Konzepte der Informatik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Konzepte der Informatik"

Transkript

1 Konzepte der Informatik Vorkurs Informatik zum WS 2011/ Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens Gallenbacher 1

2 Was steckt dahinter? Einleitung Die besprochenen Probleme gehören in das Umfeld der so genannten Graphenalgorithmen. Ein Graph besteht hierbei aus einer Menge von Knoten und einer Menge von Kanten, die zwischen den Knoten verlaufen. Die Knoten werden oft als Kringel und die Kanten als Linien oder Pfeile dazwischen dargestellt. Man unterscheidet ungerichtete Graphen (ohne Pfeil), bei denen die Verbindung zweier Konten in beide Richtungen geht und gerichtete Graphen (mit Pfeil). Wozu ist aber ein Graph gut? Wie andere Modelle in der Informatik kann er ein Ausschnitt der Wirklichkeit modellieren, um diese einfacher zu verstehen und zu analysieren. 2

3 Was steckt dahinter? Anforderungen an Algorithmen Aufgrund der vielfältigen Anwendungen gibt es auch eine Menge von Algorithmen auf Graphen. Der Dijkstra-Algorithmus ist hier ein sehr bekannter Vertreter. Was zeichnet einen guten Algorithmus aus? Er muss zuerst einmal die gestellte Aufgabe lösen. Wichtiges Kriterium ist außerdem, dass dieser die Aufgabe möglichst schnell löst und auch bei großen Problemen nicht in die Knie geht. 3

4 Was steckt dahinter? Berechnung des Zeitbedarfs Wir betrachten wie stark der Zeitbedarf mit der Problemgröße ansteigt. Am Beispiel der Landkarte kann dies sehr gut demonstriert werden. Eine Problemgröße ist zum Beispiel die Anzahl der Städte auf der Landkarte. Betrachten wir jetzt noch einmal den Brute-Force-Ansatz zur Bestimmung des kürzesten Weges: Bestimme alle möglichen Wege vom Start zum Ziel und suche davon den kürzesten. 4

5 Was steckt dahinter? Beispiel: Brute-Force-Methode Im schlechtesten Fall müssen also alle von einem Punkt ausgehenden Wege bestimmt werden. Außerdem sind im schlechtesten Fall alle Knoten mit allen anderen Knoten verbunden (vollständiger Graph). Für drei Knoten ist es noch kein Problem, die Anzahl möglicher Wege vom Startpunkt S aus zu bestimmen. 5

6 Was steckt dahinter? Beispiel: Brute-Force-Methode Mit jedem zusätzlichen Knoten steigt die Anzahl der möglichen Wege stark an. Zeichnerisch die Lösung zu bestimmen ist dann nicht mehr praktikabel. Man kann die Anzahl der Knoten auch rechnerisch bestimmen. Für den Graphen mit vier Knoten gilt, dass man ihn aus zwei Komponenten zusammensetzen kann: ein einzelner Knoten S plus ein Graph mit drei Knoten. Da der bekannte Graph drei Knoten besitzt, kann vom neuen Knoten S auf drei Arten ein Weg zum bekannten Graphen begonnen werden. 6

7 Was steckt dahinter? Beispiel: Brute-Force-Methode Im 3er Graphen wird dann auf die bereits ermittelte Weise ein Weg gesucht. Daher ist die Anzahl möglicher Wege im 4er-Graphen 3 * 2 = 6. Für einen 5er-Graphen gibt es vier Möglichkeiten, Wege vom neuen Knoten zum 4er-Graphen zu beginnen. Die Anzahl der Wege beträgt daher 4*6 = 24. Auf diese Weise kann man ableiten, dass in einem vollständigen Graphen mit n Knoten (n-1)! verschiedene Wege von einem gesetzten Startpunkt ausgehen. Da für jeden der Wege n-1 Streckenabschnitte eingerechnet werden müssen, bedarf es für die Brute-Force-Methode ungefähr (n-1)(n-1)! Berechnungen, um den kürzesten Weg zu finden. 7

8 Was steckt dahinter? Beispiel: Brute-Force-Methode # Knoten Schritte

9 Was steckt dahinter? Beispiel: Brute-Force-Methode Für 100 Knoten sind im schlimmsten Fall bereits Berechnungen nötig. Wenn auch nur alle Gemeinden Deutschlands als Knoten in die Suche einbezogen werden, sind 9,88 * Berechnungen nötig. Um sich diese Zahl vorstellen zu können, folgende Analogie: 9

