Entscheidungsprobleme der Marktforschung (1)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Entscheidungsprobleme der Marktforschung (1)"

Transkript

1 Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket Informatonsbudget Ausgewählte Kostenkategoren nterne Kostenarten Gehälter Materalkosten Resekosten Datenverarbetungskosten Verwaltungskosten externe Kostenarten Abonnements Mtgledsbeträge Datenverarbetungskosten Kosten für Gutachten Projektenzelkosten Schulungskosten WS 06/07 Fole 4 Entschedungsprobleme der (2) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung WS 06/07 Fole 5 Grundfragen Sollen für en bestmmtes Problem überhaupt Informatonen beschafft werden? Wenn ja, auf welche Wese? Ist der mt der Informatonsbeschaffung verbundene fnanzelle Aufwand gernger als de durch de resulterende Entschedungsverbesserung verursachte Ertragserhöhung? Lösungsansätze Sequentelle Entschedungen z.b. m Rahmen von Testmarktanalysen DEMON-Netze ( Marketng I) Entschedungsbaum-Verfahren Bayes-Analyse A pror-analyse kene Informatonsbeschaffung; kene Informatonsbewertung A posteror-analyse Im Blck zurück: War de Informatonsbeschaffung snnvoll?» Methodk: Verknüpfung alter und neuer Informaton Prae posteror-analyse Vorwegnahme der A posteror-analyse Zel: Schätzung des ökonomschen Werts ener Informatonsbeschaffung vor hrer Verfügbarket (z.b. vor Durchführung enes Testmarkts)

2 Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf Bespel zur Bayes-Analyse () Entschedungstheoretscher Ansatz Notaton Alternatven a (=,...,m) Umweltzustände s j (j=,...,n) Nutzenbewertungen u j (=,...,m, j=,..,n) 3. Datengewnnung WS 06/07 Fole 6 Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung WS 06/07 Fole 7 Bespel zur Bayes-Analyse (2) Aufgabenstellung Bespel Verpackungsdfferenzerung Soll für en flüssges Nahrungsmttel zusätzlch zur normalen Packungsgröße ene klenere Sngle -Packung engeführt werden? Handlungsalternatven a : Enführung a 2 : Ncht-Enführung Zel Erhöhung des Gesamt-Deckungsbetrages durch Erschleßung neuer Käuferkrese be konstantem Gesamtmarktvolumen Umweltzustände s : Der bsherge Marktantel (8 %) ändert sch ncht. s 3 : Der Marktantel stegt auf 22 %. s 2 : Der Marktantel legt be 20 %. Markt- und Kalkulatonsdaten konstantes Gesamtmarktvolumen n Höhe von 00 Mo. Ltern pro Jahr Deckungsbetrag:,- EURO pro Lter Gesamtkosten der Klenpackungsenführung: 4 Mo. EURO Planungshorzont: 3 Jahre Entschedungsmatrx U =

3 Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung Bespel zur Bayes-Analyse (3) A pror-analyse Ausgangspunkt Es legen kene zusätzlchen Informatonen vor. Entschedungsregel Es st de Alternatve a zu wählen, für de ene bestmmte Bewertungsfunkton φ(a) maxmal wrd. a) Maxmax-Krterum ( Optmsmus ) b) Maxmn-Krterum ( Pessmsmus ) c) Hurwtz-Regel ( Kompromss ) (mt λє[0;]) d) Krterum des erwarteten Geldwertes m Bespel: max ( ) = { }. φ a max u ( a ) max { u mn }. ( a ) = max { λu max + ( λ) u mn } φ = φ φ a = max ujp sj = j= n ( ) ( ) G pror WS 06/07 Fole a) U = b) U = c) U = d) P(s ) = ; P(s 2 ) = ; P(s 3 ) = ; φ ( a ) = max = max { 56;54} = 56 Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung Bespel zur Bayes-Analyse (4) A posteror-analyse Ausgangspunkt Es legt ene zusätzlche Informaton t k von r theoretsch möglchen Informatonen vor (k =,..., r, aber fest). Zel: Verknüpfung von vorhandener und neuer Informaton vorhandene Informaton A pror-wahrschenlchket P(s j ) neue Informaton bedngte Wahrschenlchket P(t k s j ) (Entrttswahrschenlchket für t k, wenn Zustand s j vorlegt.) Verknüpfung A posteror-wahrschenlchket P(s j t k ) (Entrttswahrschenlchket von Zustand s j, nachdem t k beobachtet wurde) Lösung: Bayes-Theorem (Satz von der totalen Wahrschenlchket) ( / ) P s t P t = n = P t ( k / sj) P( sj) ( / ) ( ) j k = j k sj P sj ( k / sj) P( sj) ( ) P t P t k P(t k ) = (margnale) Wahrschenlchket für das Auftreten von t k WS 06/07 Fole 9

