Übung Theoretische Grundlagen Nachtrag zur Vorlesung Dirk Achenbach

Größe: px
Ab Seite anzeigen:

Download "Übung Theoretische Grundlagen Nachtrag zur Vorlesung Dirk Achenbach 21.11.2013"

Transkript

1 Übung Theoretische Grundlagen Nachtrag zur Vorlesung Dirk Achenbach INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

2 Äquivalenz In der Vorlesung gezeigt: Jede kontextfreie Sprache kann von einem Kellerautomaten erkannt werden Heute: Die von Kellerautomaten erkannten Sprachen sind kontextfrei Dirk Achenbach Übung /13

3 Äquivalenz In der Vorlesung gezeigt: Jede kontextfreie Sprache kann von einem Kellerautomaten erkannt werden Heute: Die von Kellerautomaten erkannten Sprachen sind kontextfrei Dirk Achenbach Übung /13

4 Äquivalenz Theorem Wird eine Sprache L von einem Kellerautomaten erkannt, dann ist sie kontextfrei. Dirk Achenbach Übung /13

5 Technische Tweaks Wir können jeden Kellerautomaten M so zu einen Kellerautomaten M modifizieren dass 1 M und M erkennen die selbe Sprache. 2 M hat nur einen einzigen akzeptierenden Zustand q accept 3 Der Keller von M ist leer wenn M in Zustand q accept ist. 4 Jeder Zustandsübergang von M nimmt entweder ein Zeichen vom Keller oder legt eines auf dem Keller ab (Jede Operation ist Pop oder Push Operation) Dirk Achenbach Übung /13

6 Technische Tweaks Wir können jeden Kellerautomaten M so zu einen Kellerautomaten M modifizieren dass 1 M und M erkennen die selbe Sprache. 2 M hat nur einen einzigen akzeptierenden Zustand q accept 3 Der Keller von M ist leer wenn M in Zustand q accept ist. 4 Jeder Zustandsübergang von M nimmt entweder ein Zeichen vom Keller oder legt eines auf dem Keller ab (Jede Operation ist Pop oder Push Operation) Dirk Achenbach Übung /13

7 Technische Tweaks Wir können jeden Kellerautomaten M so zu einen Kellerautomaten M modifizieren dass 1 M und M erkennen die selbe Sprache. 2 M hat nur einen einzigen akzeptierenden Zustand q accept 3 Der Keller von M ist leer wenn M in Zustand q accept ist. 4 Jeder Zustandsübergang von M nimmt entweder ein Zeichen vom Keller oder legt eines auf dem Keller ab (Jede Operation ist Pop oder Push Operation) Dirk Achenbach Übung /13

8 Technische Tweaks Wir können jeden Kellerautomaten M so zu einen Kellerautomaten M modifizieren dass 1 M und M erkennen die selbe Sprache. 2 M hat nur einen einzigen akzeptierenden Zustand q accept 3 Der Keller von M ist leer wenn M in Zustand q accept ist. 4 Jeder Zustandsübergang von M nimmt entweder ein Zeichen vom Keller oder legt eines auf dem Keller ab (Jede Operation ist Pop oder Push Operation) Dirk Achenbach Übung /13

9 Technische Tweaks Die Punkte (2) und (3) lassen sich einfach erreichen. Füge dazu ein neues leerer Keller Symbol und einen neuen Endzustand q accept ein. Punkt (4) erreicht man dadurch dass man Jede Zustandsübergangsregel δ(q i, a, S) (q j, T ) mit S, T ɛ durch zwei Regeln δ(q i, a, S) (q i,j,s,t, ɛ) und δ(q i,j,a,s,t, ɛ, ɛ) (q j, T ) ersetzt. Dabei ist q i,j,a,s,t ein neuer Zustand. Jede Zustandsübergangsregel δ(q i, a, ɛ) (q j, ɛ) durch zwei Regeln δ(q i, a, ɛ) (q i,j,a, R) und δ(q i,j,a, ɛ, R) (q j, ɛ) ersetzt, wobei q i,j,a ein neuer Zustand und R ein neues Bandsymbol ist. Dirk Achenbach Übung /13

