadeem Kaptal über ee bestmmte Zetraum R) R ) K 20 R) 1+ R ) ( ) ( ) ( 1) ) ' = 24' R = efache Jahresredte, m Bespel 3.75% = = Laufzet, m Bespel 20 Jahre K = vorhadees Kaptal, m Bespel Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 27 vo 31

28 Retehöhe (vorschüssg auf Moatsbass) be vorhadeem Kaptal über ee bestmmte Zetraum R) R ) K 240 R) 1+ R ) ( ) ( ) ( ) ) 338' = 2' R = efache Moatsredte, m Bespel % = /12 = Laufzet, m Bespel 240 Moate K = vorhadees Kaptal, m Bespel Berechug der Sharpe Rato r = stetge Portfoloredte, m Bespel 6.06% = r f = stetger rskoloser Zssatz, m Bespel 1.98% = σ = Volatltät, m Bespel 14.34% = Berechug der Treyor Rato r = stetge Portfoloredte, m Bespel 6.06% = r f = stetger rskoloser Zssatz, m Bespel 1.98% = β = Portfolobeta, m Bespel 1.04 r r σ f r r β f = = = = 3.92% 1.04 Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 28 vo 31

29 Berechug des Jese s Alpha r = stetge Portfoloredte, m Bespel 6.06% = r f = stetger rskoloser Zssatz, m Bespel 1.98% = β = Portfolobeta, m Bespel 1.04 r m= stetge Bechmarkredte, m Bespel 6.53% = r ( r + β ( r r )) ( ( ) ) f m f = 0.65% = Berechug der Iformato Rato r = stetge Portfoloredte, m Bespel 6.06% = r = stetge Bechmarkredte, m Bespel b 6.53% = TE = Trackg Error, m Bespel 8.25% = r r TE b = = Berechug der Portfoloredte, bezoge auf das Marktrsko Portfolob eta BR = = 7.29% Portfolobeta, m Bespel 1.08 BR = Bechmarkredte, m Bespel 6.75% = Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 29 vo 31

30 Berechug des Portfolobetas β = Beta, m Bespel A = 1.07 ud B = 0.93 DW = Depotwert, m Bespel A = 100 ud B = 200 GDW = Gesamtdepotwert, m Bespel 300 Formal ka de Berechug des Portfolobetas auch we folgt dargestellt werde: Ierer Wert pro Callopto (be Rato) KB = Kurs Basswert, m Bespel A = Ausübugspres, m Bespel R = Rato, m Bespel 20:1 β DW β x DWt x 200 A B B = GDW 300 A + Portfolo = = 1 β W β oder = KB A = R Ierer Wert pro Callopto (be Bezugsverhälts) ( KB A) BV ( ) 0.05 = KB = Kurs Basswert, m Bespel A = Ausübugspres, m Bespel BV = Bezugsverhälts, m Bespel 1:20 Zetwert pro Callopto OP W = 0.15 OP = Optospräme, m Bespel 0.40 W = erer Wert, m Bespel 0.25 Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 30 vo 31

31 Ierer Wert pro Putopto (be Rato) A = Ausübugspres, m Bespel KB = Kurs Basswert, m Bespel R = Rato, m Bespel 20:1 A KB = R 20 Ierer Wert pro Putopto (be Bezugsverhälts) ( A - KB) BV ( ) 0.05 = A = Ausübugspres, m Bespel KB = Kurs Basswert, m Bespel BV = Bezugsverhälts, m Bespel 1:20 Zetwert pro Putopto OP W = 0.15 OP = Optospräme, m Bespel 0.40 W = erer Wert, m Bespel 0.25 Formelsammlug Fazplaer 2010 IAF Iteressegemeschaft Ausbldug m Fazberech Sete 31 vo 31

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fiazplaer/i mit eidg. Fachausweis Formelsammlug Autor: Iwa Brot Diese Formelsammlug wird a de Olie- ud a de müdliche Prüfuge abgegebe soweit erforderlich. A der schriftliche Klausur

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Investition und Finanzierung Skript III

Investition und Finanzierung Skript III Ivestto ud Fazerug Skrpt III zuletzt geädert am: 05.05.03 Ivestto ud Fazerug Skrpt III Quelle: Vorlesug Ivestto ud Fazerug 6. Semester, FH Erfurt, Prof. Dr. Waldhelm Copyrght 2003 BSTM Sete Alle Agabe

