Die Clusteranalyse Clusteranalyse. Grundidee Mögliche Anwendungsgebiete gg Vorgehensweise Beispiele. methodenlehre ll Clusteranalyse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Die Clusteranalyse 24.06.2009. Clusteranalyse. Grundidee Mögliche Anwendungsgebiete gg Vorgehensweise Beispiele. methodenlehre ll Clusteranalyse"

Transkript

1 Clusteranalyse Thomas Schäfer SS Die Clusteranalyse Grundidee Mögliche Anwendungsgebiete gg Vorgehensweise Beispiele Thomas Schäfer SS

2 Die Clusteranalyse Grundidee: Eine heterogene Gesamtheit von Fällen (Personen/Objekte) soll in homogene Gruppen oder Cluster aufgeteilt werden. Dabei wird die Ähnlichkeit der Fälle auf allen relevanten Variablen berücksichtigt Die zwei zentralen Fragen: Wie wird Ähnlichkeit von Fällen bestimmt? Wie wird die Gruppenaufteilung vorgenommen, wenn die Ähnlichkeit zwischen Fällen bekannt ist? Analyse einer heterogenen Gesamtheit von Objekten, mit dem Ziel, homogene Teilmengen zu identifizieren. Thomas Schäfer SS Clusteranalyse: mögliche Anwendungen Aufteilung von Personen/Objekten in Subgruppen Erstellen von Typologien Marktforschung (Konsumentengruppen, Kaufverhalten, Produktanalyse) Differenzieren von Bevölkerungsgruppen Thomas Schäfer SS

3 Clusteranalyse: Vorgehensweise Bestimmung der Ähnlichkeit Auswahl des Fusionierungsalgorithmus Prüfung der Merkmalsausprägung für je 2 Personen oder Objekte und Messung der Unterschiede/ Übereinstimmungen mit Hilfe eines Zahlenwertes (Proximitätsmaß) Personen/Objekte werden aufgrund ihrer Ähnlichkeitswerte zu Gruppen zusammengefasst. Bestimmung der Clusterzahl Entscheidung über Clusteranzahl, Zielkonflikt: Handhabbarkeit (geringe Clusteranzahl) & hohe Lösungsgüte gg (hohe Clusterzahl) Interpretation der Cluster und Überprüfen der Güte Inhaltliche Interpretation der resultierenden Cluster Thomas Schäfer SS Bestimmung der Ähnlichkeit Variable1 Variable2 Variable j Objekt1 Objekt2. : : Objekt k Rohdatenmatrix Objekt1 Objekt2. : : Objekt k Objekt1 Objekt2 Objekt k Distanz oder Ähnlichkeitsmatrix Thomas Schäfer SS

4 Proximitätsmaße (Ähnlichkeits bzw. Distanzmaße) bei Nominal Skalen Tanimoto Koeffizient M Koeffizient Kulczynski Koeffizient RR Koeffizient Dice Koeffizient. bei metrischen Skalen L 1 Norm L 2 Norm Q Korrelations Koeffizient Mahalanobis Distanz Thomas Schäfer SS Rohdatenmatrix α β γ δ ε ζ Objekt 1 Objekt Objekt Objekt nicht vorhanden 1 vorhanden Thomas Schäfer SS

5 Eigenschaft vorhanden (1) Objekt 1 Eigenschaft nicht iht vorhanden (0) Zeilensumme Objekt 2 Eigenschaft vorhanden (1) Eigenschaft nicht vorhanden (0) b d a c a+c b+d Spaltensumme a+b c+d m Thomas Schäfer SS Rohdatenmatrix α β γ δ ε ζ Objekt 1 Objekt Objekt b Objekt a c Thomas Schäfer SS

6 Nichtübereinstimmung soll keine Rolle spielen z. B. Tanimoto Koeffizient: a Tanimoto Koeff. = a + b + c Nichtübereinstimmung soll berücksichtigt werden (z. B. bei echt dichotomen Daten) z. B. M Koeffizient (Simple Matching): a + d M = a + b + c + d Fall x Fall y + + a c b d + Eigenschaft vorhanden Eigenschaft nicht vorhanden a: Anzahl der Variablen, in denenfürbeidefälle die Eigenschaft vorhanden ist b: Anzahl der Variablen, in denen die Eigenschaft für Fall x vorhanden ist, aber für Fall y nicht usw. Thomas Schäfer SS Aufbau der Distanz oder Ähnlichkeitsmatrix Objekt 1 Objekt 2 Objekt 3 : Objekt k Objekt 1 Objekt 2 Objekt 3 Objekt k 1? 1?? 1??? 1 Thomas Schäfer SS