4 Prof. Dr. Danel Baer Bespel zur Bayes-Analyse (5) A posteror-analyse Bespel Verpackungsdfferenzerung (fortgeführt) De Sngle -Packungsvarante wurde n enem Testmarkt erprobt.. Enführung 2. Informatonsbedarf 3. Datengewnnung Dabe wurde für bede Produkte en Marktantel von 2 % erzelt. Aufgabe des Marketng-Managers st es, de Wahrschenlchketen dafür zu schätzen, daß das Testmarktergebns t k =2% entrtt, wenn hypothetsch de dre möglchen Umweltzustände als wahr angenommen werden. Er schätzt folgende Wahrschenlchketen: j 2 3 s j 8% 20% 22% P(t k /s j ) 0,05 WS 06/07 Fole 20 Prof. Dr. Danel Baer. Enführung Bespel zur Bayes-Analyse (6) A posteror-analyse Bespel Verpackungsdfferenzerung (fortgeführt) Unter Hnzunahme der A pror-wahrschenlchketen P(s j ) können de A posteror-wahrschenlchketen P(s j /t k ) berechnet werden: 2. Informatonsbedarf 3. Datengewnnung j 2 3 s j 8% 20% 22% P(s j ) P(t k /s j ) 0,05 P(t k /s j ) P(s j ) 0,2 0,2 0,05 P(s j /t k ) 7 7 0,058 -,0 - P(t k )=0,255,0 Das Krterum des erwarteten Geldwertes lefert: ,058; φ( a ) = max ,058 = max = 54 { 53,522;54} WS 06/07 Fole 2 G post = 54 Alternatve a 2 st zu wählen. Im Verglech zur Entschedung be a pror Analyse können 78 Mo. EURO Deckungsbetragsverlust verhndert werden.

5 Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung Bespel zur Bayes-Analyse (7) Prae-posteror-Analyse Zel Vor der Informatonsbeschaffung soll ermttelt werden, ob de Ergebnsse der Informatonsbeschaffung ene Entschedungsverbesserung erwarten lassen, deren Wert de damt verbundenen Kosten überstegt. Vorgehenswese De Ergebnsse unterschedlcher A posteror-analysen werden vorweggenommen, ndem r bedngte Wahrschenlchketen P(t k ls j ) für n Umweltzustände sowe r margnale Wahrschenlchketen P(t k ) geschätzt werden. Erwarteter Geldwert bez. der A posteror-wahrschenlchket von t k : n ( ) ( ) φ = k a max ujp sj/tk j= Erwarteter Geldwert der Informatonsbeschaffung r prae post φ( a ) = φ ( a ) P( tk) = k G k= (maxmale Gewnnerwartung mt Informatonsbeschaffung) Wert der Informatonsbeschaffung WS 06/07 Fole 22 W = G prae post G pror Entschedungsregel: Wenn W > K glt, lohnt sch de (zusätzlche) Informatonsbeschaffung, wobe K de Kosten herfür darstellen. Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung Bespel zur Bayes-Analyse (8) Prae-posteror-Analyse Bespel Verpackungsdfferenzerung (fortgeführt) Für das Enholen von Testmarktnformatonen würden (zusätzlche) Kosten n Höhe von K = Mo. EURO anfallen. In desem Zusammenhang hält der Marketng-Manager de folgenden ver Testmarktergebnsse für möglch: t = 9 % Marktantel t 2 = 2 % Marktantel t 3 = 23 % Marktantel t 4 = 25 % Marktantel Anschleßend nmmt er für dese Testmarktergebnsse auf Bass sener Erfahrung ene Schätzung der bedngten Wahrschenlchketen P(t k /s ) vor: j s j P(s j ) P(t /s j ) P(t 2 /s j ) P(t 3 /s j ) P(t 4 /s j ) 2 3 8% 20% 22% 0,5 0, 0,05 0,05 0, 0 0,2 0,6 WS 06/07 Fole 23 Heraus ergeben sch folgende margnale Wahrschenlchketen: P(t ) = 0,205 P(t 2 ) = 0,255 P(t 3 ) = 0,280 P(t 4 ) = 0,260