10 Was steckt dahinter? Beispiel: Brute-Force-Methode Wenn sich die verfügbaren Rechenleistungen wie momentan jedes Jahr fast verdoppeln, haben im Jahre 2010 alle Rechner der Erde zusammengenommen etwa die Möglichkeit 128 Petaflops durchzuführen, also 128 Billiarden Fließkommaoperationen pro Sekunde. Nehmen wir an, wir vereinigen alle Rechner zu einer gigantischen Maschine, die sich dann um unser Wegeproblem kümmert. Dann würde sie immer noch etwa 4* Jahre für das Ergebnis benötigen. Das Alter des Universums wird heute auf etwa 12 Milliarden Jahre geschätzt. Die Maschine würde also immer noch 333* Mal so lange benötigen, wie das gesamte Universum alt ist. 10

11 Darstellung von Graphen Überlegung Computer kennt keine graphische Darstellung Insbesondere keine Kanten und Knoten Abstraktion notwendig Überführung der graphischen Darstellung in eine Datenstruktur 11

12 Darstellung von Graphen Adjazenzmatrix Idee für ungerichtete Graphen: Sei n die Anzahl der Knoten. Benutze eine n x n Matrix. Wenn eine Kante zwischen Knoten a und b existiert, dann trage in Spalte a und Zeile b eine 1 ein, andernfalls eine 0. Verfahre ebenso mit Spalte b und Zeile a

13 Darstellung von Graphen Adjazenzmatrix Beispiel für ungerichteten Graphen mit Gewichten: Symmetrie bleibt erhalten. Anstelle von einer 1 trage das Kantengewicht ein

14 Darstellung von Graphen Adjazenzmatrix Beispiel für gerichteten Graphen mit Gewichten: Keine Symmetrie mehr

15 Darstellung von Graphen Adjazenzliste Anstatt einer Matrix wird eine verkettete Liste benutzt. Besonders geeignet für gerichtete Graphen Die Basisstruktur bildet die Liste aller Knoten. Für jeden Knoten wird eine Liste der Nachfolger entlang gerichteter Kanten abgespeichert. 15

16 Darstellung von Graphen Inzidenzmatrix Anstatt Verbindungen von Knoten zu Knoten darzustellen, wird hier die Nachbarschaft der Kanten zu den Knoten dargestellt. Jede Spalte enthält 2 von Null verschiedene Einträge e1 e2 e3 e4 e5 e6 e

17 Zusammenfassung Datenstrukturen Listen Array's (zusammenhängender Speicher) n (doppelt) Verkettete Listen Stapel

18 Zusammenfassung Datenstrukturen Graphen Bäume

19 Vielen Dank für Ihre Aufmerksamkeit! 19

Vorkurs Informatik WiSe 16/17

Vorkurs Informatik WiSe 16/17 Institut für Programmierung Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 12.10.2016 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Schilda-Rallye Was steckt

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Vorkurs Informatik SoSe 15

Vorkurs Informatik SoSe 15 Algorithmen 2 Dr. Werner Struckmann / Stephan Mielke, Marvin Priedigkeit, 9.04.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Vorüberlegungen Ameisen-Prinzip Dijkstra-Algorithmus Schilda-Rallye

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

Kapitel 6: Graphalgorithmen Gliederung

Kapitel 6: Graphalgorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes

Mehr

Produktentwicklung damit sollten Sie rechnen

Produktentwicklung damit sollten Sie rechnen Produktentwicklung damit sollten Sie rechnen 0. Zusammenfassung Wer Produktentwicklung betreiben will, muss in erster Linie sehr viel lesen: Dokumente aus unterschiedlichsten Quellen und in vielen Formaten.

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Kodieren Von Graphen

Kodieren Von Graphen Kodieren Von Graphen Allgemeine Anwendungen: Routenplaner Netzpläne Elektrische Schaltungen Gebäudeerkennung aus Luftaufnahmen Definitionen:? Graph Ein Graph G besteht aus einem geordneten Paar G = (V,E)

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Equivalenz?