7 echte Ähnlichkeitsmaße z.b. Q Korrelationskoeffizient (wennkovariation inhaltlich wichtig ist) Abstandsmaße z. B. Minkowski Metriken (wennabsoluter Abstand inhaltlich wichtig ist) z.b. City Block Metrik (L 1 Norm), Euklidische Distanz (L 2 Norm) Thomas Schäfer SS Ähnlichkeitsermittlung bei metrischer Variablenstruktur am häufigsten angewandte Distanznorm: Minkowski Metriken City Block Metrik: r = 1: d a, b = J j= 1 X aj X bj x, x : Wert der Variablen j bei den Objekten k,l (j=1,2, J) k,j l,j d k,l: Distanz der Objekte k und l r > _ 1 : Minkowski Konstante Euklidische Distanz: r = 2 (oft auch quadriert): d a, b = J j= 1 X aj X bj 2 Thomas Schäfer SS

8 Variable k,2 - X l,2 X k k X - X k,1 l,1 l Variable 1 Thomas Schäfer SS Zur Messung der Ähnlichkeit zwischen Objekten sind Distanzmaße immer dann geeignet, wenn der absolute Abstand zwischen Objekten von Interesse ist und die Unähnlichkeit dann als um so größer anzusehen ist, wenn zwei Objekte weit entfernt voneinander liegen. Ähnlichkeitsmaße immer dann geeignet, g wenn der primäre Ähnlichkeitsaspekt im Gleichlauf zweier Profile zu sehen ist, unabhängig davon, auf welchem Niveau die Objekte liegen. Thomas Schäfer SS

9 Jahr Unternehmen A Unternehmen B Gewinn die Profile beider Unternehmen sind gleich, ein Ähnlichkeitsmaß würde einen hohen Wert liefern die beiden Unternehmen haben aber absolut gesehen einen großen Abstand, ein Distanzmaß würde daher einen kleinen Wert liefern Thomas Schäfer SS Clusteralgorithmen Clusterverfahren Graphentheoretische Verfahren Hierarchische Verfahren Partitionierende Verfahren Optimierungsverfahren agglomerativ divisiv Austauschverfahren Iteriertes Minimaldistanz Verfahren Single Linkage Complete Linkage Average Linkage Centroid Median Ward Thomas Schäfer SS

10 Clusteralgorithmen Partitionierende Verfahren Anfangsgruppierung vorgeben Sukzessive Verlagerung von Objekten in andere Gruppen Zielkriterium: Minimierung der Varianz innerhalb der Gruppen (Gruppeneinteilung reversibel) Hierarchische Verfahren a) agglomerativ: anfangs so viele Gruppen wie Fälle, sukzessives Zusammenfassen der Gruppen b) divisiv: anfangs alle Fälle in einer Gruppe, sukzessives Aufteilen der Fälle in Gruppen (Gruppeneinteilung nicht reversibel) Thomas Schäfer SS Algorithmen für hierarchische Clusteranalyse Single linkage (nächster Nachbar) Complete linkage (entferntester Nachbar) Average linkage: mittlere Distanz aller Fälle eines Clusters von allen Fällen des anderen Clusters Thomas Schäfer SS

11 Algorithmen für hierarchische Clusteranalyse Single Linkage Das Single Linkage Verfahren neigt zur Kettenbildung und kann daher Ausreißer ausfindig machen. Nachdem man diese entfernt hat, kann man mit Verfahren fortfahren, die schöne homogene Cluster bilden, z.b. Average Linkage oder Ward. Ward Verfahren Vereinige diejenigen Objekte, die die Streuung in einer Gruppe am wenigsten erhöhen (homogene Cluster). Thomas Schäfer SS Bestimmung der Clusterzahl nach statistischen Kriterien z.b. Entwicklung des Heterogenitätsmaßes (z.b. per Fehlerquadratsumme) Dendrogramm durch sachlogisch Überlegungen Konflikt zwischen der Heterogenitätsanforderung der Clusterzahl und der Handhabbarkeit der Clusterlösung auf die Clusterzahl beschränken (nicht nach den in den Clustern zusammengefassten Fällen gehen) Thomas Schäfer SS

12 Bestimmung der Clusterzahl Das Heterogenitätsmaß gibt die durchschnittliche Unähnlichkeit der Objekte in den Clustern an. Diese steigt natürlich, je weniger Cluster manwählt. Günstig ist es, nach einem Sprung in diesem Maß zu suchen. Es gibt immer einen Schritt weniger als ursprüngliche Fälle. Von der Gesamtzahl der Fälle zieht man den Schritt vor dem Sprung ab, um die Anzahl der Cluster zu bestimmen. Hier z.b = 5 mögliche Sprünge Thomas Schäfer SS Bestimmung der Clusterzahl Das Dendrogramm gibt das Heterogenitätsmaß gewissermaßen grafisch wieder und hilft so, die Anzahl von Clustern zu bestimmen. Man sucht sozusagen die größte Distanz, auf der nichts passiert. Thomas Schäfer SS