6 Prof. Dr. Danel Baer Bespel zur Bayes-Analyse (9) Prae-posteror-Analyse De A posteror-wahrschenlchketen lauten dann: j P(s j /t ) P(s j /t 2 ) P(s j /t 3 ) P(s j /t 4 ). Enführung 2. Informatonsbedarf 2 3 0,732 0,95 0, ,058 0,07 0, , Datengewnnung Erwartete Geldwerte bez. der A posteror-wahrschenlchketen von Informaton k=,...,4: 50 0, , ,073; φ ( ) a = max 0, , ,073 = max { 52,05;54,0} = ,058; φ ( ) 2 a = max ,058 = max { 53,53;54,0} = , , ; φ ( ) 3 a = max 0, , = max { 57,29;54,0} = 57,29 WS 06/07 Fole ,692; φ ( ) 4 a = max ,692 = max { 60,5;54,0} = 60,5 Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung Bespel zur Bayes-Analyse (0) Prae-posteror-Analyse Erwarteter Geldwert der Informatonsbeschaffung: G ( ) φ a = 54 0, , ,29 0, ,5 0,260 = 56,52 post = 56,52 prae Wert der Informatonsbeschaffung: W = 56,52 56 = 0,52 Entschedungsregel: W = 0,52 > = K De Informatonsbeschaffung lohnt sch! WS 06/07 Fole 25

7 Sekundärforschung vs. Prmärforschung () Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung Defnton Sekundärforschung Beschaffung, Zusammenstellung und Auswertung berets vorhandenen Materals, das ncht für den spezellen Zweck der aktuellen (Sekundär-) Untersuchung erhoben wurde, sondern aus verschedenen Quellen früherer Zetpunkte zusammengetragen und unter neuen Geschtspunkten analysert wurde. Typsche Anwendungsgebete der Sekundärforschung: Exportmarktforschung zwschenbetreblche Vergleche nnerbetreblche Analysen Marktpotenzal- und Nachfragebestmmung Absatzprognosen Informatonsbeschaffung für anschleßende Prmärerhebung prmary data secondary data collecton purpose the problem at hand other problems collecton process collecton cost collecton tme very nvolved hgh long rapd and easy relatvely low short WS 06/07 Fole 26 Quelle: Malhotra 996 Sekundärforschung vs. Prmärforschung (2) Prof. Dr. Danel Baer Logscher Zusammenhang:. Untersuchungszweck. Enführung 2. Informatonsbedarf 3. Datengewnnung Datenbedarf Prmärforschung Dokumentaton 2. Untersuchungszweck Datenbedarf Sekundärforschung Arbetsablaufmäßger Zusammenhang: Untersuchungszweck Datenbedarf Sekundärforschung WS 06/07 Fole 27 (Rogge (992)) weterer Datenbedarf Prmärforschung

8 Sekundärforschung vs. Prmärforschung (3) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung Potenzale der Sekundärforschung kostengünstg schnell Möglchket, Prmärerhebungen snnvoll vorzubereten Grenzen der Sekundärforschung mangelnde Relevanz, Objektvtät und Genaugket bez. der aktuellen Problemstellung erschwerte Kontrolle der Repräsentatvtät Informatonsverlust be verstärkter Aggregaton Informatonsüberflutung Stegende Bedeutung der Sekundärforschung n der durch Internet Management-Informatonssysteme (MIS) Erforderns der Datenverfügbarket über langfrstge Entwcklungen aufgrund strategscher Planungsprobleme stegende Verfügbarket von Panel-Informatonen gerngere Transferprobleme durch Verenhetlchung der Datenverarbetung WS 06/07 Fole 28 Datenquellen der Sekundärforschung Prof. Dr. Danel Baer Kennzechen: Daten legen berets vor und müssen nur noch ausgewertet werden.. Enführung 2. Informatonsbedarf 3. Datengewnnung nterne Quellen Rechnungswesen Kunden- und Leferantenkarteen Messe- und Ausstellungsberchte Vertreter- und Enkäuferberchte externe Quellen amtlche Statstk, Zetschrften Prospekte, Messe-, Geschäftsberchte anderer Unternehmen Adressverlage, Meda- und Marktstuden von Verlagen, Insttuten,... WS 06/07 Fole 29