10 Technische Tweaks Die Punkte (2) und (3) lassen sich einfach erreichen. Füge dazu ein neues leerer Keller Symbol und einen neuen Endzustand q accept ein. Punkt (4) erreicht man dadurch dass man Jede Zustandsübergangsregel δ(q i, a, S) (q j, T ) mit S, T ɛ durch zwei Regeln δ(q i, a, S) (q i,j,s,t, ɛ) und δ(q i,j,a,s,t, ɛ, ɛ) (q j, T ) ersetzt. Dabei ist q i,j,a,s,t ein neuer Zustand. Jede Zustandsübergangsregel δ(q i, a, ɛ) (q j, ɛ) durch zwei Regeln δ(q i, a, ɛ) (q i,j,a, R) und δ(q i,j,a, ɛ, R) (q j, ɛ) ersetzt, wobei q i,j,a ein neuer Zustand und R ein neues Bandsymbol ist. Dirk Achenbach Übung /13

11 Technische Tweaks Die Punkte (2) und (3) lassen sich einfach erreichen. Füge dazu ein neues leerer Keller Symbol und einen neuen Endzustand q accept ein. Punkt (4) erreicht man dadurch dass man Jede Zustandsübergangsregel δ(q i, a, S) (q j, T ) mit S, T ɛ durch zwei Regeln δ(q i, a, S) (q i,j,s,t, ɛ) und δ(q i,j,a,s,t, ɛ, ɛ) (q j, T ) ersetzt. Dabei ist q i,j,a,s,t ein neuer Zustand. Jede Zustandsübergangsregel δ(q i, a, ɛ) (q j, ɛ) durch zwei Regeln δ(q i, a, ɛ) (q i,j,a, R) und δ(q i,j,a, ɛ, R) (q j, ɛ) ersetzt, wobei q i,j,a ein neuer Zustand und R ein neues Bandsymbol ist. Dirk Achenbach Übung /13

12 Technische Tweaks Die Punkte (2) und (3) lassen sich einfach erreichen. Füge dazu ein neues leerer Keller Symbol und einen neuen Endzustand q accept ein. Punkt (4) erreicht man dadurch dass man Jede Zustandsübergangsregel δ(q i, a, S) (q j, T ) mit S, T ɛ durch zwei Regeln δ(q i, a, S) (q i,j,s,t, ɛ) und δ(q i,j,a,s,t, ɛ, ɛ) (q j, T ) ersetzt. Dabei ist q i,j,a,s,t ein neuer Zustand. Jede Zustandsübergangsregel δ(q i, a, ɛ) (q j, ɛ) durch zwei Regeln δ(q i, a, ɛ) (q i,j,a, R) und δ(q i,j,a, ɛ, R) (q j, ɛ) ersetzt, wobei q i,j,a ein neuer Zustand und R ein neues Bandsymbol ist. Dirk Achenbach Übung /13

13 Sei also M = (Q, Σ, Γ, δ, q 0, {q accept }) ein Kellerautomat der die Bedingungen (1)-(4) erfüllt. Wir definierend die kontextfreie Grammatik G = (T, V, S, P) mit T = Σ, V = {A pq p, q Q}, S = A q0 q accept und den Produktionen P mit Für alle p, q, r, s Q, t Γ und a, b Σ {ɛ} enthält P die Regel A pq aa rs b gdw. δ(p, a, ɛ) (r, t) und δ(s, b, t) (q, ɛ) Für alle p, q, r Q enthält P die Regel A pq A pr A rq Für alle p Q enthält P die Regel A pp ɛ Dirk Achenbach Übung /13

14 Sei also M = (Q, Σ, Γ, δ, q 0, {q accept }) ein Kellerautomat der die Bedingungen (1)-(4) erfüllt. Wir definierend die kontextfreie Grammatik G = (T, V, S, P) mit T = Σ, V = {A pq p, q Q}, S = A q0 q accept und den Produktionen P mit Für alle p, q, r, s Q, t Γ und a, b Σ {ɛ} enthält P die Regel A pq aa rs b gdw. δ(p, a, ɛ) (r, t) und δ(s, b, t) (q, ɛ) Für alle p, q, r Q enthält P die Regel A pq A pr A rq Für alle p Q enthält P die Regel A pp ɛ Dirk Achenbach Übung /13