13 Interpretation der Cluster Nach der Bestimmung der Clusterzahl müssen die Cluster interpretiert werden. Dazu schaut man, welche Werte die Fälle in den Clustern nun auf den Ausgangsvariablen haben, mit denen die Analyse gemacht wurde. Weiterhin kann man sich überlegen, was die Fälle in den Clustern verbinden könnte. Eine Möglichkeit dafür ist, dass man sich potenzielle Variablen die für die Clusterung verantwortlich sein könnten anzeigen lässt (Label immer als String). So könnte man z.b. finden, dass bei zwei Clustern das eine Cluster aus Frauen, das andere aus Männern besteht. Thomas Schäfer SS Beispiel Clusteranalyse mit den 4 Entscheidungsstilen des DMQ (Vigilance, Hypervigilance, Buckpassing, Procrastination) aufgrunddieser dieser Variablen sollen Cluster von Studierenden gesucht werden, die sich ähnlich sind betrachten wir 20 Studierende (Fälle) und beginnen zunächst mit dem Single Linkage Verfahren (nächster Nachbar), um mögliche Ausreißer zu entdecken Ausreißer Thomas Schäfer SS

14 Beispiel nach Entfernen der Ausreißer suchen wir mit dem Ward Verfahren nach homogenen Clustern Thomas Schäfer SS Beispiel für die gefundenen Cluster sehen wir uns die Werte der enthaltenen Personen auf den Ausgangsvariablen an, um zu sehen, wie genau sie sich unterscheiden (z.b. mit Boxplots) Thomas Schäfer SS

15 Beispiel die gefundenen Cluster können anhand der Ausgangsvariablen näher beschrieben werden sie können von nun an hinsichtlich h hverschiedener Anwendungen einzeln betrachtet oder untersucht werden (z.b. für Forschungszwecke) untersucht man zusätzlich, ob die Cluster sich durch bestimmte Merkmale (Label) systematisch unterscheiden, kann man auch das als weiteres Forschungsergebnis benutzen Thomas Schäfer SS Beispiel 2 Studie von Jankowski und Zill (2009) Lassen sich Bands (bspw. Korn, Metallica) nach bestimmten Kriterien (bspw. p Anzahl der Mitglieder, Liedanzahl, amerikanisch oder nicht, Bewertung) zu Clustern gruppieren? 13 Versuchspersonen (in verschiedene Alben hineingehört) Thomas Schäfer SS

16 Beispiel 2 diese Informationen könnte man z.b. nutzen, um CDs im Geschäft nach Ähnlichkeit zu gruppieren Thomas Schäfer SS Beispiel 3 Wie lassen sich die Stadtteile von Chemnitz zu homogenen Clustern zusammenfassen? Variablen: Altersstrukturt Geschlecht Familienstand Ausländeranteil Bevölkerungsdichte Bevölkerungsentwicklung Haushalte (Größen, Formen) Mobilität/Wanderungen Hilfebedürftigkeit Flächen im Stadtteil Struktur der Wohngebäude Wohnungsgrößen Bausubstanzen Wahlergebnisse Bundestagswahl 2005 Chempirica (http://www.chempirica.de/stadtteilanalyse.htm) Thomas Schäfer SS

17 Clusteranalyse mit SPSS I Thomas Schäfer SS Clusteranalyse mit SPSS II Thomas Schäfer SS

18 Vergleich Faktorenanalyse Clusteranalyse Gemeinsame Ausgangsbasis Fälle Variablen (meist) Variablen (meist) Fälle Korrelations Distanz /Ähnlichkeit (meist) matrix (meist) Variablen Fälle matrix ZIEL Dimensionsreduktion Gruppenbildung Thomas Schäfer SS

Multivariate Verfahren

Multivariate Verfahren Multivariate Verfahren Lineare Regression Zweck: Vorhersage x Dimensionsreduktion x x Klassifizierung x x Hauptkomponentenanalyse Korrespondenzanalyse Clusteranalyse Diskriminanzanalyse Eigenschaften:

Mehr

Clusteranalyse. Gliederung. 1. Einführung 2. Vorgehensweise. 3. Anwendungshinweise 4. Abgrenzung zu Faktorenanalyse 5. Fallbeispiel & SPSS

Clusteranalyse. Gliederung. 1. Einführung 2. Vorgehensweise. 3. Anwendungshinweise 4. Abgrenzung zu Faktorenanalyse 5. Fallbeispiel & SPSS Clusteranalyse Seminar Multivariate Verfahren SS 2010 Seminarleiter: Dr. Thomas Schäfer Theresia Montag, Claudia Wendschuh & Anne Brantl Gliederung 1. Einführung 2. Vorgehensweise 1. Bestimmung der 2.

Mehr

Was ist eine Clusteranalyse, wann und wie wird sie angewendet?