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing QUALITY-APPs Applkatonen für das Qaltätsmanagement Prozessmanagement De Schnttstellenmatrx Ator: Jürgen P. Bläsng Schnttstellen (Übergangsstellen, Verbndngsstellen) n betreblchen Prozessen ergeben sch

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Qualitative Evaluation einer interkulturellen Trainingseinheit

Qualitative Evaluation einer interkulturellen Trainingseinheit Qualtatve Evaluaton ener nterkulturellen Tranngsenhet Xun Luo Bettna Müller Yelz Yldrm Kranng Zur Kulturgebundenhet schrftlcher und mündlcher Befragungsmethoden und hrer Egnung zur Evaluaton m nterkulturellen

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

Eva Hoppe Stand: 2000

Eva Hoppe Stand: 2000 CHECKLISTE ARBEITSSCHUTZ A. Rechtsgrundlagen der Arbetgeberpflchten Ist der Arbetgeber/de Behördenletung mt der Rechtssystematk und dem modernen Verständns des Arbetsschutzes vertraut? Duale Rechtssystematk

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl 0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs olver.pascheret@tu-berln.de

Mehr

Biovision Newsletter Oktober 2015. Investieren Sie in das kostbarste Gut Afrikas

Biovision Newsletter Oktober 2015. Investieren Sie in das kostbarste Gut Afrikas Bovson Newsletter Oktober 2015 Investeren Se n das kostbarste Gut Afrkas Fruchtbarer Boden De Lebensverscherung für Mllonen von Bauernfamlen n Afrka 40% der afrkanschen Böden snd degradert Und es kommt

Mehr

EAU SWH l$,0, wohngebäude

EAU SWH l$,0, wohngebäude EAU SWH l$,0, wohngebäude gemäß den $$ 6 ff, Energeensparverordnung (EnEV) :,:: Gültsbs: 09208 Gebäude Gebäudetyp Altbau Mehrfamlenhaus Adresse Hardstraße 3 33, 40629 Düsseldorf Gebäudetel Baujahr Gebäude

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

Innovative Handelssysteme für Finanzmärkte und das Computational Grid

Innovative Handelssysteme für Finanzmärkte und das Computational Grid Innovatve Handelssysteme für Fnanzmärkte und das Computatonal Grd von Dpl.-Kfm. Mchael Grunenberg Dr. Danel Vet & Dpl.-Inform.Wrt. Börn Schnzler Prof. Dr. Chrstof Wenhardt Lehrstuhl für Informatonsbetrebswrtschaftslehre,

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Statistische Berichte

Statistische Berichte Statstsche Berchte De Entcklung der Bevölkerung m Saarland 2014 bs 2060 Ergebnsse der 13. koordnerten Bevölkerungsvorausberechnung Altersaufbau der Bevölkerung m Saarland Altersjahre 100 95 90 85 80 75

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Erfahrung. Innovation.

Erfahrung. Innovation. Erfahrung. Innovaton. Erfolg. Maschnen-/ Anlagenbau >>> 11:55 PM consultants GmbH ERFOLG BENÖTIGT VORBEREITUNG. LERNEN SIE UNS KENNEN. Wr beten Ihnen Lösungen für das Projekt- und Clam Management, welche

Mehr

Kapitel 15: Geldpolitische Instrumente

Kapitel 15: Geldpolitische Instrumente Kaptel 15: Geldpoltsche Instrumente Schaubld 15.1: De Instrumente müssen be der Aufgabenerfüllung des Eurosystems zweckdenlch sen Aspekte be der Durchführung der Geldpoltk Instrumente Offenmarktpoltk Fazltäten

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Fähigkeitsuntersuchungen beim Lotpastendruck

Fähigkeitsuntersuchungen beim Lotpastendruck Fakultät Elektrotechnk und Informatonstechnk Insttut für Aufbau- und Verbndungstechnk der Elektronk Fähgketsuntersuchungen bem Lotpastendruck Dr.-Ing. H. Wohlrabe Ottobrunn, 2. Februar 2009 Qualtätsmerkmale