15 Sei also M = (Q, Σ, Γ, δ, q 0, {q accept }) ein Kellerautomat der die Bedingungen (1)-(4) erfüllt. Wir definierend die kontextfreie Grammatik G = (T, V, S, P) mit T = Σ, V = {A pq p, q Q}, S = A q0 q accept und den Produktionen P mit Für alle p, q, r, s Q, t Γ und a, b Σ {ɛ} enthält P die Regel A pq aa rs b gdw. δ(p, a, ɛ) (r, t) und δ(s, b, t) (q, ɛ) Für alle p, q, r Q enthält P die Regel A pq A pr A rq Für alle p Q enthält P die Regel A pp ɛ Dirk Achenbach Übung /13

16 Sei also M = (Q, Σ, Γ, δ, q 0, {q accept }) ein Kellerautomat der die Bedingungen (1)-(4) erfüllt. Wir definierend die kontextfreie Grammatik G = (T, V, S, P) mit T = Σ, V = {A pq p, q Q}, S = A q0 q accept und den Produktionen P mit Für alle p, q, r, s Q, t Γ und a, b Σ {ɛ} enthält P die Regel A pq aa rs b gdw. δ(p, a, ɛ) (r, t) und δ(s, b, t) (q, ɛ) Für alle p, q, r Q enthält P die Regel A pq A pr A rq Für alle p Q enthält P die Regel A pp ɛ Dirk Achenbach Übung /13

17 Behauptung A pq x genau dann wenn, M bei Lesen von x, ausgehend von Zustand p und leerem Keller den Zustand q erreichen kann, wobei bei Erreichen von q der Keller wieder leer ist. Beide Richtungen der Behauptung lassen sich induktiv zeigen. Dirk Achenbach Übung /13

18 Behauptung A pq x genau dann wenn, M bei Lesen von x, ausgehend von Zustand p und leerem Keller den Zustand q erreichen kann, wobei bei Erreichen von q der Keller wieder leer ist. Beide Richtungen der Behauptung lassen sich induktiv zeigen. Dirk Achenbach Übung /13

19 " ": Induktion Über die Länge k der Ableitung A pq x. Ist k = 1, so ist x = ɛ. Das ist nur möglich falls p = q, also ist die in der Ableitung auftretende Regel A pp ɛ. Der Keller verändert sich nicht. Ist k > 1, so ist die erste Regelanwendung der Ableitung entweder von der Form A pq aa rs b oder A pq A pr A rq Dirk Achenbach Übung /13

20 " ": Induktion Über die Länge k der Ableitung A pq x. Ist k = 1, so ist x = ɛ. Das ist nur möglich falls p = q, also ist die in der Ableitung auftretende Regel A pp ɛ. Der Keller verändert sich nicht. Ist k > 1, so ist die erste Regelanwendung der Ableitung entweder von der Form A pq aa rs b oder A pq A pr A rq Dirk Achenbach Übung /13

21 " ": Induktion Über die Länge k der Ableitung A pq x. Ist k = 1, so ist x = ɛ. Das ist nur möglich falls p = q, also ist die in der Ableitung auftretende Regel A pp ɛ. Der Keller verändert sich nicht. Ist k > 1, so ist die erste Regelanwendung der Ableitung entweder von der Form A pq aa rs b oder A pq A pr A rq Dirk Achenbach Übung /13

22 Ist die erste Regel A pq aa rs b, so ist x = ayb, wobei A rs y eine Ableitung der Länge k 1 ist. Nach Induktionsannahme kann M also bei Lesen von y mit leerem Keller von r nach s überführt werden. Nach Konstruktion der Produktion A pq aa rs b gilt aber dass t Γ : δ(p, a, ɛ) (r, t) und δ(s, b, t) (q, ɛ). Also erhält die Ableitung A pq x den leeren Keller. Dirk Achenbach Übung /13

23 Ist die erste Regel A pq A pr A rq, so ist x = yz mit A pr y und A rq z. Die beiden letzten Ableitungen haben jeweils Länge k 1, also trifft für sie die Induktionsannahme zu und es gilt dass M bei Lesen von y mit leerem Keller von p nach r und bei Lesen von z mit leerem Keller von r nach q überführt werden kann. Insgesamt also kann M bei Lesen von x = yz mit leerem Keller von p nach q überführt werden. Dirk Achenbach Übung /13