Was ist eine Clusteranalyse, wann und wie wird sie angewendet? Autor: Dr. Ralf Gutfleisch, Stadt Frankfurt a. M., Bürgeramt, Statistik und Wahlen Was ist eine Clusteranalyse, wann und wie wird sie angewendet? Fragestellung Drei Fragen stehen im Vordergrund dieser

Mehr

Visualisierung und Vergleich der Clusterverfahren anhand von QEBS-Daten

Visualisierung und Vergleich der Clusterverfahren anhand von QEBS-Daten Bachelorarbeit Visualisierung und Vergleich der Clusterverfahren anhand von QEBS-Daten zur Erlangung des Grades Bachelor of Science von Sophia Hendriks (Matrikelnummer: 182984) Studiengang Statistik eingereicht

Mehr

Clusteranalyse. Clusteranalyse. Fragestellung und Aufgaben. Abgrenzung Clusteranalyse - Diskriminanzanalyse. Rohdatenmatrix und Distanzmatrix

Clusteranalyse. Clusteranalyse. Fragestellung und Aufgaben. Abgrenzung Clusteranalyse - Diskriminanzanalyse. Rohdatenmatrix und Distanzmatrix TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Biometrische und Ökonometrische Methoden II SS 00 Fragestellung und Aufgaben Abgrenzung

Mehr

Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07

Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07 Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07 Ziel der Clusteranalyse: Bilde Gruppen (cluster) aus einer Menge multivariater Datenobjekte (stat

Mehr

Clusteranalyse. Multivariate Datenanalyse. Prof. Dr. Dietmar Maringer. Abteilung für Quantitative Methoden, WWZ der Universität Basel

Clusteranalyse. Multivariate Datenanalyse. Prof. Dr. Dietmar Maringer. Abteilung für Quantitative Methoden, WWZ der Universität Basel Clusteranalyse Multivariate Datenanalyse Prof. Dr. Dietmar Maringer Abteilung für Quantitative Methoden, WWZ der Universität Basel Herbstsemester 2013 D Maringer: Datenanalyse Clusteranalyse (1) Ausgangssituation

Mehr

Seminar zum Thema Künstliche Intelligenz:

Seminar zum Thema Künstliche Intelligenz: Wolfgang Ginolas Seminar zum Thema Künstliche Intelligenz: Clusteranalyse Wolfgang Ginolas 11.5.2005 Wolfgang Ginolas 1 Beispiel Was ist eine Clusteranalyse Ein einfacher Algorithmus 2 bei verschieden

Mehr

4.3 Hierarchische Klassifikationsverfahren

4.3 Hierarchische Klassifikationsverfahren 4.3 Hierarchische Klassifikationsverfahren Hierarchische Klassifikationsverfahren: Einsatz zum Zwecke einer Aufdeckung von lusterstrukturen, wenn keine Kenntnisse über die Gruppenzahl verfügbar sind Agglomerativen

Mehr

Clusteranalyse. Mathematische Symbole Anzahl der Objekte, Versuchspersonen

Clusteranalyse. Mathematische Symbole Anzahl der Objekte, Versuchspersonen Clusteranalyse Ziel: Auffinden von Gruppen ( Cluster ) ähnlicher Obekte (bezogen auf die ausgewählten Variablen). Obekte i selben Cluster haben ähnliche Eigenschaften, Obekte in verschiedenen Clustern

Mehr

Statistik II: Klassifikation und Segmentierung

Statistik II: Klassifikation und Segmentierung Medien Institut : Klassifikation und Segmentierung Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Faktorenanalyse 2. Clusteranalyse 3. Key Facts 2 I 14 Ziel

Mehr

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer Clusterstruktur kennen, verschiedene

Mehr

Datamining Ein kleiner Einblick

Datamining Ein kleiner Einblick Datamining Ein kleiner Einblick Autoren: Boris Kulig u. Bertram Schäfer Inhaltsverzeichnis 1 Begriff, Funktion, Verfahren 1 2 Clusteranalyse 1 2.1 Proximitätsmaße 3 2.1.1 Nominal-Skala 3 2.1.2 Metrische

Mehr

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Vorbemerkungen 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer

Mehr

Einführung in die Cluster-Analyse mit SAS

Einführung in die Cluster-Analyse mit SAS Einführung in die Cluster-Analyse mit SAS Benutzertreffen am URZ Carina Ortseifen 4. Juli 2003 Inhalt 1. Clusteranalyse im allgemeinen Definition, Distanzmaße, Gruppierung, Kriterien 2. Clusteranalyse

Mehr

Clustering Seminar für Statistik

Clustering Seminar für Statistik Clustering Markus Kalisch 03.12.2014 1 Ziel von Clustering Finde Gruppen, sodas Elemente innerhalb der gleichen Gruppe möglichst ähnlich sind und Elemente von verschiedenen Gruppen möglichst verschieden

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Präsentation der Ergebnisse von Clusteranalysen

Präsentation der Ergebnisse von Clusteranalysen Autorin: Antje Seidel-Schulze, Deutsches Institut für Urbanistik, Berlin Präsentation der Ergebnisse von Clusteranalysen Der folgende Themenkomplex beantwortet die Frage, wie die von Statistikprogrammen

Mehr

Clustern. Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so dass:

Clustern. Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so dass: Text-Clustern 1 Clustern Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so dass: Beispiele innerhalb eines Clusters sich sehr ähnlich Beispiele in verschiedenen

Mehr

Haben Sie schon mal geclustert? Beitrag zum Workshop Clusteranalyse auf der Frühjahrstagung der Städtestatistik 2008 in Saarbrücken

Haben Sie schon mal geclustert? Beitrag zum Workshop Clusteranalyse auf der Frühjahrstagung der Städtestatistik 2008 in Saarbrücken Haben Sie schon mal geclustert? Beitrag zum Workshop Clusteranalyse auf der Frühjahrstagung der Städtestatistik 2008 in Saarbrücken Dr. Ralf Gutfleisch, Frankfurt am Main Haben Sie schon mal geclustert?

