Die Clusteranalyse Clusteranalyse. Grundidee Mögliche Anwendungsgebiete gg Vorgehensweise Beispiele. methodenlehre ll Clusteranalyse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Die Clusteranalyse 24.06.2009. Clusteranalyse. Grundidee Mögliche Anwendungsgebiete gg Vorgehensweise Beispiele. methodenlehre ll Clusteranalyse"

Transkript

1 Clusteranalyse Thomas Schäfer SS Die Clusteranalyse Grundidee Mögliche Anwendungsgebiete gg Vorgehensweise Beispiele Thomas Schäfer SS

2 Die Clusteranalyse Grundidee: Eine heterogene Gesamtheit von Fällen (Personen/Objekte) soll in homogene Gruppen oder Cluster aufgeteilt werden. Dabei wird die Ähnlichkeit der Fälle auf allen relevanten Variablen berücksichtigt Die zwei zentralen Fragen: Wie wird Ähnlichkeit von Fällen bestimmt? Wie wird die Gruppenaufteilung vorgenommen, wenn die Ähnlichkeit zwischen Fällen bekannt ist? Analyse einer heterogenen Gesamtheit von Objekten, mit dem Ziel, homogene Teilmengen zu identifizieren. Thomas Schäfer SS Clusteranalyse: mögliche Anwendungen Aufteilung von Personen/Objekten in Subgruppen Erstellen von Typologien Marktforschung (Konsumentengruppen, Kaufverhalten, Produktanalyse) Differenzieren von Bevölkerungsgruppen Thomas Schäfer SS

3 Clusteranalyse: Vorgehensweise Bestimmung der Ähnlichkeit Auswahl des Fusionierungsalgorithmus Prüfung der Merkmalsausprägung für je 2 Personen oder Objekte und Messung der Unterschiede/ Übereinstimmungen mit Hilfe eines Zahlenwertes (Proximitätsmaß) Personen/Objekte werden aufgrund ihrer Ähnlichkeitswerte zu Gruppen zusammengefasst. Bestimmung der Clusterzahl Entscheidung über Clusteranzahl, Zielkonflikt: Handhabbarkeit (geringe Clusteranzahl) & hohe Lösungsgüte gg (hohe Clusterzahl) Interpretation der Cluster und Überprüfen der Güte Inhaltliche Interpretation der resultierenden Cluster Thomas Schäfer SS Bestimmung der Ähnlichkeit Variable1 Variable2 Variable j Objekt1 Objekt2. : : Objekt k Rohdatenmatrix Objekt1 Objekt2. : : Objekt k Objekt1 Objekt2 Objekt k Distanz oder Ähnlichkeitsmatrix Thomas Schäfer SS

4 Proximitätsmaße (Ähnlichkeits bzw. Distanzmaße) bei Nominal Skalen Tanimoto Koeffizient M Koeffizient Kulczynski Koeffizient RR Koeffizient Dice Koeffizient. bei metrischen Skalen L 1 Norm L 2 Norm Q Korrelations Koeffizient Mahalanobis Distanz Thomas Schäfer SS Rohdatenmatrix α β γ δ ε ζ Objekt 1 Objekt Objekt Objekt nicht vorhanden 1 vorhanden Thomas Schäfer SS

5 Eigenschaft vorhanden (1) Objekt 1 Eigenschaft nicht iht vorhanden (0) Zeilensumme Objekt 2 Eigenschaft vorhanden (1) Eigenschaft nicht vorhanden (0) b d a c a+c b+d Spaltensumme a+b c+d m Thomas Schäfer SS Rohdatenmatrix α β γ δ ε ζ Objekt 1 Objekt Objekt b Objekt a c Thomas Schäfer SS

6 Nichtübereinstimmung soll keine Rolle spielen z. B. Tanimoto Koeffizient: a Tanimoto Koeff. = a + b + c Nichtübereinstimmung soll berücksichtigt werden (z. B. bei echt dichotomen Daten) z. B. M Koeffizient (Simple Matching): a + d M = a + b + c + d Fall x Fall y + + a c b d + Eigenschaft vorhanden Eigenschaft nicht vorhanden a: Anzahl der Variablen, in denenfürbeidefälle die Eigenschaft vorhanden ist b: Anzahl der Variablen, in denen die Eigenschaft für Fall x vorhanden ist, aber für Fall y nicht usw. Thomas Schäfer SS Aufbau der Distanz oder Ähnlichkeitsmatrix Objekt 1 Objekt 2 Objekt 3 : Objekt k Objekt 1 Objekt 2 Objekt 3 Objekt k 1? 1?? 1??? 1 Thomas Schäfer SS