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 24-6. Sitzung Marcus Georgi tutorium@marcusgeorgi.de 04.12.2009 1 Repräsentation von Graphen im Rechner Adjazenzlisten Adjazenzmatrizen Wegematrizen 2 Erreichbarkeitsrelationen

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 16 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 45 Graphen TU Ilmenau Seite 2 / 45 Graphen 1 2 3 4 5 6 7 8

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 1 Agenda Kontrollfragen Graphen Graphenalgorithmen 2

Mehr

Wie Google Webseiten bewertet. François Bry

Wie Google Webseiten bewertet. François Bry Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Relationen und Graphentheorie

Relationen und Graphentheorie Seite Graphentheorie- Relationen und Graphentheorie Grundbegriffe. Relationen- und Graphentheorie gehören zu den wichtigsten Hilfsmitteln der Informatik, die aus der diskretenmathematik stammen. Ein Graph

Mehr

Information Systems Engineering Seminar

Information Systems Engineering Seminar Information Systems Engineering Seminar Algorithmische Prüfung der Planarität eines Graphen Marcel Stüttgen, 22.10.2012 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1 Planarität - Definition Ein Graph heißt

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdarstellungen Maike Buchin 0.6.017 Graphen Motivation: Graphen treten häufig als Abstraktion von Objekten (Knoten) und ihren Beziehungen (Kanten) auf. Beispiele: soziale

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 schlechte@zib.de Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben

Mehr

Guten Morgen und Willkommen zur Saalübung!

Guten Morgen und Willkommen zur Saalübung! Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet

22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet 22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet Autor Volker Claus, Universität Stuttgart Volker Diekert, Universität Stuttgart Holger Petersen, Universität Stuttgart

Mehr

Access Grundlagen. David Singh

Access Grundlagen. David Singh Access Grundlagen David Singh Inhalt Access... 2 Access Datenbank erstellen... 2 Tabellenelemente... 2 Tabellen verbinden... 2 Bericht gestalten... 3 Abfragen... 3 Tabellen aktualisieren... 4 Allgemein...

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Datenstrukturen. einfach verkettete Liste

Datenstrukturen. einfach verkettete Liste einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Anwendungshinweise zur Anwendung der Soziometrie

Anwendungshinweise zur Anwendung der Soziometrie Anwendungshinweise zur Anwendung der Soziometrie Einführung Die Soziometrie ist ein Verfahren, welches sich besonders gut dafür eignet, Beziehungen zwischen Mitgliedern einer Gruppe darzustellen. Das Verfahren

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Vorkurs Informatik WiSe 15/16

Vorkurs Informatik WiSe 15/16 Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner

Mehr

2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit:

2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit: Vorlesung 5.5. VERBINDUNGSNETZWERKE Kommunikation zwischen den einzelnen Komponenten eines arallelrechners wird i.d.r. über ein Netzwerk organisiert. Dabei unterscheidet man zwei Klassen der Rechner: TOOLOGIE:

Mehr

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer Algorithmen und Datenstrukturen Große Übung vom 29.10.09 Nils Schweer Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/courses/ws0910/aud/index.html Kleine Übungen

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Keller, Schlangen und Listen. Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14

Keller, Schlangen und Listen. Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14 Keller, Schlangen und Listen Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14 Listen Listen unterstützen die Operationen Lookup, Insert, Remove. + Listen passen sich der Größe der zu speichernden

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Vorlesung 3: Graphenalgorithmen. Markus Püschel David Steurer Peter Widmayer. PDF download goo.gl/ym3spq

Vorlesung 3: Graphenalgorithmen. Markus Püschel David Steurer Peter Widmayer. PDF download goo.gl/ym3spq Vorlesung 3: Graphenalgorithmen Markus Püschel David Steurer Peter Widmayer PDF download goo.gl/ym3spq Algorithmen und Datenstrukturen, Herbstsemester 2017, ETH Zürich Gerichtete Graphen und Abhängigkeiten

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Verschlüsseln von Dateien mit Hilfe einer TCOS-Smartcard per Truecrypt. T-Systems International GmbH. Version 1.0 Stand 29.06.11

Verschlüsseln von Dateien mit Hilfe einer TCOS-Smartcard per Truecrypt. T-Systems International GmbH. Version 1.0 Stand 29.06.11 Verschlüsseln von Dateien mit Hilfe einer TCOS-Smartcard per Truecrypt T-Systems International GmbH Version 1.0 Stand 29.06.11 Impressum Herausgeber T-Systems International GmbH Untere Industriestraße