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II Eine Einführung in R: Hochdimensionale Daten: n

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr

Kurzbeitrag Clusteranalyse als Instrument zur Gruppierung von spezialisierten Marktfruchtunternehmen

Kurzbeitrag Clusteranalyse als Instrument zur Gruppierung von spezialisierten Marktfruchtunternehmen Kurzbeitrag Clusteranalyse als Instrument zur Gruppierung von spezialisierten Marktfruchtunternehmen Michael Herink und Volker Petersen Martin-Luther-Universität Halle-Wittenberg Zusammenfassung Ziel der

Mehr

Einführung in die Clusteranalyse

Einführung in die Clusteranalyse Arbeitsgemeinschaft Statistische Methoden der Sozialwissenschaften Einführung in die Clusteranalyse Fabian Pfeffer 0. Mai 00 Inhaltsverzeichnis Einführung Proximitätsmaße. Ähnlichkeitsmaße bei binären

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Diskriminanzanalyse Beispiel

Diskriminanzanalyse Beispiel Diskriminanzanalyse Ziel bei der Diskriminanzanalyse ist die Analyse von Gruppenunterschieden, d. h. der Untersuchung von zwei oder mehr Gruppen hinsichtlich einer Vielzahl von Variablen. Diese Methode

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Modulklausur Multivariate Verfahren

Modulklausur Multivariate Verfahren Name, Vorname Matrikelnummer Modulklausur 31821 Multivariate Verfahren Datum Punkte Note Termin: 28. März 2014, 9.00-11.00 Uhr Erstprüfer: Univ.-Prof. Dr. H. Singer Hinweise zur Bearbeitung der Modulklausur

Mehr

3.3 Möglichkeiten statistischer Untersuchungen im Vergleich Archäologie, Anthropologie und Zoologie

3.3 Möglichkeiten statistischer Untersuchungen im Vergleich Archäologie, Anthropologie und Zoologie Peter Stadler 3.3 Möglichkeiten statistischer Untersuchungen im Vergleich Archäologie, Anthropologie und Zoologie Naturgemäß sind die Fragestellungen für die Untersuchung und Auswertung eines Gräberfeldes

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Einführung in die Cluster-Analyse mit SPSS

Einführung in die Cluster-Analyse mit SPSS Einführung in die -Analyse mit SPSS SPSS-Benutzertreffen am URZ Carina Ortseifen. Juli 00 Inhalt. analyse im allgemeinen Definition, Distanzmaße, Gruppierung, Kriterien. analyse mit SPSS a) Hierarchische

Mehr

Hierarchische Clusteranalyse

Hierarchische Clusteranalyse Hierarchische Clusteranalyse Unter dem Menupunkt Statistik - Klassifizieren finden sich sowohl agglomerative ( hierarchische ) als auch partitionierende ( Clusterzentren ) Clusteranalyseverfahren. Da die

Mehr

Einführung in die Ähnlichkeitsmessung

Einführung in die Ähnlichkeitsmessung Einführung in die Ähnlichkeitsmessung Reading Club SS 2008 Similarity Stefanie Sieber stefanie.sieber@uni-bamberg.de Lehrstuhl für Medieninformatik Otto-Friedrich-Universität Bamberg Agenda Worum geht

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Einführung in das Data Mining Clustering / Clusteranalyse

Einführung in das Data Mining Clustering / Clusteranalyse Einführung in das Data Mining Clustering / Clusteranalyse Sascha Szott Fachgebiet Informationssysteme HPI Potsdam 21. Mai 2008 Teil I Einführung Clustering / Clusteranalyse Ausgangspunkt: Menge O von Objekten

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 2 Multivariate Verfahren Musterlösung Aufgabe 1 (28 Punkte) Der Marketing-Leiter einer Lebensmittelherstellers möchte herausfinden, mit welchem Richtpreis eine neue Joghurt-Marke auf

Mehr

StatStream : Statistical Monitoring of Thousands of Data Streams in Real Time Yunyue Zhu,Dennis Sasha. Vorgetragen von Matthias Altmann

StatStream : Statistical Monitoring of Thousands of Data Streams in Real Time Yunyue Zhu,Dennis Sasha. Vorgetragen von Matthias Altmann StatStream : Statistical Monitoring of Thousands of Data Streams in Real Time Yunyue Zhu,Dennis Sasha Vorgetragen von Matthias Altmann Mehrfache Datenströme Beispiel Luft und Raumfahrttechnik: Space Shuttle

Mehr

Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA)

Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA) Interdisziplinäres Seminar Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA) WS 2008/09 19.11.2008 Julia Schiele und Lucie Wink Dozenten: Prof. Dr. Bühner, Prof. Dr. Küchenhoff