7 echte Ähnlichkeitsmaße z.b. Q Korrelationskoeffizient (wennkovariation inhaltlich wichtig ist) Abstandsmaße z. B. Minkowski Metriken (wennabsoluter Abstand inhaltlich wichtig ist) z.b. City Block Metrik (L 1 Norm), Euklidische Distanz (L 2 Norm) Thomas Schäfer SS Ähnlichkeitsermittlung bei metrischer Variablenstruktur am häufigsten angewandte Distanznorm: Minkowski Metriken City Block Metrik: r = 1: d a, b = J j= 1 X aj X bj x, x : Wert der Variablen j bei den Objekten k,l (j=1,2, J) k,j l,j d k,l: Distanz der Objekte k und l r > _ 1 : Minkowski Konstante Euklidische Distanz: r = 2 (oft auch quadriert): d a, b = J j= 1 X aj X bj 2 Thomas Schäfer SS

8 Variable k,2 - X l,2 X k k X - X k,1 l,1 l Variable 1 Thomas Schäfer SS Zur Messung der Ähnlichkeit zwischen Objekten sind Distanzmaße immer dann geeignet, wenn der absolute Abstand zwischen Objekten von Interesse ist und die Unähnlichkeit dann als um so größer anzusehen ist, wenn zwei Objekte weit entfernt voneinander liegen. Ähnlichkeitsmaße immer dann geeignet, g wenn der primäre Ähnlichkeitsaspekt im Gleichlauf zweier Profile zu sehen ist, unabhängig davon, auf welchem Niveau die Objekte liegen. Thomas Schäfer SS

9 Jahr Unternehmen A Unternehmen B Gewinn die Profile beider Unternehmen sind gleich, ein Ähnlichkeitsmaß würde einen hohen Wert liefern die beiden Unternehmen haben aber absolut gesehen einen großen Abstand, ein Distanzmaß würde daher einen kleinen Wert liefern Thomas Schäfer SS Clusteralgorithmen Clusterverfahren Graphentheoretische Verfahren Hierarchische Verfahren Partitionierende Verfahren Optimierungsverfahren agglomerativ divisiv Austauschverfahren Iteriertes Minimaldistanz Verfahren Single Linkage Complete Linkage Average Linkage Centroid Median Ward Thomas Schäfer SS

10 Clusteralgorithmen Partitionierende Verfahren Anfangsgruppierung vorgeben Sukzessive Verlagerung von Objekten in andere Gruppen Zielkriterium: Minimierung der Varianz innerhalb der Gruppen (Gruppeneinteilung reversibel) Hierarchische Verfahren a) agglomerativ: anfangs so viele Gruppen wie Fälle, sukzessives Zusammenfassen der Gruppen b) divisiv: anfangs alle Fälle in einer Gruppe, sukzessives Aufteilen der Fälle in Gruppen (Gruppeneinteilung nicht reversibel) Thomas Schäfer SS Algorithmen für hierarchische Clusteranalyse Single linkage (nächster Nachbar) Complete linkage (entferntester Nachbar) Average linkage: mittlere Distanz aller Fälle eines Clusters von allen Fällen des anderen Clusters Thomas Schäfer SS

11 Algorithmen für hierarchische Clusteranalyse Single Linkage Das Single Linkage Verfahren neigt zur Kettenbildung und kann daher Ausreißer ausfindig machen. Nachdem man diese entfernt hat, kann man mit Verfahren fortfahren, die schöne homogene Cluster bilden, z.b. Average Linkage oder Ward. Ward Verfahren Vereinige diejenigen Objekte, die die Streuung in einer Gruppe am wenigsten erhöhen (homogene Cluster). Thomas Schäfer SS Bestimmung der Clusterzahl nach statistischen Kriterien z.b. Entwicklung des Heterogenitätsmaßes (z.b. per Fehlerquadratsumme) Dendrogramm durch sachlogisch Überlegungen Konflikt zwischen der Heterogenitätsanforderung der Clusterzahl und der Handhabbarkeit der Clusterlösung auf die Clusterzahl beschränken (nicht nach den in den Clustern zusammengefassten Fällen gehen) Thomas Schäfer SS

12 Bestimmung der Clusterzahl Das Heterogenitätsmaß gibt die durchschnittliche Unähnlichkeit der Objekte in den Clustern an. Diese steigt natürlich, je weniger Cluster manwählt. Günstig ist es, nach einem Sprung in diesem Maß zu suchen. Es gibt immer einen Schritt weniger als ursprüngliche Fälle. Von der Gesamtzahl der Fälle zieht man den Schritt vor dem Sprung ab, um die Anzahl der Cluster zu bestimmen. Hier z.b = 5 mögliche Sprünge Thomas Schäfer SS Bestimmung der Clusterzahl Das Dendrogramm gibt das Heterogenitätsmaß gewissermaßen grafisch wieder und hilft so, die Anzahl von Clustern zu bestimmen. Man sucht sozusagen die größte Distanz, auf der nichts passiert. Thomas Schäfer SS