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4

Mehr

1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen

1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen 1 Systematserung der Verznsungsarten 2 Jährlche Verznsung 3 Unterjährge Verznsung 4 Stetge Verznsung 5 Aufgaben zur Znsrechnung 1. Systematserung der Verznsungsarten a d g Jährlche Verznsung nfache Znsen

Mehr

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung Zu Proble urjährger Zse ud Zahluge der Zsessrechug Gewöhlch geht a der Zsessrechug davo aus, dass de Zse ach ee Jahr de Kapl ugeschlage werde ud da weder Zse trage. Der Zssat, t de das Kapl ultplert wrd,

Mehr

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit Glederug: A. Vermögesverwaltug I. Gegestad II. Ablauf III. Koste B. Grudzüge der Kaptalmarkttheore I. Portefeulletheore 1. Darstellug. Krtk II. Captal Asset Prcg Model (CAPM) 1. Darstellug. Krtk III. Arbtrage

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

BANK ONLINE Zentraler Bankdaten-Transfer

BANK ONLINE Zentraler Bankdaten-Transfer BANK ONLINE Zetraler Bakdate-Trasfer Ihaltsverzechs 1 Lestugsbeschrebug... 3 2 Itegrato das Ageda-System... 4 3 Hghlghts... 5 3.1 Efachste Aktverug... 5 3.2 Abruf vo Kotoauszüge... 6 3.3 Bakeübergrefede

Mehr

Prof. Dr. Dietmar Pfeifer Institut für Mathematik. Risikotheorie

Prof. Dr. Dietmar Pfeifer Institut für Mathematik. Risikotheorie Prof. Dr. Detmar Pfefer Isttut für Mathemat Rsotheore Stad: 5. Aprl 5 Ihalt Vorbemerug... 3 I Persoeverscherugsmathemat... 6 I.. Bewertug vo Fazströme... 6 I.. Lebesdauerverteluge ud Sterbetafel... I.

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien REGRESSION Ee awedugsoreterte Eführug Marcus Hudec Chrsta Neuma Uterstützt vo Isttut für Statstk der Uverstät We Eletug De Regresso st e velfältg esetzbares Werkzeug zur Beschrebug ees fuktoale Zusammehags

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Entwicklung einer Dispatcherfunktion zur Überprüfung von Nominierungsmengen in der Betriebsführung von Erdgasspeichern

Entwicklung einer Dispatcherfunktion zur Überprüfung von Nominierungsmengen in der Betriebsführung von Erdgasspeichern AMMO Berchte aus Forschug ud Techologetrasfer Etwcklug eer Dsatcherfukto zur Überrüfug vo Nomerugsmege der Betrebsführug vo Erdgassecher Prof. Dr. sc. tech. Dr. rer. at. R. Ueckerdt Dr.Ig. H.W. Schmdt

Mehr

Ralf Korn. Elementare Finanzmathematik

Ralf Korn. Elementare Finanzmathematik Ralf Kor Elemetare Fazmathematk Ihaltsverzechs. Eletug Exkurs : Akte Begrffe, Grudlage ud Geschchte. We modellert ma Aktekurse? 4. Edlche E-Perode-Modelle 6. Edlche Mehr-Perode-Modelle 3.3 Das Black-Scholes-Modell

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche Kozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 3.08 Harry Zgel 99-009, EMal: fo@zgel.de, Iteret:

Mehr

Deskriptive Statistik und moderne Datenanalyse

Deskriptive Statistik und moderne Datenanalyse homas Cleff Destve tatst ud modee Dateaalse Ee comutegestützte Efühug mt Ecel ud AA 0XX /. Auflage Fomelsammlug Cleff Destve tatst ud modee Dateaalse Gable Velag Wesbade 0XX GableL Zusatzfomatoe zu Mede

Mehr

Lang & Schwarz Aktiengesellschaft. Nachtrag Nr. 1 vom 23. Juli 2012. nach 16 Absatz 1 WpPG. zum