Mehr

6. Multivariate Verfahren Zufallszahlen

6. Multivariate Verfahren Zufallszahlen 4. Zufallszahlen 6. Multivariate Verfahren Zufallszahlen - werden nach einem determinist. Algorithmus erzeugt Pseudozufallszahlen - wirken wie zufäll. Zahlen (sollen sie jedenfalls) Algorithmus: Startwert

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Versuchsplanung. Inhalt. Grundlagen. Faktor-Effekt. Allgemeine faktorielle Versuchspläne. Zweiwertige faktorielle Versuchspläne

Versuchsplanung. Inhalt. Grundlagen. Faktor-Effekt. Allgemeine faktorielle Versuchspläne. Zweiwertige faktorielle Versuchspläne Inhalt Versuchsplanung Faktorielle Versuchspläne Dr. Tobias Kiesling Allgemeine faktorielle Versuchspläne Faktorielle Versuchspläne mit zwei Faktoren Erweiterungen Zweiwertige

Mehr

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23 Fragestellungen und Methoden 11 Vorwort 15 Kapitel 1 Einführung 17 1.1 KonzeptiondesBuchs... 18 1.2 AufbaudesBuchs... 19 1.3 Programmversionen von PASW bzw. SPSS..... 20 1.4 WiekanndiesesBuchverwendetwerden?...

Mehr

Pfadanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007

Pfadanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007 Pfadanalyse Bacher, SoSe2007 1. Grundlegende Verfahren Explorative Pfadanalyse: Kausale Beziehungen zwischen Variablen werden aufgedeckt, erforderlich ist eine kausale Anordnung der Variablen. Konfirmatorische

Mehr

Empirische Forschungsmethoden: Multivariate Datenanalyse

Empirische Forschungsmethoden: Multivariate Datenanalyse Vorlesung Empirische Forschungsmethoden: Multivariate Datenanalyse Prof. Dr. Jost Adler Lehrstuhl für Marketing Department of Management & Marketing Universität Duisburg-Essen Umbenennung der Veranstaltungen

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelationsanalysen Kovariation und Kovarianz Korrelation: - Interpretation

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Kapitel 28 Clusteranalyse 28.1 Einführung

Kapitel 28 Clusteranalyse 28.1 Einführung Kapitel 28 Clusteranalyse 28.1 Einführung Die Clusteranalyse dient dazu, eine Menge von Objekten derart in Gruppen (Cluster) zu unterteilen, daß die derselben Gruppe zugeordneten Objekte eine möglichst

Mehr

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro Auswerten mit Excel Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro 1. Pivot-Tabellen erstellen: In der Datenmaske in eine beliebige Zelle klicken Registerkarte Einfügen

Mehr

Multidimensionale Skalierung

Multidimensionale Skalierung Multidimensionale Skalierung TU CHEMNITZ SEMINAR MULTIVARIATE VERFAHREN REFERENTEN: ANJA FLIEGNER, THOMAS KRANEBURG, FREDERIK SCHENGEL DOZENT DR. THOMAS SCHÄFER Inhalt 1. Was ist MDS? 2. Ablauf einer MDS-Analyse

Mehr

Proseminar Verarbeitung geographischer Daten (Quant II) Sommersemester 2001 Daniel Braunschweiger Achim Schmidt Tobias Spaltenberger

Proseminar Verarbeitung geographischer Daten (Quant II) Sommersemester 2001 Daniel Braunschweiger Achim Schmidt Tobias Spaltenberger Proseminar Verarbeitung geographischer Daten (Quant II) Sommersemester 2001 Daniel Braunschweiger Achim Schmidt Tobias Spaltenberger Diskriminanzanalyse am Fallbeispiel von 23 Klimastationen in Tunesien

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Faktorenanalysen mit SPSS. Explorative Faktorenanalyse als Instrument der Dimensionsreduktion. Interpretation des SPSS-Output s

Faktorenanalysen mit SPSS. Explorative Faktorenanalyse als Instrument der Dimensionsreduktion. Interpretation des SPSS-Output s Explorative Faktorenanalyse als Instrument der Dimensionsreduktion Beispiel: Welche Dimensionen charakterisieren die Beurteilung des sozialen Klimas in der Nachbarschaft? Variablen: q27a bis q27g im Datensatz

Mehr

Entwicklung der Faktorenanalyse 17.06.2009. Faktorenanalyse. Faktorenanalyse nach Spearman Variablen zur Beschreibung von Intelligenz

Entwicklung der Faktorenanalyse 17.06.2009. Faktorenanalyse. Faktorenanalyse nach Spearman Variablen zur Beschreibung von Intelligenz Faktorenanalyse Thomas Schäfer SS 009 1 Entwicklung der Faktorenanalyse Faktorenanalyse nach Spearman Variablen zur Beschreibung von Intelligenz Hauptkomponentenanalyse (Pearson, Hotelling) Thomas Schäfer

Mehr

Beschleunigung hierarchischer Clusterverfahren für allgemeine metrische Distanzmaße. Till Schäfer. Algorithm Engineering Report TR13-1-002 Juni 2013

Beschleunigung hierarchischer Clusterverfahren für allgemeine metrische Distanzmaße. Till Schäfer. Algorithm Engineering Report TR13-1-002 Juni 2013 Beschleunigung hierarchischer Clusterverfahren für allgemeine metrische Distanzmaße Till Schäfer Algorithm Engineering Report TR13-1-002 Juni 2013 ISSN 1864-4503 Fakultät für Informatik Algorithm Engineering

Mehr

Clusteranalyse. Anwendungsorientierte Einführung. R. Oldenbourg Verlag München Wien. Von Dr. Johann Bacher

Clusteranalyse. Anwendungsorientierte Einführung. R. Oldenbourg Verlag München Wien. Von Dr. Johann Bacher Clusteranalyse Anwendungsorientierte Einführung Von Dr. Johann Bacher R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS Vorwort XI 1 Einleitung 1 1.1 Primäre Zielsetzung clusteranalytischer Verfahren

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Clusteranalyse K-Means-Verfahren

Clusteranalyse K-Means-Verfahren Workshop Clusteranalyse Clusteranalyse K-Means-Verfahren Graz, 8. 9. Oktober 2009 Johann Bacher Johannes Kepler Universität Linz Linz 2009 1 1. Fragestellung und Algorithmus Bestimmung von Wertetypen (Bacher

Mehr

Clusteranalyse mit SPSS

Clusteranalyse mit SPSS Autor: Thomas Nirschl, Amt für Stadtforschung und Statistik, Stadt Nürnberg Clusteranalyse mit SPSS Das Statistikpaket SPSS (aktuell in der Version 17 vorliegend) stellt dem Anwender eine große Vielfalt

Mehr

11./ 12. April 2006. Andrea Ossig andrea.ossig@web.de. Prof. Dr. Helmut Küchenhoff kuechenhoff@stat.uni-muenchen.de

11./ 12. April 2006. Andrea Ossig andrea.ossig@web.de. Prof. Dr. Helmut Küchenhoff kuechenhoff@stat.uni-muenchen.de Einführung in SPSS 11./ 12. April 2006 Andrea Ossig andrea.ossig@web.de Prof. Dr. Helmut Küchenhoff kuechenhoff@stat.uni-muenchen.de Monia Mahling monia.mahling@web.de 1 Vor /Nachteile von SPSS +/ intuitiv

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten DAS THEMA: TABELLEN UND ABBILDUNGEN Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen Standardisierung von Daten z-standardisierung Standardnormalverteilung 1 DIE Z-STANDARDISIERUNG

Mehr

Multivariate Statistik im Quantitativen Marketing - Konzeption und Anwendungsbereiche der Clusteranalyse -

Multivariate Statistik im Quantitativen Marketing - Konzeption und Anwendungsbereiche der Clusteranalyse - Institut für Angewandtes Markt-Management Prof. Dr. Wolfgang Müller Reihe Forschungspapier Band 9 Multivariate Statistik im Quantitativen Marketing - Konzeption und Anwendungsbereiche der Clusteranalyse

Mehr

HUMBOLDT-UNIVERSITÄT ZU BERLIN

HUMBOLDT-UNIVERSITÄT ZU BERLIN HUMBOLDT-UNIVERSITÄT ZU BERLIN WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT INSTITUT FÜR STATISTIK UND ÖKONOMETRIE LADISLAUS VON BORTKIEWICZ LEHRSTUHL FÜR STATISTIK Humboldt-Universität Wirtschaftswissenschaftliche

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Data Mining - Clustering. Sven Elvers

Data Mining - Clustering. Sven Elvers Agenda Data Mining Clustering Aktuelle Arbeiten Thesis Outline 2 Agenda Data Mining Clustering Aktuelle Arbeiten Thesis Outline 3 Data Mining Entdecken versteckter Informationen, Muster und Zusammenhänge

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Varianzanalyse Statistik

Mehr

Grundlagen clusteranalytischer Verfahren

Grundlagen clusteranalytischer Verfahren Grundlagen clusteranalytischer Verfahren Institut für Soziologie - Universität Duisburg-Essen Prof. Petra Stein - Sven Vollnhals 1. April 2011 Inhaltsverzeichnis 1 Einleitung 1 2 Grundlagen der Clusteranalyse

Mehr

Dokumenten-Clustering. Norbert Fuhr

Dokumenten-Clustering. Norbert Fuhr Dokumenten-Clustering Norbert Fuhr Dokumenten-Clustering (Dokumenten-)Cluster: Menge von ähnlichen Dokumenten Ausgangspunkt Cluster-Hypothese : die Ähnlichkeit der relevanten Dokumente untereinander und

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Grundlagen des Marketing

Grundlagen des Marketing Technische Universität Chemnitz Fakultät für Wirtschaftswissenschaften Lehrstuhl für Marketing und Handelsbetriebslehre Sommersemester 2016 1 Gliederung 2 Der Kunde im Marketing 2.1 Der Kunde als zentrales

Mehr

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen.