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Konzept der Chartanalyse bei Chart-Trend.de

Konzept der Chartanalyse bei Chart-Trend.de Dpl.-Phys.,Dpl.-Math. Jürgen Brandes Konzept der Chartanalyse be Chart-Trend.de Konzept der Chartanalyse be Chart-Trend.de... Bewertungsgrundlagen.... Skala und Symbole.... Trendkanalbewertung.... Bewertung

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alternatve Darstellung des -Stchprobentests für Antele DCF CF Total n= 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Response No Response Total absolut DCF 43 68 111 CF 6 86 11 69 154

Mehr

"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft

Zukunft der Arbeit Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft "Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012

Mehr

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel)

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel) Rudolf Brnkmann http://brnkmann-du.de Sete.. Datenerhebung, Datenaufberetung und Darstellung. In der beschrebenden Statstk werden Daten erhoben, aufberetet und analysert. Bespel ener Datenerhebung mt Begrffserklärungen

Mehr

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x)

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x) ZZ Lösung zu Aufgabe : Ch²-Test Häufg wrd be der Bearbetung statstscher Daten ene bestmmte Vertelung vorausgesetzt. Um zu überprüfen ob de Daten tatsächlch der Vertelung entsprechen, wrd en durchgeführt.

Mehr

W i r m a c h e n d a s F e n s t e r

W i r m a c h e n d a s F e n s t e r Komfort W r m a c h e n d a s F e n s t e r vertrauen vertrauen Set der Gründung von ROLF Fensterbau m Jahr 1980 snd de Ansprüche an moderne Kunststofffenster deutlch gestegen. Heute stehen neben Scherhet

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Man unterscheidet zwischen gewichteten und ungewichteten Faktorwerten.

Man unterscheidet zwischen gewichteten und ungewichteten Faktorwerten. Faktorwerte Da es das Zel der Faktorenanalyse st, de Zahl der Kennwerte zu reduzeren (aus velen Items sollen deutlch wenger Faktoren resulteren, st es nötg, Kennwerte für de Ausprägungen der Personen n

Mehr

Managed Care und Pflegearrangements

Managed Care und Pflegearrangements Managed Care und Pflegearrangements 1. Wrtschaftswssenschaftlches Forum Essen Jürgen Zerth/Anka Rechert IDC Fürth/Neuendettelsau I. Ökonome der Langzetpflege II. Untersuchungsgegenstand: Sachwalterrollen

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren!

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren! Franz Schuck GmbH Enbau-/Betrebsanletung Stahl-PE-Übergang Typ PESS / Typ PESVS Orgnalbetrebsanletung Für künftge Verwendung aufbewahren! Enletung Dese Anletung st für das Beden-, Instandhaltungs- und

Mehr

Übung zu Erwartungswert und Standardabweichung

Übung zu Erwartungswert und Standardabweichung Aufgabe Übung zu Erwartungswert und Standardabwechung In ener Lottere gewnnen 5 % der Lose 5, 0 % der Lose 0 und 5 % der Lose. En Los kostet 2,50. a)berechnen Se den Erwartungswert für den Gewnn! b)der

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

CKE Trainingsbausteine. Portfoliomanagement und Risikomanagement Strom und Erdgas Fünf kreative Tage, die Sie weiterbringen werden

CKE Trainingsbausteine. Portfoliomanagement und Risikomanagement Strom und Erdgas Fünf kreative Tage, die Sie weiterbringen werden CKE Tranngsbaustene Portfolomanagement und Rskomanagement Strom und Erdgas Fünf kreatve Tage, de Se weterbrngen werden Ihr Zel Se nteresseren sch für den Energemarkt n all senen Facetten, möchten Produkte

Mehr

Investition in Übungen

Investition in Übungen Vahlens Übungsbücher der Wrtschafts- und Sozalwssenschaften Investton n Übungen von Prof. Dr. Hartmut Beg, Prof. Dr. Henz Kußmaul, Prof. Dr. Gerd Waschbusch 3., durchgesehene und überarbetete Auflage Verlag