13 Interpretation der Cluster Nach der Bestimmung der Clusterzahl müssen die Cluster interpretiert werden. Dazu schaut man, welche Werte die Fälle in den Clustern nun auf den Ausgangsvariablen haben, mit denen die Analyse gemacht wurde. Weiterhin kann man sich überlegen, was die Fälle in den Clustern verbinden könnte. Eine Möglichkeit dafür ist, dass man sich potenzielle Variablen die für die Clusterung verantwortlich sein könnten anzeigen lässt (Label immer als String). So könnte man z.b. finden, dass bei zwei Clustern das eine Cluster aus Frauen, das andere aus Männern besteht. Thomas Schäfer SS Beispiel Clusteranalyse mit den 4 Entscheidungsstilen des DMQ (Vigilance, Hypervigilance, Buckpassing, Procrastination) aufgrunddieser dieser Variablen sollen Cluster von Studierenden gesucht werden, die sich ähnlich sind betrachten wir 20 Studierende (Fälle) und beginnen zunächst mit dem Single Linkage Verfahren (nächster Nachbar), um mögliche Ausreißer zu entdecken Ausreißer Thomas Schäfer SS

14 Beispiel nach Entfernen der Ausreißer suchen wir mit dem Ward Verfahren nach homogenen Clustern Thomas Schäfer SS Beispiel für die gefundenen Cluster sehen wir uns die Werte der enthaltenen Personen auf den Ausgangsvariablen an, um zu sehen, wie genau sie sich unterscheiden (z.b. mit Boxplots) Thomas Schäfer SS

15 Beispiel die gefundenen Cluster können anhand der Ausgangsvariablen näher beschrieben werden sie können von nun an hinsichtlich h hverschiedener Anwendungen einzeln betrachtet oder untersucht werden (z.b. für Forschungszwecke) untersucht man zusätzlich, ob die Cluster sich durch bestimmte Merkmale (Label) systematisch unterscheiden, kann man auch das als weiteres Forschungsergebnis benutzen Thomas Schäfer SS Beispiel 2 Studie von Jankowski und Zill (2009) Lassen sich Bands (bspw. Korn, Metallica) nach bestimmten Kriterien (bspw. p Anzahl der Mitglieder, Liedanzahl, amerikanisch oder nicht, Bewertung) zu Clustern gruppieren? 13 Versuchspersonen (in verschiedene Alben hineingehört) Thomas Schäfer SS

16 Beispiel 2 diese Informationen könnte man z.b. nutzen, um CDs im Geschäft nach Ähnlichkeit zu gruppieren Thomas Schäfer SS Beispiel 3 Wie lassen sich die Stadtteile von Chemnitz zu homogenen Clustern zusammenfassen? Variablen: Altersstrukturt Geschlecht Familienstand Ausländeranteil Bevölkerungsdichte Bevölkerungsentwicklung Haushalte (Größen, Formen) Mobilität/Wanderungen Hilfebedürftigkeit Flächen im Stadtteil Struktur der Wohngebäude Wohnungsgrößen Bausubstanzen Wahlergebnisse Bundestagswahl 2005 Chempirica ( Thomas Schäfer SS

17 Clusteranalyse mit SPSS I Thomas Schäfer SS Clusteranalyse mit SPSS II Thomas Schäfer SS

18 Vergleich Faktorenanalyse Clusteranalyse Gemeinsame Ausgangsbasis Fälle Variablen (meist) Variablen (meist) Fälle Korrelations Distanz /Ähnlichkeit (meist) matrix (meist) Variablen Fälle matrix ZIEL Dimensionsreduktion Gruppenbildung Thomas Schäfer SS

Multivariate Verfahren

Multivariate Verfahren Multivariate Verfahren Lineare Regression Zweck: Vorhersage x Dimensionsreduktion x x Klassifizierung x x Hauptkomponentenanalyse Korrespondenzanalyse Clusteranalyse Diskriminanzanalyse Eigenschaften:

Mehr

Clusteranalyse. Gliederung. 1. Einführung 2. Vorgehensweise. 3. Anwendungshinweise 4. Abgrenzung zu Faktorenanalyse 5. Fallbeispiel & SPSS

Clusteranalyse. Gliederung. 1. Einführung 2. Vorgehensweise. 3. Anwendungshinweise 4. Abgrenzung zu Faktorenanalyse 5. Fallbeispiel & SPSS Clusteranalyse Seminar Multivariate Verfahren SS 2010 Seminarleiter: Dr. Thomas Schäfer Theresia Montag, Claudia Wendschuh & Anne Brantl Gliederung 1. Einführung 2. Vorgehensweise 1. Bestimmung der 2.

Mehr

Was ist eine Clusteranalyse, wann und wie wird sie angewendet?

Was ist eine Clusteranalyse, wann und wie wird sie angewendet? Autor: Dr. Ralf Gutfleisch, Stadt Frankfurt a. M., Bürgeramt, Statistik und Wahlen Was ist eine Clusteranalyse, wann und wie wird sie angewendet? Fragestellung Drei Fragen stehen im Vordergrund dieser

Mehr

Clusteranalyse. Clusteranalyse. Fragestellung und Aufgaben. Abgrenzung Clusteranalyse - Diskriminanzanalyse. Rohdatenmatrix und Distanzmatrix

Clusteranalyse. Clusteranalyse. Fragestellung und Aufgaben. Abgrenzung Clusteranalyse - Diskriminanzanalyse. Rohdatenmatrix und Distanzmatrix TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Biometrische und Ökonometrische Methoden II SS 00 Fragestellung und Aufgaben Abgrenzung

Mehr

Visualisierung und Vergleich der Clusterverfahren anhand von QEBS-Daten

Visualisierung und Vergleich der Clusterverfahren anhand von QEBS-Daten Bachelorarbeit Visualisierung und Vergleich der Clusterverfahren anhand von QEBS-Daten zur Erlangung des Grades Bachelor of Science von Sophia Hendriks (Matrikelnummer: 182984) Studiengang Statistik eingereicht

Mehr

4.4 Hierarchische Clusteranalyse-Verfahren

4.4 Hierarchische Clusteranalyse-Verfahren Clusteranalyse 18.05.04-1 - 4.4 Hierarchische Clusteranalyse-Verfahren Ablauf von hierarchischen Clusteranalyse-Verfahren: (1) Start jedes Objekt sein eigenes Cluster, also Start mit n Clustern (2) Fusionierung

Mehr

Ähnlichkeits- und Distanzmaße

Ähnlichkeits- und Distanzmaße Ähnlichkeits- und Distanzmaße Jörg Rahnenführer, Multivariate Verfahren, WS89, TU Dortmund 11.1.8-1 - Ähnlichkeits- und Distanzmaße Jörg Rahnenführer, Multivariate Verfahren, WS89, TU Dortmund 11.1.8 -

Mehr

4.Tutorium Multivariate Verfahren

4.Tutorium Multivariate Verfahren 4.Tutorium Multivariate Verfahren - Clusteranalyse - Hannah Busen: 01.06.2015 und 08.06.2015 Nicole Schüller: 02.06.2015 und 09.06.2015 Institut für Statistik, LMU München 1 / 17 Gliederung 1 Idee der

Mehr

Dr. Ralf Gutfleisch, Stadt Frankfurt a.m.

Dr. Ralf Gutfleisch, Stadt Frankfurt a.m. Zentrale Fragestellungen: Was Wie Wann ist eine Clusteranalyse? wird eine Clusteranalyse angewendet? wird eine Clusteranalyse angewendet? Clusteranalyse = Gruppenbildungsverfahren = eine Vielzahl von Objekten

Mehr

Clusteranalyse. Multivariate Datenanalyse. Prof. Dr. Dietmar Maringer. Abteilung für Quantitative Methoden, WWZ der Universität Basel

Clusteranalyse. Multivariate Datenanalyse. Prof. Dr. Dietmar Maringer. Abteilung für Quantitative Methoden, WWZ der Universität Basel Clusteranalyse Multivariate Datenanalyse Prof. Dr. Dietmar Maringer Abteilung für Quantitative Methoden, WWZ der Universität Basel Herbstsemester 2013 D Maringer: Datenanalyse Clusteranalyse (1) Ausgangssituation

Mehr

Seminar zum Thema Künstliche Intelligenz:

Seminar zum Thema Künstliche Intelligenz: Wolfgang Ginolas Seminar zum Thema Künstliche Intelligenz: Clusteranalyse Wolfgang Ginolas 11.5.2005 Wolfgang Ginolas 1 Beispiel Was ist eine Clusteranalyse Ein einfacher Algorithmus 2 bei verschieden

Mehr

Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07

Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07 Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07 Ziel der Clusteranalyse: Bilde Gruppen (cluster) aus einer Menge multivariater Datenobjekte (stat

Mehr

Lösungen zu den Aufgaben zur Multivariaten Statistik Teil 4: Aufgaben zur Clusteranalyse