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen. Explorative Datenanalyse Erstmal die Grafiken: Aufreisskraft und Temperatur 3 1-1 N = 1 15 17 Temperatur Diagramm 3 1 95% CI -1 N = 1 15 17 Temperatur Etwas positive Tendenz ist beim Wechsel der Temperatur

Mehr

12 Teilnehmervoraussetzungen zum Umschulungsbeginn

12 Teilnehmervoraussetzungen zum Umschulungsbeginn Teilnehmervoraussetzungen zum Umschulungsbeginn 187 12 Teilnehmervoraussetzungen zum Umschulungsbeginn An dieser Stelle werden die wichtigsten Voraussetzungen beschrieben, die die Umschüler mit in die

Mehr

Seminar zum Thema Künstliche Intelligenz: Clusteranalyse

Seminar zum Thema Künstliche Intelligenz: Clusteranalyse Seminar zum Thema Künstliche Intelligenz: Clusteranalyse Wolfgang Ginolas 11.5.2005 1 Inhaltsverzeichnis 1 Einleitung 4 1.1 Ein einführendes Beispiel........................ 4 1.2 Definition der Clusteranalyse......................

Mehr

Clustern von numerischen Wettervorhersagen

Clustern von numerischen Wettervorhersagen Clustern von numerischen Wettervorhersagen Diplomarbeit in der Studienrichtung Technische Mathematik zur Erlangung des akademischen Grades Diplom-Ingenieurin eingereicht an der Fakultät für Mathematik,

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

β Ζ φ ε = δ δ = + = = = = = ρ ρ γ γ γ γ γ γ γ = = = = = = + + = = = + + = = = = $ σ r ( ) K r = = = O M L r M r r = = O M L r M r r = = = = = = = = ( ) ( ) = ( ) = ± ( ) ( ) = ± ( ) = ± (

Mehr

bi-cube Aktiver Compliance - Monitor (ACM)

bi-cube Aktiver Compliance - Monitor (ACM) INSTITUT FÜR SYSTEM- MANAGEMENT bi-cube Aktiver Compliance - Monitor (ACM) ism- Architektur Team ism GmbH 2010 Definition: Compliance Compliance bedeutet die Einhaltung von Verhaltensmaßregeln, Gesetzen

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Explorative Datenanalyse EDA Auffinden von Strukturen

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Klassifikation mit Clusteranalyse: Grundlegende Techniken hierarchischer und K-means-Verfahren

Klassifikation mit Clusteranalyse: Grundlegende Techniken hierarchischer und K-means-Verfahren Klassifikation mit Clusteranalyse: Grundlegende Techniken hierarchischer und K-means-Verfahren Michael Wiedenbeck & Cornelia Züll Zentrum für Umfragen, Methoden und Analysen, Mannheim Zusammenfassung Nach

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Leonhard Euler Auch wenn ich diesen Gegenstand schon des Öfteren betrachtet habe, sind die meisten Dinge, die sich

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Kapitel 1 Einleitung

Kapitel 1 Einleitung Kapitel 1 Einleitung Menschen gehen Beziehungen miteinander ein, indem sie kommunizieren und interagieren. Sie stehen in unterschiedlichen Relation zu ihren Kollegen, Freunden und Verwandten. Die Webseiten

Mehr

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen 7. Clusteranalyse (= Häufungsanalyse; Clustering-Verfahren) wird der multivariaten Statistik zugeordnet Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut,

Mehr

Deskriptive Statistik Kapitel III - Merkmalsarten

Deskriptive Statistik Kapitel III - Merkmalsarten Deskriptive Statistik Kapitel III - Merkmalsarten Georg Bol bol@statistik.uni-karlsruhe.de hoechstoetter@statistik.uni-karlsruhe.de April 26, 2006 Typeset by FoilTEX Agenda 1. Merkmalsarten 2. Skalen 3.

Mehr

4. Clusteranalyse. 4.1 Einleitung

4. Clusteranalyse. 4.1 Einleitung 4. Clusteranalyse 4. Einleitung Die Clusteranalyse wird eingesetzt, um Objekte Kunden, Regionen etc. in Gruppen (Cluster) einzuteilen. In der Marktforschung werden beispielsweise Marktsegmente mit einer

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Neue Konsummuster bei Lebensmitteln in Deutschland: Identifizierung sowie Analyse von Bestimmungsfaktoren

Neue Konsummuster bei Lebensmitteln in Deutschland: Identifizierung sowie Analyse von Bestimmungsfaktoren Neue Konsummuster bei Lebensmitteln in Deutschland: Identifizierung sowie Analyse von Bestimmungsfaktoren PD Dr. Silke Thiele M. Sc. Jonas Peltner Institut für Ernährungswirtschaft und Verbrauchslehre

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Clusteranalyse Hierarchische Verfahren

Clusteranalyse Hierarchische Verfahren Workshop Clusteranalyse Clusteranalyse Hierarchische Verfahren Graz, 8. 9. Oktober 2009 Johann Bacher Johannes Kepler Universität Linz Linz 2009 Graz, 8.-9.10.2009 1 1. Programmsystem ALMO vollständiges

Mehr