24 " ": Starte M in Zustand p mit leerem Keller und erreiche nach Lesen von x Zustand q mit leerem Keller. Induktion über die Länge k der Trace von M. Ist k = 0, dann startet und bleibt M in einem Zustand p. Es gilt notwendigerweise x = ɛ. Dazu passt die Regel A pp ɛ von P, also A pp x Ist k > 0, so bleibt der Keller während der Berechnung von M entweder immer gefüllt oder er wird irgendwann zwischendurch leer. Dirk Achenbach Übung /13

25 " ": Starte M in Zustand p mit leerem Keller und erreiche nach Lesen von x Zustand q mit leerem Keller. Induktion über die Länge k der Trace von M. Ist k = 0, dann startet und bleibt M in einem Zustand p. Es gilt notwendigerweise x = ɛ. Dazu passt die Regel A pp ɛ von P, also A pp x Ist k > 0, so bleibt der Keller während der Berechnung von M entweder immer gefüllt oder er wird irgendwann zwischendurch leer. Dirk Achenbach Übung /13

26 " ": Starte M in Zustand p mit leerem Keller und erreiche nach Lesen von x Zustand q mit leerem Keller. Induktion über die Länge k der Trace von M. Ist k = 0, dann startet und bleibt M in einem Zustand p. Es gilt notwendigerweise x = ɛ. Dazu passt die Regel A pp ɛ von P, also A pp x Ist k > 0, so bleibt der Keller während der Berechnung von M entweder immer gefüllt oder er wird irgendwann zwischendurch leer. Dirk Achenbach Übung /13

27 Im ersten Fall (Keller zwischendurch nie leer) muss das im ersten Schritt der Ableitung auf den Keller gelegte Zeichen t im letzten Schritt wieder entfernt werden. Zerlegen wir also x = ayb. Zweiter Zustand in der Trace von M sei r, vorletzter Zustand sei s. Es gibt als r, s Q und t Γ sodass δ(p, a, ɛ) (r, t) und δ(s, b, t) (q, ɛ). Es gibt also eine Regel A pq aa rs b in P. Da M bei Lesen von y mit leerem Keller in maximal k 1 Schritten von r nach s gelangt, gilt A rs y, insgesamt also A pq x. Dirk Achenbach Übung /13

28 Im zweiten Fall (Keller zwischendurch leer) erreicht M zwischendurch einen Zustand r mit leerem Keller. Liest M zwischen p und r das Wort y, so können wir x = yz Zerlegen. M erreicht also jeweils von p bei Lesen von y den Zustand r mit leerem Keller und von Zustand r aus bei Lesen von z den Zustand q mit leerem Keller. Es gilt also A pr y und A rq z, da die beiden Teilableitungen Länge < k haben und somit die Induktionsannahme gilt. Da es in P die Regel A pq A pr A rq gibt gilt insgesamt A pq x. Damit ist der Beweis abgeschlossen. Dirk Achenbach Übung /13

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte

Mehr

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls 4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls δ(q, a, Z) + δ(q, ɛ, Z) 1 (q, a, Z) Q Σ. Die von einem DPDA, der mit leerem Keller akzeptiert,

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 27 29..24 FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Definition

Mehr

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Grundlagen Theoretischer Informatik I SoSe 2011 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik I Gesamtübersicht Organisatorisches; Einführung Logik

Mehr

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Frank Heitmann heitmann@informatik.uni-hamburg.de 13. Mai 2014 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/17 Überblick Wir hatten

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

Übungsblatt Nr. 3. Lösungsvorschlag

Übungsblatt Nr. 3. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 3 svorschlag Aufgabe 1

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2012 17. DIE KONTEXTFREIEN SPRACHEN II: ABSCHLUSSEIGENSCHAFTEN, MASCHINENCHARAKTERISIERUNG, KOMPLEXITÄT Theoretische

Mehr

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 10.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Pratts Primzahlzertifikate