Mehr

wissenschaftliche Einrichtung elektronik

wissenschaftliche Einrichtung elektronik wssenscaftlce Enrctung elektronk Oberscwngungen, Begrffe und Defntonen Prof.. Burgolte Labor Elektromagnetsce Verträglcket Facberec ngeneurwssenscaften Begrff Störgröße (dsturbance) Störfestgket (mmunty)

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare

phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare Skalerung von Organsatonen und Innovatonen gestalten phl omondo Se stehen vor dem nächsten Wachstumsschrtt hrer Organsaton oder haben berets begonnen desen aktv zu gestalten? In desem Workshop-Semnar erarbeten

Mehr

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R Temporäre Stlllegungsentschedungen mttels stufenweser Grenzkostenrechnung E W U F W O R K I N G P A P E R Mag. Dr. Thomas Wala, FH des bf Wen PD Dr. Leonhard Knoll, Unverstät Würzburg Mag. Dr. Stephane

Mehr

Messen kleiner Größen

Messen kleiner Größen Messen klener Größen Negungssensoren Elektronsche Negungssensoren Flüssgketsssteme Pendelssteme Sesmsche Ssteme btstung ener Gsblse btstung ener Flüssgkets -oberfläche Vertklpendel Horzontl -pendel Beschleungungsmesser;

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Dskrmnanzanalyse Zel ener Dskrmnanzanalyse: Berets bekannte Objektgruppen (Klassen/Cluster) anhand hrer Merkmale charakterseren und unterscheden sowe neue Objekte n de Klassen enordnen. Nötg: Lernstchprobe

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Diplomprüfung für Kaufleute 2001/I

Diplomprüfung für Kaufleute 2001/I Dplomprüfung für Kaufleute 00/I Prüfungsfach: Unternehmensfnanzerung und Betrebswrtschaftslehre der Banken Thema : a) Warum st es trotz Rskoaverson der Markttelnehmer möglch, be der Bewertung von Optonen

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Leitfaden zum. Micro Bond IndeX_InvestmentGrade (MiBoX_IG)

Leitfaden zum. Micro Bond IndeX_InvestmentGrade (MiBoX_IG) Letfaden zum Mcro Bond IndeX_InvestmentGrade (MBoX_IG) Verson 1.0 vom 25. September 2012 1 Inhalt Enführung 1 Parameter des Index 1.1 Kürzel und ISIN 1.2 Startwert 1.3 Vertelung 1.4 Prese und Berechnungsfrequenz

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n.

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n. Insttut für Stochastk PD. Dr. Deter Kadelka Danel Gentner Asymptotsche Stochastk (SS 2) Übungsblatt Aufgabe (Arten von Konvergenz reeller Zufallsvarablen und deren Zusammenhänge) Es seen X,, n N reelle

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Klausur zur Vorlesung Lineare Modelle SS 2006 Diplom, Klausur A

Klausur zur Vorlesung Lineare Modelle SS 2006 Diplom, Klausur A Lneare Modelle m SS 2006, Prof. Dr. W. Zucchn 1 Klausur zur Vorlesung Lneare Modelle SS 2006 Dplom, Klausur A Aufgabe 1 (18 Punkte) a) Welcher grundsätzlche Untersched besteht n der Interpretaton von festen

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 8. Übung (08.01.2008) Agenda Agenda Verglech Rasch-Modell vs. 2-parametrsches logstsches Modell nach Brnbaum 2PL-Modelle n Mplus Verglech

Mehr

Physik A VL11 ( )

Physik A VL11 ( ) Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte

Mehr

Quantitatives Prognosemodell für die Anwendung des Black-Litterman-Verfahrens

Quantitatives Prognosemodell für die Anwendung des Black-Litterman-Verfahrens Quanttatves Prognosemodell für de Anwendung des Black-Ltterman-Verfahrens Franzska Felke* und Marc Gürtler** Abstract: De chätzung erwarteter Wertpaperrendten stellt ene der zentralen Aufgaben n der praktschen

Mehr

Aufgabe 1: Portfolio Selection

Aufgabe 1: Portfolio Selection Aufgabe 1: Portfolo Selecton 2 1 2 En Investor mt ener Präferenzfunkton der Form (, ) a verfügt über en 2 Anfangsvermögen n Höhe von 100 Slbermünzen. Am Markt werden de folgenden dre Wertpapere gehandelt,

Mehr