Lösungen zu den Aufgaben zur Multivariaten Statistik Teil 4: Aufgaben zur Clusteranalyse Prof. Dr. Reinhold Kosfeld Fachbereich Wirtschaftswissenschaften Universität Kassel Lösungen zu den Aufgaben zur Multivariaten Statistik Teil 4: Aufgaben zur Clusteranalyse 1. Erläutern Sie, wie das Konstrukt

Mehr

Clustering Seminar für Statistik

Clustering Seminar für Statistik Clustering Markus Kalisch 03.12.2014 1 Ziel von Clustering Finde Gruppen, sodas Elemente innerhalb der gleichen Gruppe möglichst ähnlich sind und Elemente von verschiedenen Gruppen möglichst verschieden

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Clustern. Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so dass:

Clustern. Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so dass: Text-Clustern 1 Clustern Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so dass: Beispiele innerhalb eines Clusters sich sehr ähnlich Beispiele in verschiedenen

Mehr

4.3 Hierarchische Klassifikationsverfahren

4.3 Hierarchische Klassifikationsverfahren 4.3 Hierarchische Klassifikationsverfahren Hierarchische Klassifikationsverfahren: Einsatz zum Zwecke einer Aufdeckung von lusterstrukturen, wenn keine Kenntnisse über die Gruppenzahl verfügbar sind Agglomerativen

Mehr

Methoden der Klassifikation und ihre mathematischen Grundlagen

Methoden der Klassifikation und ihre mathematischen Grundlagen Methoden der Klassifikation und ihre mathematischen Grundlagen Mengenlehre und Logik A B "Unter einer 'Menge' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten unserer Anschauung

Mehr

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II Eine Einführung in R: Hochdimensionale Daten: n

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Mathematisch-Statistische Verfahren des Risiko-Managements - SS

Mathematisch-Statistische Verfahren des Risiko-Managements - SS Clusteranalyse Mathematisch-Statistische Verfahren des Risiko-Managements - SS 2004 Allgemeine Beschreibung (I) Der Begriff Clusteranalyse wird vielfach als Sammelname für eine Reihe mathematisch-statistischer

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Präsentation der Ergebnisse von Clusteranalysen

Präsentation der Ergebnisse von Clusteranalysen Autorin: Antje Seidel-Schulze, Deutsches Institut für Urbanistik, Berlin Präsentation der Ergebnisse von Clusteranalysen Der folgende Themenkomplex beantwortet die Frage, wie die von Statistikprogrammen

Mehr

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer Clusterstruktur kennen, verschiedene

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Vorbemerkungen 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer

Mehr

Statistik II: Klassifikation und Segmentierung

Statistik II: Klassifikation und Segmentierung Medien Institut : Klassifikation und Segmentierung Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Faktorenanalyse 2. Clusteranalyse 3. Key Facts 2 I 14 Ziel

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

StatStream : Statistical Monitoring of Thousands of Data Streams in Real Time Yunyue Zhu,Dennis Sasha. Vorgetragen von Matthias Altmann

StatStream : Statistical Monitoring of Thousands of Data Streams in Real Time Yunyue Zhu,Dennis Sasha. Vorgetragen von Matthias Altmann StatStream : Statistical Monitoring of Thousands of Data Streams in Real Time Yunyue Zhu,Dennis Sasha Vorgetragen von Matthias Altmann Mehrfache Datenströme Beispiel Luft und Raumfahrttechnik: Space Shuttle

Mehr

Clusteranalyse. Mathematische Symbole Anzahl der Objekte, Versuchspersonen

Clusteranalyse. Mathematische Symbole Anzahl der Objekte, Versuchspersonen Clusteranalyse Ziel: Auffinden von Gruppen ( Cluster ) ähnlicher Obekte (bezogen auf die ausgewählten Variablen). Obekte i selben Cluster haben ähnliche Eigenschaften, Obekte in verschiedenen Clustern

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Einführung in die Cluster-Analyse mit SAS

Einführung in die Cluster-Analyse mit SAS Einführung in die Cluster-Analyse mit SAS Benutzertreffen am URZ Carina Ortseifen 4. Juli 2003 Inhalt 1. Clusteranalyse im allgemeinen Definition, Distanzmaße, Gruppierung, Kriterien 2. Clusteranalyse

Mehr

Datamining Ein kleiner Einblick

Datamining Ein kleiner Einblick Datamining Ein kleiner Einblick Autoren: Boris Kulig u. Bertram Schäfer Inhaltsverzeichnis 1 Begriff, Funktion, Verfahren 1 2 Clusteranalyse 1 2.1 Proximitätsmaße 3 2.1.1 Nominal-Skala 3 2.1.2 Metrische

Mehr

Diskriminanzanalyse Beispiel

Diskriminanzanalyse Beispiel Diskriminanzanalyse Ziel bei der Diskriminanzanalyse ist die Analyse von Gruppenunterschieden, d. h. der Untersuchung von zwei oder mehr Gruppen hinsichtlich einer Vielzahl von Variablen. Diese Methode

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelationsanalysen Kovariation und Kovarianz Korrelation: - Interpretation

Mehr

Musterlösung zu Serie 14

Musterlösung zu Serie 14 Dr. Lukas Meier Statistik und Wahrscheinlichkeitsrechnung FS 21 Musterlösung zu Serie 14 1. Der Datensatz von Forbes zeigt Messungen von Siedepunkt (in F) und Luftdruck (in inches of mercury) an verschiedenen

Mehr

Access [basics] Gruppierungen in Abfragen. Beispieldatenbank. Abfragen gruppieren. Artikel pro Kategorie zählen

Access [basics] Gruppierungen in Abfragen. Beispieldatenbank. Abfragen gruppieren. Artikel pro Kategorie zählen Abfragen lassen sich längst nicht nur dazu benutzen, die gewünschten Felder oder Datensätze einer oder mehrerer Tabellen darzustellen. Sie können Daten auch nach bestimmten Kriterien zu Gruppen zusammenfassen

Mehr

Pfadanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007

Pfadanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007 Pfadanalyse Bacher, SoSe2007 1. Grundlegende Verfahren Explorative Pfadanalyse: Kausale Beziehungen zwischen Variablen werden aufgedeckt, erforderlich ist eine kausale Anordnung der Variablen. Konfirmatorische

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Produktentwicklung damit sollten Sie rechnen

Produktentwicklung damit sollten Sie rechnen Produktentwicklung damit sollten Sie rechnen 0. Zusammenfassung Wer Produktentwicklung betreiben will, muss in erster Linie sehr viel lesen: Dokumente aus unterschiedlichsten Quellen und in vielen Formaten.

Mehr

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro Auswerten mit Excel Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro 1. Pivot-Tabellen erstellen: In der Datenmaske in eine beliebige Zelle klicken Registerkarte Einfügen

Mehr

Klassifikation und Ähnlichkeitssuche

Klassifikation und Ähnlichkeitssuche Klassifikation und Ähnlichkeitssuche Vorlesung XIII Allgemeines Ziel Rationale Zusammenfassung von Molekülen in Gruppen auf der Basis bestimmter Eigenschaften Auswahl von repräsentativen Molekülen Strukturell

Mehr

3.3 Möglichkeiten statistischer Untersuchungen im Vergleich Archäologie, Anthropologie und Zoologie

3.3 Möglichkeiten statistischer Untersuchungen im Vergleich Archäologie, Anthropologie und Zoologie Peter Stadler 3.3 Möglichkeiten statistischer Untersuchungen im Vergleich Archäologie, Anthropologie und Zoologie Naturgemäß sind die Fragestellungen für die Untersuchung und Auswertung eines Gräberfeldes

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23 Fragestellungen und Methoden 11 Vorwort 15 Kapitel 1 Einführung 17 1.1 KonzeptiondesBuchs... 18 1.2 AufbaudesBuchs... 19 1.3 Programmversionen von PASW bzw. SPSS..... 20 1.4 WiekanndiesesBuchverwendetwerden?...

Mehr

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen 7. Clusteranalyse (= Häufungsanalyse; Clustering-Verfahren) wird der multivariaten Statistik zugeordnet Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut,

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Versuchsplanung. Inhalt. Grundlagen. Faktor-Effekt. Allgemeine faktorielle Versuchspläne. Zweiwertige faktorielle Versuchspläne

Versuchsplanung. Inhalt. Grundlagen. Faktor-Effekt. Allgemeine faktorielle Versuchspläne. Zweiwertige faktorielle Versuchspläne Inhalt Versuchsplanung Faktorielle Versuchspläne Dr. Tobias Kiesling Allgemeine faktorielle Versuchspläne Faktorielle Versuchspläne mit zwei Faktoren Erweiterungen Zweiwertige

Mehr

Statistik für Studenten der Sportwissenschaften SS 2008

Statistik für Studenten der Sportwissenschaften SS 2008 Statistik für Studenten der Sportwissenschaften SS 008 Aufgabe 1 Man weiß von Rehabilitanden, die sich einer bestimmten Gymnastik unterziehen, dass sie im Mittel µ=54 Jahre (σ=3 Jahre) alt sind. a) Welcher

Mehr

Haben Sie schon mal geclustert? Beitrag zum Workshop Clusteranalyse auf der Frühjahrstagung der Städtestatistik 2008 in Saarbrücken

Haben Sie schon mal geclustert? Beitrag zum Workshop Clusteranalyse auf der Frühjahrstagung der Städtestatistik 2008 in Saarbrücken Haben Sie schon mal geclustert? Beitrag zum Workshop Clusteranalyse auf der Frühjahrstagung der Städtestatistik 2008 in Saarbrücken Dr. Ralf Gutfleisch, Frankfurt am Main Haben Sie schon mal geclustert?