Pratts Primzahlzertifikate Pratts Primzahlzertifikate Markus Englert 16.04.2009 Technische Universität München Fakultät für Informatik Proseminar: Perlen der Informatik 2 SoSe 2009 Leiter: Prof. Dr. Nipkow 1 Primzahltest Ein Primzahltest

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Turing-Maschine, Berechenbarkeit INSTITUT FÜR THEORETISCHE 0 KIT 07.11.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 2.4 Grammatiken 1. Arbeitsweise 2. Klassifizierung 3. Beziehung zu Automaten Beschreibungsformen für Sprachen Mathematische Mengennotation Prädikate beschreiben Eigenschaften

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen / Kontextfreie Sprachen und Kellerautomaten

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen / Kontextfreie Sprachen und Kellerautomaten Inhalt 1 Einführung 2 Automatentheorie und Formale Sprachen Grammatiken Reguläre Sprachen und endliche Automaten Kontextfreie Sprachen und Kellerautomaten Kontextsensitive und Typ 0-Sprachen 3 Berechenbarkeitstheorie

Mehr

Aufgabentypen die in der Klausur vorkommen

Aufgabentypen die in der Klausur vorkommen Aufgabentypen die in der Klausur vorkommen können 1. Nennen Sie fünf wichtige Anwendungsgebiete der Computerlinguistik. 2. Für welches der drei Anwendungsgebiete Maschinelle Übersetzung, Rechtschreibkorrektur

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19 Inhalt 1 inführung 2 Automatentheorie und ormale prachen Grammatiken Reguläre prachen und endliche Automaten Kontextfreie prachen und Kellerautomaten Kontextsensitive und yp 0-prachen 3 Berechenbarkeitstheorie

Mehr

Sprachen/Grammatiken eine Wiederholung

Sprachen/Grammatiken eine Wiederholung Sprachen/Grammatiken eine Wiederholung Was sind reguläre Sprachen? Eigenschaften regulärer Sprachen Sprachen Begriffe Symbol: unzerlegbare Grundzeichen Alphabet: endliche Menge von Symbolen Zeichenreihe:

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen

Mehr

Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395

Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Turing-Machine Wir suchen ein Modell zur formalen Definition der Berechenbarkeit von Funktionen und deren Zeit- und Platzbedarf. Verschiedene Modelle

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 4: Nichtdeterminismus Teil 2 schulz@eprover.org Software Systems Engineering Nichtdeterministische endliche Automaten Definition: Ein nichtdeterministischer

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel.

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel. Kontextfreie Kontextfreie Motivation Formale rundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen Bisher hatten wir Automaten, die Wörter akzeptieren Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

5.7 Kontextfreie Grammatiken und Kellerautomaten

5.7 Kontextfreie Grammatiken und Kellerautomaten 130 5.7 Kontextfreie Grammatiken und Kellerautomaten Im letzten Abschnitt haben wir gesehen, dass wir reguläre Sprachen auch mit Hilfe von endlichen Automaten charakterisieren können. Jetzt wollen wir

Mehr

Grundbegriffe der Informatik Tutorium 12

Grundbegriffe der Informatik Tutorium 12 Grundbegriffe der Informatik Tutorium 12 Tutorium Nr. 16 Philipp Oppermann 28. Januar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

11. Übungsblatt. x y(top(push(x, y)) = y)

11. Übungsblatt. x y(top(push(x, y)) = y) Logik, Berechenbarkeit und Komplexität Sommersemester 2012 Hochschule RheinMain Prof. Dr. Steffen Reith 11. Übungsblatt 1. Ein Keller (engl. stack) ist eine bekannte Datenstruktur. Sei die Signatur S =

Mehr

Grundbegriffe der Informatik Tutorium 11

Grundbegriffe der Informatik Tutorium 11 Grundbegriffe der Informatik Tutorium 11 Tutorium Nr. 32 Philipp Oppermann 29. Januar 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie

Mehr

1 Varianten von Turingmaschinen

1 Varianten von Turingmaschinen 1 Varianten von Turingmaschinen Es gibt weitere Definitionen für Turingmaschinen. Diese haben sich aber alle als äquivalent herausgestellt. Ein wiederkehrendes Element der Vorlesung: Äquivalenz von Formalismen

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

(Prüfungs-)Aufgaben zu formale Sprachen

(Prüfungs-)Aufgaben zu formale Sprachen (Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Das Pumping-Lemma Formulierung

Das Pumping-Lemma Formulierung Das Pumping-Lemma Formulierung Sei L reguläre Sprache. Dann gibt es ein n N mit: jedes Wort w L mit w n kann zerlegt werden in w = xyz, so dass gilt: 1. xy n 2. y 1 3. für alle k 0 ist xy k z L. 59 / 162

Mehr

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 02.02.2012 INSTITUT FÜR THEORETISCHE 0 KIT 06.02.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

Formale Systeme. Aussagenlogik: Sequenzenkalkül. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Sequenzenkalkül. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 23.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2011 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1 Wir beschäftigen uns ab

Mehr

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ).

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Beweis: Für jedes a Σ muss jede Position in der Tabelle nur konstant oft besucht werden.

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2016 20.04.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013 Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2013 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1 Deterministische Kellerautomaten

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 7 15. Juni 2010 Einführung in die Theoretische

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 29.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie 3. Endliche Automaten und reguläre

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Rückblick Theoretische Informatik I 1. Mathematische Methoden 2. Reguläre Sprachen 3. Kontextfreie Sprachen Themen der Theoretischen Informatik I & II Mathematische Methodik in

Mehr

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem Das Postsche Korrespondenzproblem Eine Instanz des PKP ist eine Liste von Paaren aus Σ Σ : (v 1, w 1 ),..., (v n, w n ) Eine Lösung ist eine Folge i 1,..., i k von Indizes 1 i j n mit v i1... v ik = w

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 10.11.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

Kontextfreie Grammatiken

Kontextfreie Grammatiken Kontextfreie Grammatiken Bisher haben wir verschiedene Automatenmodelle kennengelernt. Diesen Automaten können Wörter vorgelegt werden, die von den Automaten gelesen und dann akzeptiert oder abgelehnt

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs)

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs) ank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert iese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

Kapitel 7: Kellerautomaten und kontextfreie Sprachen

Kapitel 7: Kellerautomaten und kontextfreie Sprachen Kapitel 7: Kellerautomaten und kontextfreie Sprachen Prof.-Dr. Peter Brezany Institut für Softwarewissenschaft Universität Wien, Liechtensteinstraße 22 1090 Wien Tel. : 01/4277 38825 E-mail : brezany@par.univie.ac.at

Mehr

Rechnerorganisation Tutorium Nr. 1

Rechnerorganisation Tutorium Nr. 1 Rechnerorganisation Tutorium Nr. 1 Tutorium 3 Nicholas Kjär - uadnm@student.kit.edu 20. April 2015 INSTITUT FÜR INFORMATIK KIT University of the State of Baden-Wuerttemberg and National Laboratory of the

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Deterministische Kellerautomaten Von besonderem Interesse sind kontextfreie Sprachen,

Mehr

Lexikalische Programmanalyse der Scanner

Lexikalische Programmanalyse der Scanner Der Scanner führt die lexikalische Analyse des Programms durch Er sammelt (scanned) Zeichen für Zeichen und baut logisch zusammengehörige Zeichenketten (Tokens) aus diesen Zeichen Zur formalen Beschreibung

Mehr

Sicheres Cloud Computing Ein Oxymoron? Eine Provokation

Sicheres Cloud Computing Ein Oxymoron? Eine Provokation Sicheres Cloud Computing Ein Oxymoron? Eine Provokation Dirk Achenbach European Institute of System Security Institute of Cryptography and Security KIT University of the State

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 8: kontextfreie Grammatiken Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/37 Überblick Kontextfreie Grammatiken

Mehr

Worterkennung in Texten speziell im Compilerbau 14. April Frank Heitmann 2/65

Worterkennung in Texten speziell im Compilerbau 14. April Frank Heitmann 2/65 Grenzen regulärer Sprachen? Formale Grundlagen der Informatik 1 Kapitel 4 Über reguläre Sprachen hinaus und Frank Heitmann heitmann@informatik.uni-hamburg.de Wir haben mittlerweile einiges kennengelernt,