Lang & Schwarz Aktiengesellschaft. Nachtrag Nr. 1 vom 23. Juli 2012. nach 16 Absatz 1 WpPG. zum Lag & Schwarz Aktiegesellschaft Nachtrag Nr. 1 vom 23. Juli 2012 ach 16 Absatz 1 WpPG zum Basisprospekt der Lag & Schwarz Aktiegesellschaft vom 20. Jui 2013 über derivative Produkte Optiosscheie auf Aktie/aktievertretede

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Klausur Betriebswirtschaftslehre PM/B

Klausur Betriebswirtschaftslehre PM/B Isttut für Fazwrtschaft, Bake ud Verscheruge, Karlsruher Isttut für Techologe Klausur Betrebswrtschaftslehre PM/B Achtug: Ihalte der Vorlesug köe Zukuft ggf. cht mehr kosstet mt de Ihalte deser Klausur

Mehr

W D P. Sebastian Müller, Gerhard Müller. Sicherheits-orientiertes Portfoliomanagement. Heft 09 / 2005

W D P. Sebastian Müller, Gerhard Müller. Sicherheits-orientiertes Portfoliomanagement. Heft 09 / 2005 Fachberech Wrtschaft Faculty of Busess Sebasta Müller, Gerhard Müller Scherhets-oretertes Portfolomaagemet Heft 09 / 2005 W D P Wsmarer Dskussospapere / Wsmar Dscusso Papers Der Fachberech Wrtschaft der

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher

Mehr

EINLEITUNG, FEHLERRECHNUNG

EINLEITUNG, FEHLERRECHNUNG Eletug FEHLERRECHNUNG ohe Dfferetalrechug 04.05.006 Blatt 1 EINLEITUNG, FEHLERRECHNUNG Aufgabe des physkalsche Praktkums st es, dem Studerede de Physk durch das Expermet äher zu brge, h mt der Methode

Mehr

Bestimmen einer stetigen Ausgleichsfunktion f(x), die eine gegebene Menge von n Datenpunkten (x k

Bestimmen einer stetigen Ausgleichsfunktion f(x), die eine gegebene Menge von n Datenpunkten (x k Hochschule für Tech ud Archtetur Ber Iformat ud agewadte Mathemat 3- Ausglechs- ud Iterpolatosrechug 3 Ausglechs- ud Iterpolatosrechug De Aufgabe der Ausglechsrechug st mt Hlfe eer stetge Futo f()ee bestmmte

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

DASI ONLINE Datensicherung im Rechenzentrum

DASI ONLINE Datensicherung im Rechenzentrum DASI ONLINE Datescherug m Rechezetrum Ihaltsverzechs 1 Lestugsbeschrebug... 3 2 Itegrato das Ageda-System... 4 3 Hghlghts... 5 3.1 Das Hochscherhets-Rechezetrum... 5 3.2 Flexbltät ud Kostetrasparez...

Mehr

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler Kommeterte Formelsammlug der deskrptve ud duktve Statstk für Wrtschaftswsseschaftler Prof. Dr. Iree Rößler Prof. Dr. Albrecht Ugerer Wetere Bespele ud ausführlche Erläuteruge sowe detallerte Lösuge der

Mehr

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 145

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 145 Mahemer Mauskrpte zu Rskotheore, Portfolo Maagemet ud Verscherugswrtschaft Nr. 45 Methode der rskobaserte Kaptalallokato m Verscherugs- ud Fazwese vo Peter Albrecht ud Sve Korycorz Mahem 03/2003 Methode

Mehr

Robuste Asset Allocation in der Praxis

Robuste Asset Allocation in der Praxis Fiazmarkt Sachgerechter Umgag mit Progosefehler Robuste Asset Allocatio i der Praxis Pesiosfods ud adere istitutioelle Aleger sid i aller Regel a ei bestimmtes Rediteziel (Rechugszis) gebude, das Jahr

Mehr

Institut für Physik Universität Augsburg Praktikum für Fortgeschrittene (FP) Versuchsanleitung (Version: 01/2015) RAMANEFFEKT

Institut für Physik Universität Augsburg Praktikum für Fortgeschrittene (FP) Versuchsanleitung (Version: 01/2015) RAMANEFFEKT FP-Versuch Ramaeffekt Isttut für Physk Uerstät Augsburg Praktkum für Fortgeschrttee (FP) Versuchsaletug (Verso: /5) RAMANFFKT I. letug II. Theore des Ramaeffekts III. Grudlage der Gruppetheore IV. Versuchsaufbau

Mehr

Eine einfache Formel für den Flächeninhalt von Polygonen

Eine einfache Formel für den Flächeninhalt von Polygonen Ee efache Formel für de Flächehalt vo Polygoe Peter Beder Set ege Jahre hat der Mathematkddaktk de sogeate emprsche Uterrchtsforschug mt quattatve ud qualtatve Methode Kojuktur, währed stoffddaktsche Arbete

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Geld- und Finanzmärkte

Geld- und Finanzmärkte Gel- un Fnanzmärkte Prof. Dr. Volker Clausen akroökonomk 1 Sommersemester 2008 Fole 1 Gel- un Fnanzmärkte 4.1 De Gelnachfrage 4.2 De Bestmmung es Znssatzes I 4.3 De Bestmmung es Znssatzes II 4.4 Zwe alternatve

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Wir verbessern jede Photovoltaik-Anlage!

Wir verbessern jede Photovoltaik-Anlage! Wir verbesser jede Photovoltaik-Alage! Kompetez durch Erfahrug Solarpark Katharierieth II 2.0 MWp Sichere Erträge seit 2011 eergizig a clea future Solarpark Westmill 5.0 MWp Solarpark Huge 2.9 MWp Solarpark

Mehr

Kunde Studie: Erfolgsfaktoren von Online-Communities

Kunde Studie: Erfolgsfaktoren von Online-Communities Kude Studie: Erfolgsfaktore vo Olie-Commuities Titel Frakfurt, des Projekts 17. September 2007 Durchgeführt vo: HTW Dresde, Prof. Dr. Ralph Sotag BlueMars GmbH, Tobias Kirchhofer, Dr. Aja Rau Mit freudlicher

Mehr

Konzept und Umsetzung betrieblicher Entscheidungshilfen auf grafischer und objektorientierter Basis als autonome und eingebettete Netzwerklösung

Konzept und Umsetzung betrieblicher Entscheidungshilfen auf grafischer und objektorientierter Basis als autonome und eingebettete Netzwerklösung Zhog Xue Kozept ud Umsetzug betreblcher Etschedugshlfe auf grafscher ud objektoreterter Bass als autoome ud egebettete Netzwerklösug De vorlegede Arbet wurde vom Fachberech Maschebau der Uverstät Kassel

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkomme zur der Aufgabesammlug Um sich schell ierhalb der ca. 35. Mathematikaufgabe zu orietiere, beutze Sie ubedigt das Lesezeiche Ihres Acrobat Readers: Das Ico fide Sie i der liks stehede

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++

Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++ Das FSB Geldkoto Eifache Abwicklug ud attraktive Verzisug +++ Verzisug aktuell bis zu 3,7% p.a. +++ zuverlässig servicestark bequem Kompeteter Parter für Ihr Wertpapiergeschäft Die FodsServiceBak zählt

Mehr

9. Verzeichnis wichtiger Formelzeichen und Abkürzungen

9. Verzeichnis wichtiger Formelzeichen und Abkürzungen 9. Verzechs wchtger Formelzeche ud Abürzuge 9 Verzechs wchtger Formelzeche ud Abürzuge Formelzeche a a a y a * arcta2(y,) = arcta( y/ ) für arcta( y/ ) + π für < b B BL = O c H H y Läge des Uterarms des

Mehr

LOHN KUG, ATZ, Pfändung, Darlehen und Bescheinigungswesen

LOHN KUG, ATZ, Pfändung, Darlehen und Bescheinigungswesen LOHN KUG, ATZ, Pfädug, Darlehe ud Bescheiigugswese Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Highlights... 4 2.1 Elektroischer AAG-Erstattugs-Atrag... 4 2.2 Elektroische EEL-Bescheiigug... 5 2.3 Kurzarbeitergeld...