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Rechnerische Komplexität

Rechnerische Komplexität Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit

Mehr

Erstellen einer GoTalk-Auflage

Erstellen einer GoTalk-Auflage Erstellen einer GoTalk-Auflage 1. Bei dem Startbild Vorlage öffnen wählen 2. In dem folgenden Fenster Geräte Schablonen doppelt anklicken. - und schon öffnet sich der gesamte Katalog der verfügbaren Talker-Auflagen...eigentlich

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische

Mehr

13 OOP MIT DELPHI. Records und Klassen Ein Vergleich

13 OOP MIT DELPHI. Records und Klassen Ein Vergleich 13 OOP MIT DELPHI Delphi war früher "Object Pascal". Dieser Name impliziert eine Funktionalität, welche in der Welt der Programmierung nicht mehr wegzudenken ist: die objektorientierte Programmierung,

Mehr

Informatikgrundlagen (WS 2015/2016)

Informatikgrundlagen (WS 2015/2016) Informatikgrundlagen (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de) Sprechstunde

Mehr

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring Kürzeste Wege in Graphen Orte mit Straßenverbindungen Orte als Knoten eines Graphen Straßenverbindungen als Kanten eines Graphen Ungerichteter Graph G = (V,E) Kanten Knoten Knotenmenge V = {,,n} oder {,,n

Mehr

Informatik Biber. Lehrmittel für die informatische Bildung an der Sekundarstufe I. Kopiervorlagen. Informatik Biber

Informatik Biber. Lehrmittel für die informatische Bildung an der Sekundarstufe I. Kopiervorlagen. Informatik Biber Informatik Biber Informatik Biber Lehrmittel für die informatische Bildung an der Sekundarstufe I Kopiervorlagen Verkehr Optimieren Wie finde ich die bester Rundreise? Inhaltsverzeichnis Lernaufgaben ohne

Mehr

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 16: Erste Algorithmen in Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für

Mehr

1. Übungsblatt. Besprechung: 27.10 (Gruppe A), 3.11 (Gruppe B)

1. Übungsblatt. Besprechung: 27.10 (Gruppe A), 3.11 (Gruppe B) DATENBANKEN IN DER PRAXIS: DATA WAREHOUSING Wintersemester 2015/2016 Prof. Dr. Jens Teubner DBIS Group Übung: Dr. Cornelia Tadros ISSI Group Allgemeine Hinweise 1. Übungsblatt Besprechung: 27.10 (Gruppe

Mehr

Access [basics] Gruppierungen in Abfragen. Beispieldatenbank. Abfragen gruppieren. Artikel pro Kategorie zählen

Access [basics] Gruppierungen in Abfragen. Beispieldatenbank. Abfragen gruppieren. Artikel pro Kategorie zählen Abfragen lassen sich längst nicht nur dazu benutzen, die gewünschten Felder oder Datensätze einer oder mehrerer Tabellen darzustellen. Sie können Daten auch nach bestimmten Kriterien zu Gruppen zusammenfassen

Mehr

Algorithmische Mathematik

Algorithmische Mathematik Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)

Mehr

24. Algorithmus der Woche Bin Packing Wie bekomme ich die Klamotten in die Kisten?

24. Algorithmus der Woche Bin Packing Wie bekomme ich die Klamotten in die Kisten? 24. Algorithmus der Woche Wie bekomme ich die Klamotten in die Kisten? Autor Prof. Dr. Friedhelm Meyer auf der Heide, Universität Paderborn Joachim Gehweiler, Universität Paderborn Ich habe diesen Sommer

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Ohne Mathematik undenkbar!

Ohne Mathematik undenkbar! Die tägliche - Suche: Ohne Mathematik undenkbar! Dipl.-Wirt.Math. Jan Maruhn FB IV - Mathematik Universität Trier 29. März 2006 29. März 2006 Seite 1 Gliederung Einleitung und Motivation Das Internet als

Mehr

Thema: Winkel in der Geometrie:

Thema: Winkel in der Geometrie: Thema: Winkel in der Geometrie: Zuerst ist es wichtig zu wissen, welche Winkel es gibt: - Nullwinkel: 0 - spitzer Winkel: 1-89 (Bild 1) - rechter Winkel: genau 90 (Bild 2) - stumpfer Winkel: 91-179 (Bild