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4 1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten.

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten. 7. KURVEN UND KNOTEN INFORMATION: Sämtliche Objekte bestehen in CorelDRAW aus Linien oder Kurven. So ist ein Rechteck ein Gebilde aus einem Linienzug, ein Kreis hingegen besteht aus einer Kurve. Zum Bearbeiten

Mehr

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen.

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen. Explorative Datenanalyse Erstmal die Grafiken: Aufreisskraft und Temperatur 3 1-1 N = 1 15 17 Temperatur Diagramm 3 1 95% CI -1 N = 1 15 17 Temperatur Etwas positive Tendenz ist beim Wechsel der Temperatur

Mehr

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten DAS THEMA: TABELLEN UND ABBILDUNGEN Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen Standardisierung von Daten z-standardisierung Standardnormalverteilung 1 DIE Z-STANDARDISIERUNG

Mehr

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer Algorithmen und Datenstrukturen Große Übung vom 29.10.09 Nils Schweer Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/courses/ws0910/aud/index.html Kleine Übungen

Mehr

1 Darstellen von Daten

1 Darstellen von Daten 1 Darstellen von Daten BesucherInnenzahlen der Bühnen Graz in der Spielzeit 2010/11 1 Opernhaus 156283 Hauptbühne 65055 Probebühne 7063 Ebene 3 2422 Next Liberty 26800 Säulen- bzw. Balkendiagramm erstellen

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Anwendungshinweise zur Anwendung der Soziometrie

Anwendungshinweise zur Anwendung der Soziometrie Anwendungshinweise zur Anwendung der Soziometrie Einführung Die Soziometrie ist ein Verfahren, welches sich besonders gut dafür eignet, Beziehungen zwischen Mitgliedern einer Gruppe darzustellen. Das Verfahren

Mehr

Social Monitoring von PV-Anlagen

Social Monitoring von PV-Anlagen Social Monitoring von PV-Anlagen Dr. Martin Staffhorst Top50-Solar Uhlandstr. 5/1, 73337 Bad Überkingen Tel.: 07331 / 977 000, Fax: 07331 / 977 000 9 Email: staffhorst@top50-solar.de Internet: www.pv-log.com

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Diagrammtypen. 8. Dezember 2012

Diagrammtypen. 8. Dezember 2012 Diagrammtypen 8. Dezember 212 DIAGRAMME AUSWAHLMATRIX Zur einfachen Bestimmung eines geeigneten Diagrammtypen sollten Sie sich nach dem Sammeln und Eingeben der Daten fragen, welche Aussage ihr Diagramm

Mehr

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des.

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des. Einfatorielle Varianzanalyse Varianzanalyse untersucht den Einfluss verschiedener Bedingungen ( = nominalsalierte(r) Variable(r)) auf eine metrische Variable. Die Bedingungen heißen auch atoren und ihre

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA)

Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA) Interdisziplinäres Seminar Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA) WS 2008/09 19.11.2008 Julia Schiele und Lucie Wink Dozenten: Prof. Dr. Bühner, Prof. Dr. Küchenhoff

Mehr

Thema: Bevölkerungsentwicklung des Landes Brandenburg

Thema: Bevölkerungsentwicklung des Landes Brandenburg IKG - Themenfeld Fachbezüge des Beispiels Unterrichtliche Schwerpunkte Intention IKG-Inhalte Thema: Bevölkerungsentwicklung des Landes Brandenburg Modellbildung / Simulation Politische Bildung, Mathematik,

Mehr

Kurzbeitrag Clusteranalyse als Instrument zur Gruppierung von spezialisierten Marktfruchtunternehmen

Kurzbeitrag Clusteranalyse als Instrument zur Gruppierung von spezialisierten Marktfruchtunternehmen Kurzbeitrag Clusteranalyse als Instrument zur Gruppierung von spezialisierten Marktfruchtunternehmen Michael Herink und Volker Petersen Martin-Luther-Universität Halle-Wittenberg Zusammenfassung Ziel der

Mehr

Statistische Auswertung:

Statistische Auswertung: Statistische Auswertung: Die erhobenen Daten mittels der selbst erstellten Tests (Surfaufgaben) Statistics Punkte aus dem Punkte aus Surftheorietest Punkte aus dem dem und dem Surftheorietest max.14p.

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

WERKZEUG KUNDENGRUPPEN BILDEN

WERKZEUG KUNDENGRUPPEN BILDEN Integrierter MarketinXervice Dr. Rüdiger Alte Wilhelm-Busch-Straße 27 99099 Erfurt Tel.: 0361 / 55 45 84 38 WERKZEUG GRUPPEN BILDEN Die folgenden Fragen mögen Ihnen helfen, Kriterien aufzustellen, anhand

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

Statistiken über die Bewerber/innen für die Masterstudiengänge am Institut für Statistik, LMU

Statistiken über die Bewerber/innen für die Masterstudiengänge am Institut für Statistik, LMU Statistiken über die Bewerber/innen für die Masterstudiengänge am Institut für Statistik, LMU Selina Kim und Andrea Wiencierz, fortgeschrieben von Paul Fink München, den 1. Juni 2015 Inhaltsverzeichnis

Mehr

SUDOKU - Strategien zur Lösung

SUDOKU - Strategien zur Lösung SUDOKU Strategien v. /00 SUDOKU - Strategien zur Lösung. Naked Single (Eindeutiger Wert)? "Es gibt nur einen einzigen Wert, der hier stehen kann". Sind alle anderen Werte bis auf einen für eine Zelle unmöglich,

Mehr

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de 1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de Man sollte eine Excel-Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte

Mehr

Einsatz Evolutionärer Algorithmen zur Optimierung der Tourenplanung eines Wachschutzunternehmens

Einsatz Evolutionärer Algorithmen zur Optimierung der Tourenplanung eines Wachschutzunternehmens Fachhochschule Brandenburg Fachbereich Informatik und Medien Kolloquium zur Diplomarbeit Einsatz Evolutionärer Algorithmen zur Optimierung der Tourenplanung eines Wachschutzunternehmens Übersicht Darstellung

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008 Aufgabe 1 I) Einige Mitarbeiter

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Risikodiversifikation. Birgit Hausmann

Risikodiversifikation. Birgit Hausmann diversifikation Birgit Hausmann Übersicht: 1. Definitionen 1.1. 1.2. diversifikation 2. messung 2.1. messung im Überblick 2.2. Gesamtaktienrisiko und Volatilität 2.3. Systematisches und Betafaktor 2.4.

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 27. März 2015 Aufgabe 1 Kennzeichnen Sie die folgenden Aussagen über die beiden Zufallsvektoren ([ ] [ ]) ([ ] [ ]) 2 1 0 1 25 2 x 1 N, x 3 0 1 2

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DIPLOM-PRÜFUNG

UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DIPLOM-PRÜFUNG UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DIPLOM-PRÜFUNG DATUM: 13. Juli 2009 FACH: TEILGEBIET: KLAUSURDAUER: Allgemeine Betriebswirtschaftslehre SL-Schein Marketing II 60 Minuten PRÜFER:

Mehr

Zählen von Objekten einer bestimmten Klasse

Zählen von Objekten einer bestimmten Klasse Zählen von Objekten einer bestimmten Klasse Ziel, Inhalt Zur Übung versuchen wir eine Klasse zu schreiben, mit der es möglich ist Objekte einer bestimmten Klasse zu zählen. Wir werden den ++ und den --

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

1. Eine gleiche Anzahl von Legosteine wird in jeweils einer Reihe angeordnet:

1. Eine gleiche Anzahl von Legosteine wird in jeweils einer Reihe angeordnet: Versuch 1: Materialliste: - Legosteine - (Tüte Gummibärchen) Ablauf: 1. Eine gleiche Anzahl von Legosteine wird in jeweils einer Reihe angeordnet: -- -- -- -- -- -- -- -- -- -- -- -- -- -- Das Kind wird

Mehr

Insiderwissen 2013. Hintergrund

Insiderwissen 2013. Hintergrund Insiderwissen 213 XING EVENTS mit der Eventmanagement-Software für Online Eventregistrierung &Ticketing amiando, hat es sich erneut zur Aufgabe gemacht zu analysieren, wie Eventveranstalter ihre Veranstaltungen

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

12 Teilnehmervoraussetzungen zum Umschulungsbeginn

12 Teilnehmervoraussetzungen zum Umschulungsbeginn Teilnehmervoraussetzungen zum Umschulungsbeginn 187 12 Teilnehmervoraussetzungen zum Umschulungsbeginn An dieser Stelle werden die wichtigsten Voraussetzungen beschrieben, die die Umschüler mit in die

Mehr