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Commercial Banking. Controlling Kalkulation und Banksteuerung. Teilbereiche des Controlling

Commercial Banking. Controlling Kalkulation und Banksteuerung. Teilbereiche des Controlling Commercal Bankng Controllng Kalkulaton und Banksteuerung elbereche des Controllng Produktkalkulaton: Enzelkostenrechnung Performancerechnung (Erfolgsanalyse) Kaptalallokaton, Kapaztätsausbauentschedung

Mehr

1741 SWITZERLAND EQUAL WEIGHTED INDEX

1741 SWITZERLAND EQUAL WEIGHTED INDEX 1741 Switzerlad Idex Series 1741 SWITZERLAND EQUAL WEIGHTED INDEX Reglemet Versio vom 01.07.2015 1741 Switzerlad Equal Weighted Idex 2 INHALTSVERZEICHNIS 1 Eileitug 3 2 Idex Spezifikatioe 4 3 Idex Uiversum

Mehr

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re atheatik der Lebesersicherug r. Karste Kroll GeeralCologe Re atheatik der Lebesersicherug atheatische Grudasätze iskotiuierliche ethode: Sätliche Leistuge erfolge zu bestite Zeitpukte ie Zeititeralle dazwische

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Zuverlässigkeitsorientiertes Erprobungskonzept für Nutzfahrzeuggetriebe unter Berücksichtigung von Betriebsdaten

Zuverlässigkeitsorientiertes Erprobungskonzept für Nutzfahrzeuggetriebe unter Berücksichtigung von Betriebsdaten UNI STUTTGART Berchte aus dem Isttut für Mascheelemete Atrestechk CAD Dchtuge Zuverlässgket Matthas Masch Zuverlässgketsoretertes Erprougskozept für Nutzfahrzeuggetree uter Berückschtgug vo Betresdate

Mehr

4 Deckungsrückstellung

4 Deckungsrückstellung eckugsrückstellug 33 4 eckugsrückstellug iel: erfhre zur Erittlug des Wertes eies ersicherugsvertrgs ud der zur eckug der Risike ötige Rückstelluge des ersicherugsuterehes. Proble: Präie werde kostt gezhlt,

Mehr

1 s. 1 s. 1 k. n j. j = Wärmedurchgang durch eine mehrschichtige, ebene Wand:

1 s. 1 s. 1 k. n j. j = Wärmedurchgang durch eine mehrschichtige, ebene Wand: Wärmeurchgg urch ee mehrchchtge, ebee W: ugehe vo er Löug er Fourer'che Dfferetlglechug für e Wärmetrport urch ee ebee Wfläche : A T ergbt ch ru für ee mehrchchtge, ebee Wfläche: A ru wr e Wärmeurchggwertzhl

Mehr

Glücksspielverhalten in Bayern

Glücksspielverhalten in Bayern Glücksspielverhalte i Bayer 1 Zielsetzug Schätzuge aus Bevölkerugsstudie zu Glücksspiel i Deutschlad zu Folge habe um die 70% der Deutsche scho eimal gespielt (Bühriger, Kraus, Sotag, Pfeiffer-Gerschel,

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

vom 3. Dezember 2002 (Stand 1. Juli 2014)

vom 3. Dezember 2002 (Stand 1. Juli 2014) Nr. 6 Verordug über de Fiazausgleich (FAV) vom. Dezember 00 (Stad. Juli 04) Der Regierugsrat des Katos Luzer, gestützt auf die Absatz, 4, 5 Absätze ud 4, 9 Absatz, 0 Absatz 4, Absatz, Absatz, a,, f Absatz,

Mehr

Rationalität und Wert von Information eine systemgesteuerte Analyse

Rationalität und Wert von Information eine systemgesteuerte Analyse Ratoaltät ud Wert vo Iformato ee systemgesteuerte Aalyse Elmar Reucher 1, Wlhelm Rödder 2, Iva R. Garter 3 1 FerUverstät Hage, Proflstraße 8, 58097 Hage Elmar.Reucher@feru-hage.de 2 FerUverstät Hage, Proflstraße

Mehr

FB Informatik/Mathematik Grundlagen der Datenverarbeitung Wirtschaftsingenieurwesen Einführung in EXCEL. Start mit Doppelklick auf das Excel - Icon

FB Informatik/Mathematik Grundlagen der Datenverarbeitung Wirtschaftsingenieurwesen Einführung in EXCEL. Start mit Doppelklick auf das Excel - Icon FB Iformatik/Mathematik Grudlage der Dateverarbeitug Wirtschaftsigeieurwese Eiführug i EXCEL Start mit Doppelklick auf das Excel - Ico EXC 1. Es ist ei Arbeitsblatt ach dem folgede Muster zu erarbeite.

Mehr

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1 Ivesttosetscheduge m Mult-Chael-Customer-Relatoshp Maagemet Has Ulrch Buhl, Na Kreyer, Na Schroeder Lehrstuhl für Betrebswrtschaftslehre, Wrtschaftsformatk & Facal Egeerg Kerkompetezzetrum Iformatostechologe

Mehr

Neuerungen im Zahlungsverkehr für Deutschland und Europa. Herausforderung und Chance

Neuerungen im Zahlungsverkehr für Deutschland und Europa. Herausforderung und Chance Neueruge im Zahlugsverkehr für Deutschlad ud Europa Herausforderug ud Chace Ageda Allgemeie Iformatioe & aktueller Stad Rechtliche Rahmebediguge SEPA-Überweisug SEPA-Lastschrifte SEPA-Basis-Lastschrifte

Mehr

Die Risiken der privaten Altersvorsorge und deren Handling durch die Anbieter

Die Risiken der privaten Altersvorsorge und deren Handling durch die Anbieter Die ud dere Hadlig durch die Abieter 1 Übersicht Sichere Altersvorsorge: Was erwarte wir vo der private Altersvorsorge? Was macht die private Altersvorsorge usicher? Altersvorsorge i volatile Kapitalmärkte

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

PrivatKredit. Direkt ans Ziel Ihrer Wünsche

PrivatKredit. Direkt ans Ziel Ihrer Wünsche PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe

Mehr

LEISTUNGEN BUCHFÜHRUNG ÜBER INTERNET. AbaWebTreuhand Abacus

LEISTUNGEN BUCHFÜHRUNG ÜBER INTERNET. AbaWebTreuhand Abacus LEISTUNGEN BUCHFÜHRUNG ÜBER INTERNET AbaWebTreuhad Abacus ABAWEB TREUHAND Mit dieser modere Softwarelösug vereifache wir die Buchführug ud die Zusammearbeit zwische usere Kude ud us. Sie beötige keie eigee,

Mehr

Sichtbar im Web! Websites für Handwerksbetriebe. Damit Sie auch online gefunden werden.

Sichtbar im Web! Websites für Handwerksbetriebe. Damit Sie auch online gefunden werden. Sichtbar im Web! Websites für Hadwerksbetriebe. Damit Sie auch olie gefude werde. Professioelles Webdesig für: Hadwerksbetriebe Rudum-sorglos-Pakete Nur für Hadwerksbetriebe Webdesig zu Festpreise - ukompliziert

Mehr

FIBU Kontoauszugs- Manager

FIBU Kontoauszugs- Manager FIBU Kotoauszugs- Maager Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Highlights... 4 2.1 Buchugsvorschläge i der Buchugserfassug... 4 2.2 Vergleichstexterstellug zur automatische Vorkotierug... 5 2.3

Mehr

Das Digitale Archiv des Bundesarchivs

Das Digitale Archiv des Bundesarchivs Das Digitale Archiv des Budesarchivs 2 3 Ihaltsverzeichis Das Digitale Archiv des Budesarchivs 4 Techische Ifrastruktur 5 Hilfsmittel zur Archivierug 5 Archivierugsformate 6 Abgabe vo elektroische Akte

Mehr

Vorlesung Multivariate Statistik. Sommersemester 2009

Vorlesung Multivariate Statistik. Sommersemester 2009 P.Martus, Multvarate Statstk, SoSe 009 Free Uverstät Berl Charté Uverstätsmedz Berl Bachelor Studegag Boformatk Vorlesug Multvarate Statstk Sommersemester 009 Prof. Dr. rer. at. Peter Martus Isttut für

Mehr

Finanzmathematische Grundlagen zur Zins- und Rentenrechnung

Finanzmathematische Grundlagen zur Zins- und Rentenrechnung Fazmahemasche Grudlage zur Zs- ud Reerechug Fazmahemasche Grudlage zur Zs- ud Reerechug (Fassug - November 008) /3 Markus Scheche Emal: mal@markus-scheche.de Homepage: www.markus-scheche.de Fazmahemasche

Mehr

Tutorium Investition & Finanzierung Tutorium 1: Kostenvergleichs und Gewinnvergleichsrechnung

Tutorium Investition & Finanzierung Tutorium 1: Kostenvergleichs und Gewinnvergleichsrechnung Fachhochschule Schmalkalde Fakulä Iformak Professur Wrschafsformak, sb. Mulmeda Markeg Prof. Dr. rer. pol. Thomas Urba Tuorum Iveso & Fazerug Tuorum : oseverglechs ud Gewverglechsrechug T : Der Tu Fru

Mehr

Finanzmathematik. srdp orientierte. Seminar in Salzburg, HLW Annahof. Inhalt: I Display und Screenshots 2. II Grundbegriffe 3

Finanzmathematik. srdp orientierte. Seminar in Salzburg, HLW Annahof. Inhalt: I Display und Screenshots 2. II Grundbegriffe 3 Semiar i Salzburg, HLW Aahof srdp orietierte Fiazmathematik mit TI 82 stats Ihalt: I Display ud Screeshots 2 II Grudbegriffe 3 III Eifache Verzisug 3 IV Ziseszis 4 VI Äquivalezprizip 4 VII Uterjährige

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Datenstrukturen und Algorithmen. Grundlagen, Basisalgorithmen und Lösungsstrategien für sequentielle und parallele Algorithmen.

Datenstrukturen und Algorithmen. Grundlagen, Basisalgorithmen und Lösungsstrategien für sequentielle und parallele Algorithmen. 3. Jahrgag, Heft 3, Oktober 03, ISSN 0939-88 FIAL Datestrukture ud Algorthme Grudlage, Bassalgorthme ud Lösugsstratege für sequetelle ud parallele Algorthme Ulrch Hoffma Techcal Reports ad Workg Papers

Mehr

Potenzial-Evaluations-Programm

Potenzial-Evaluations-Programm T e l. + 4 1 3 1 3 1 2 0 8 8 0 i m d e @ i m d e. e t w w w. i m d e. e t Potezial-Evaluatios-Programm für Maagemet, Verkauf ud Sachbearbeitug vo Persoalexperte für Persoalexperte. Vorauswahl (MiiPEP)

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

ANLAG Anlagenbuchführung

ANLAG Anlagenbuchführung ANLAG Alagebuchführug Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Alagegüter aus der Buchugserfassug überehme... 5 3.2 Zugag oder Vortrag... 7

Mehr

OnC PressSens Präzise Druck- und Niveau- transmitter für alle Anwendungen

OnC PressSens Präzise Druck- und Niveau- transmitter für alle Anwendungen OC PressSes Präzise Druck- ud Niveau- trasmitter für alle Aweduge 1 OC TrasValve 300 mit OC PressSes 154 2 OC PressSes 125 3 OC PressSes 154 Hochwertige Drucksesore für alle Aforderuge I der Papierproduktio

Mehr

Multiple-Sourcing-Strategien bei Finanzdienstleistern Eine Analyse zum Einfluss der Integrationskosten am Beispiel der Wertpapierabwicklung

Multiple-Sourcing-Strategien bei Finanzdienstleistern Eine Analyse zum Einfluss der Integrationskosten am Beispiel der Wertpapierabwicklung Uverstät Augsburg Prof. Dr. Has Ulrch Buhl Kerkompetezzetrum Faz- Iformatosmaagemet Lehrstuhl für BWL, Wrtschaftsformatk, Iformatos- Fazmaagemet Dskussospaper WI-89 Multple-Sourcg-Stratege be Fazdestlester

Mehr

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein?

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein? FH@-Anwendung Für de Umsetzung von Strukturfonds-Förderungen st laut Vorgaben der EU de Enrchtung enes EDV- Systems für de Erfassung und Übermttlung zuverlässger fnanzeller und statstscher Daten sowe für

Mehr

Wenn Sie wissen, dass Dunkelverarbeitung nichts mit Schwarzarbeit zu tun hat, dann sind Sie bei uns richtig!

Wenn Sie wissen, dass Dunkelverarbeitung nichts mit Schwarzarbeit zu tun hat, dann sind Sie bei uns richtig! We Sie wisse, dass Dukelverarbeitug ichts mit Schwarzarbeit zu tu hat, da sid Sie bei us richtig! INVOICE-Auditor Iovative Softwarelösuge für Uterehme ud die Versicherugsidustrie Die itelligete Software

Mehr

Angeln Sie sich Ihr Extra bei der Riester-Rente. Private Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE

Angeln Sie sich Ihr Extra bei der Riester-Rente. Private Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE Prvate Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE Angeln Se sch Ihr Extra be der Rester-Rente. Rendtestark vorsorgen mt ALfonds Rester, der fondsgebundenen Rester-Rente der ALTE LEIPZIGER. Beste Rendtechancen

Mehr

Antriebstechnik \ Antriebsautomatisierung \ Systemintegration \ Services. Handbuch. Positionierung und Ablaufsteuerung IPOS plus

Antriebstechnik \ Antriebsautomatisierung \ Systemintegration \ Services. Handbuch. Positionierung und Ablaufsteuerung IPOS plus Atrebstechk \ Atrebsautomatserug \ Systemtegrato \ Servces Hadbuch ostoerug ud Ablausteuerug IOS plus Ausgabe 11/2009 11645407 / DE SEW-EURODRIVE Drvg the world Ihaltsverzechs Ihaltsverzechs 1 Allgemee

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

Direkt-Vertrieb Hersteller vertreibt seine Ware direkt an den Kunden (B2C; B2B)

Direkt-Vertrieb Hersteller vertreibt seine Ware direkt an den Kunden (B2C; B2B) (Eiführug) Optimirug Vrtribsprozss Sit: 1 Vrtribsart Dirkt-Vrtrib Hrstllr vrtribt si War dirkt a d Kud (B2C; B2B) Idirktr-Vrtrib War wrd übr Partr, Hädlr, Distributio, Ntzwrk agbot (B2C, B2B) Gmischtr

Mehr

Die Instrumente des Personalmanagements

Die Instrumente des Personalmanagements 15 2 Die Istrumete des Persoalmaagemets Zur Lerorietierug Sie solle i der Lage sei:! die Ziele, Asätze ud Grüde eier systematische Persoalplaug darzulege;! die Istrumete der Persoalplaug zu differeziere;!

Mehr

Zitiervorschlag: Dr. Bernd Kiefer, Fichtner Management Consulting AG an CVP-Tagung Energiewende von unten, 22. September 2012

Zitiervorschlag: Dr. Bernd Kiefer, Fichtner Management Consulting AG an CVP-Tagung Energiewende von unten, 22. September 2012 Bürgerbeteiliguge als Teil der Eergiewede CVP Kato Zürich vom 22. September 2012 Dr. Berd Kiefer Zitiervorschlag: Dr. Berd Kiefer, Fichter Maagemet Cosultig AG a CVP-Tagug Eergiewede vo ute, 22. September

Mehr

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07.

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07. Studiegag Fach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Wirtschaftsmathematik Prüfugsleistug WI-WMT-P 040703 Datum 03.07.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Einführungsaufwand von Filesystemen für virtualisierte parallele Datenbanken

Einführungsaufwand von Filesystemen für virtualisierte parallele Datenbanken Enführungsaufwand von Flesystemen für vrtualserte parallele Datenbanken best Systeme GmbH, Unterföhrng Wolfgang Stef stef@best.de Dpl.-Ing. (FH) Systemngeneur Unx 2004-07-08 GIMS Zugsptze 1/17 P Agenda

Mehr

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern KASSENBUCH ONLINE Olie-Erfassug vo Kassebücher Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Ituitive Olie-Erfassug des Kassebuchs... 5 3.2 GoB-sicher

Mehr

Inhaltsverzeichnis. 1 Leistungsbeschreibung... 3. 2 Integration in das Agenda-System... 4

Inhaltsverzeichnis. 1 Leistungsbeschreibung... 3. 2 Integration in das Agenda-System... 4 USt Umsatzsteuer Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Kompakte Erfassugsmaske auf Basis der Steuerformulare... 5 3.2 Orgaschaft & Kosolidierug...

Mehr

Optimierung der Personaleinsatzplanung in Call Centern Theoretische Systematisierung und empirische Überprüfung

Optimierung der Personaleinsatzplanung in Call Centern Theoretische Systematisierung und empirische Überprüfung Optmerug der Persoalesatzplaug Call Ceter Theoretshe Systematserug ud emprshe Überprüfug Iaugural-Dssertato zur Erlagug des akademshe Grades ees Doktors der Wrtshaftswsseshafte m Fahbereh Statstk der Uverstät

Mehr