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

β Ζ φ ε = δ δ = + = = = = = ρ ρ γ γ γ γ γ γ γ = = = = = = + + = = = + + = = = = $ σ r ( ) K r = = = O M L r M r r = = O M L r M r r = = = = = = = = ( ) ( ) = ( ) = ± ( ) ( ) = ± ( ) = ± (

Mehr

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Sommersemester 2011 Dozent: Prof. Dr. J. Rothe, Prof. Dr. M. Leuschel J. Rothe (HHU Düsseldorf)

Mehr

Mathematische Grundlagen der Informatik 2

Mathematische Grundlagen der Informatik 2 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Emanuel Duss emanuel.duss@gmail.com 12. April 2013 1 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Dieses Dokument basiert

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2.

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2. Fibonacci-Zahlen als Beispiel Für f = (f n ) = (0,,, 2, 3, 5, 8, 3, 2, 34,...) gilt Rekursion erzeugende Funktion f n2 = f n f n (n 0), f 0 = 0, f = f(z) = f n z n = z z z 2 Partialbruchzerlegung mit φ

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

a n b n c n ist kontextsensitiv kontextfreie Sprachen (Typ 2) Abschnitt 3.3 kontextfreie Sprachen: Abschlusseigenschaften Chomsky NF und binäre Bäume

a n b n c n ist kontextsensitiv kontextfreie Sprachen (Typ 2) Abschnitt 3.3 kontextfreie Sprachen: Abschlusseigenschaften Chomsky NF und binäre Bäume Kap 3: Grammatiken Chomsky-Hierarchie 32 Kap 3: Grammatiken Kontextfreie 33 a n b n c n ist kontextsensiti Beispiel 3111 modifizieren: Σ = {a, b, c G = (Σ, V, P, X ) V = {X, Y, Z P : X ε X axyz ZY YZ ay

Mehr

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S) Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /

Mehr

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen reguläre Grammatiken/prachen Beschreibung für Bezeichner in Programmiersprachen Beschreibung für wild cards in kriptsprachen (/* reguläre Ausdrücke */)?; [a-z]; * kontextfreie Grammatiken/prachen Beschreibung

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 4: Wörter (und vollständige Induktion) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/29 Überblick Wörter Wörter Das leere Wort Mehr zu

Mehr

Ein Satz der deutschen Sprache besitzt ein Subjekt, ein Prädikat und ein Objekt (SPO).

Ein Satz der deutschen Sprache besitzt ein Subjekt, ein Prädikat und ein Objekt (SPO). 1 Grammatiken Autor: Tilman Blumenbach Letzte Änderung: 28. Juni 2012 18:15 Ziel von Grammatiken Wollen die Struktur von Sprachen modellieren und charakterisieren. Beispiel Ein Satz der deutschen Sprache

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Grammatiken und die Chomsky-Hierarchie

Grammatiken und die Chomsky-Hierarchie Grammatiken und die Chomsky-Hierarchie Def.: Eine Grammatik G=(Σ,V,S,R) besteht aus endlichem Alphabet Σ endlicher Variablenmenge V mit V Σ= Startsymbol SєV endlicher Menge R с (V Σ) + x(v Σ)* von Ableitungsregeln

Mehr

Deterministischer Kellerautomat (DPDA)

Deterministischer Kellerautomat (DPDA) Deterministische Kellerautomaten Deterministischer Kellerautomat (DPDA) Definition Ein Septupel M = (Σ,Γ, Z,δ, z 0,#, F) heißt deterministischer Kellerautomat (kurz DPDA), falls gilt: 1 M = (Σ,Γ, Z,δ,

Mehr

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekt mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Multimedia Technologie II

Multimedia Technologie II Vorlesung / Übungen Multimedia Technologie II Prof. Dr. Michael Frank / Prof. Dr. Klaus Hering Sommersemester 2004 HTWK Leipzig, FB IMN Für die externe Vorhaltung der DTD werden sämtliche zwischen den

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Vom Vorteil der Winzigkeit

Vom Vorteil der Winzigkeit Institut für Mikroverfahrenstechnik Thermische Mikroverfahrenstechnik Vom Vorteil der Winzigkeit Wie Winzlinge beim Energie sparen helfen juergen.brandner@kit.edu, KIT University of the State of Baden-Württemberg

Mehr