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. Bäume und Wälder 2 / 37 Bäume

Mehr

Anleitung directcms 5.0 Newsletter

Anleitung directcms 5.0 Newsletter Anleitung directcms 5.0 Newsletter Jürgen Eckert Domplatz 3 96049 Bamberg Tel (09 51) 5 02-2 75 Fax (09 51) 5 02-2 71 - Mobil (01 79) 3 22 09 33 E-Mail eckert@erzbistum-bamberg.de Im Internet http://www.erzbistum-bamberg.de

Mehr

Lehrpläne NRW Sek.stufe 2. Lernen im Kontext

Lehrpläne NRW Sek.stufe 2. Lernen im Kontext Lehrpläne NRW Sek.stufe 2 Lernen im Kontext Fachliche Inhalte Lernziele Informatik NRW Fähigkeit, komplexe Zusammenhänge mit gedanklicher Schärfe zu durchdringen (Problemanalyse) Überblick über unterschiedliche

Mehr

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual!

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! 0kg 4000 Euro Luster 5,5 kg, 430.- Laptop 2,0 kg, 000.- Schatulle 3,2 kg, 800.- Uhr 3,5 kg, 70.- Schwert,5 kg, 850.- Bild 3,4 kg, 680.- Besteck

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

M. Graefenhan 2000-12-07. Übungen zu C. Blatt 3. Musterlösung

M. Graefenhan 2000-12-07. Übungen zu C. Blatt 3. Musterlösung M. Graefenhan 2000-12-07 Aufgabe Lösungsweg Übungen zu C Blatt 3 Musterlösung Schreiben Sie ein Programm, das die Häufigkeit von Zeichen in einem eingelesenen String feststellt. Benutzen Sie dazu ein zweidimensionales

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz"

4.4 AnonymeMärkteunddasGleichgewichtdervollständigen Konkurrenz 4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz" Wir haben bisher nachvollziehen können, wie zwei Personen für sich den Anreiz zum TauschentdeckenundwiemitwachsenderBevölkerungdieMengederAllokationensinkt,

Mehr

Nachtrag: Schriftliches Berechnen von Wurzeln

Nachtrag: Schriftliches Berechnen von Wurzeln Nachtrag: Schriftliches Berechnen von Wurzeln 11=3,31 9 200:6x 189 1100:66x 661 43900:662x Man holt immer zwei Stellen herunter und teilt durch das Doppelte des bisher erhaltenen Ergebnisses. Nachtrag:

Mehr

Algorithmen und Datenstrukturen (WS 2007/08) 63

Algorithmen und Datenstrukturen (WS 2007/08) 63 Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten.

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten. 7. KURVEN UND KNOTEN INFORMATION: Sämtliche Objekte bestehen in CorelDRAW aus Linien oder Kurven. So ist ein Rechteck ein Gebilde aus einem Linienzug, ein Kreis hingegen besteht aus einer Kurve. Zum Bearbeiten

Mehr

Gesucht und Gefunden: Die Funktionsweise einer Suchmaschine

Gesucht und Gefunden: Die Funktionsweise einer Suchmaschine Gesucht und Gefunden: Die Funktionsweise einer Suchmaschine Prof. Dr. Peter Becker FH Bonn-Rhein-Sieg Fachbereich Informatik peter.becker@fh-bonn-rhein-sieg.de Vortrag im Rahmen des Studieninformationstags

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

1. Formulieren Sie den Algorithmus <Bedienung eines Getränkeautomaten> nach den oben genannten Kriterien.

1. Formulieren Sie den Algorithmus <Bedienung eines Getränkeautomaten> nach den oben genannten Kriterien. Java 1 Einführung Grundlegende Übungsaufgaben Arbeitsauftrag 1.1 1. Formulieren Sie den Algorithmus nach den oben genannten Kriterien. Beispiel: Bedienung eines Getränkeautomaten

Mehr

Computergruppe Heimerdingen Basiskurs. Karlheinz Wanja & Richard Zeitler

Computergruppe Heimerdingen Basiskurs. Karlheinz Wanja & Richard Zeitler Computergruppe Heimerdingen Basiskurs Karlheinz Wanja & Richard Zeitler Dateiverwaltung (im Haushalt) 2 Dateiverwaltung (im Computer) Speichermedien 1.) Festplatte 2.) Externe Medien Externe Festplatte

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr