Informatik I WS 07/08 Tutorium 24

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Informatik I WS 07/08 Tutorium 24"

Transkript

1 Info I Tutorium 24 Informatik I WS 07/08 Tutorium astian Molkenthin Web:

2 Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben einschließlich Übungsblatt 5 vorgeführt werden Keine Vorlesungen von Sa, bis So, Nicht von letztjähriger Musterlösung abschreiben! -> Punktabzug! Die Schleife terminiert da j streng monoton wächst. Nicht ausreichend da nicht jede streng monoton wachsende Funktion jeden beliebigen Grenzwert überschreitet. Richtig: j wächst linear oder j wächst in jedem Durchlauf um eins 2

3 Graphen Ein Graph wird durch zwei Elemente gebildet: Ecken bzw. Knoten Kanten Was ist ein gerichteter und ein ungerichteter Graph? Wenn mit den Kanten eine Richtung vorgegeben ist (z.. von Knoten nach Knoten ), handelt es sich um einen gerichteten Graphen. Kanten werden als Pfeile dargestellt. ei ungerichtetengraphen kann entlang einer Kante in beide Richtungen gegangen werden Gerichteter Graph Ungerichteter Graph Positionierung der Ecken/Kanten beliebig! 3

4 Graphen (2) Was ist ein Weg? Eine oder mehr Kanten, welche zwei Knoten im Graph verbinden, bilden einen Weg. Zyklus oder Kreis? Existiert ein Weg mit gleichem nfangs-und Endknoten, so spricht man von einem Zyklus bzw. Kreis. ei einem einfachen Zyklus ist jeder Knoten im Graph maximal einmal enthalten. Eulerscher Weg? Ein Weg, der alle Kanten im Graph genau einmal enthält. Eulerscher Zyklus? Ein Zyklus, der alle Kanten im Graph genau einmal enthält. Hamiltonscher Kreis? Ein Zyklus, der jeden Knoten des Graphen genau einmal enthält. 4

5 Graphen (3) Was ist ein aum? Ein Graph ohne Zyklen. Wald? Mehrere äume. Zwei Wälder lassen sich durch eine zusätzliche Kante zu einem aum zusammenführen. E D D äume Wald 5

6 Graph (eispiel) Hat der folgende Graph einen (einfachen) Zyklus? einen Hamiltonschen Kreis? einen EulerschenWeg? einen Eulerschen Zyklus? Ja Nein Ja Nein D E 6

7 Graph (eispiel 2) estimmt den Eingangs- und usgangsgrad der Knoten des Graphen G! D E Knoten Eingangsgrad e usgangsgrad e D 2 2 E Grad des Graphen: grad(g) = 7 7

8 Repräsentation von Graphen Graphisch: djazenzliste: : [, ] : [] : [] djazenzmatrix: "Von hier" "nach hier" 8

9 Graphentheorie Reflexivität: Jeder Knoten steht in Relation zu sich selbst d.h. als Relation ausgedrückt: Transitivität: Wenn gilt: und Dann folgt: Vollständigkeit: Für jeweils zwei beliebige Knoten, gilt: (Jeder Knoten ist von Jedem erreichbar) D 9

10 Reflexive transitive Hülle Für die reflexive transitive Hülle wird der Graph um reflexive und transitive Kanten ergänzt Für bestehende "indirekte" Verbindungen wird eine "direkte" Verbindung hinzugefügt, sodass man sofort erkennen kann, welche Knoten von einem usgangsknoten erreichbar sind Reflexive Kanten: Jeder noch nicht mit einer Schlinge versehender Knoten wird um eine solche ergänzt Transitive Kanten: Wenn für beliebige Knoten e, e 2,, e n gilt: e e 2 e n, so wird die Kante, welche die Relation e e n repräsentiert, ergänzt D 0

11 Warshall-lgorithmus lgorithmus zur estimmung der reflexiven transitiven Hülle Gegeben sei ein Graph mit n Knoten 0,, 2,, n durch eine djazenzmatrix nschauliche Durchführung des lgorithmus: Ergänze sämtliche Knoten um eine Schlinge (Einsen auf der Diagonalen der Matrix) etrachte k-tezeile der Matrix. lle weiteren Zeilen, welche in Spaltek ebenfalls eine beinhalten können verändert werden: Sämtliche Nullen in diesen Zeilen werden durch eine Eins ersetzt, sofern die usgangszeile k an dieser Stelle eine enthält

12 oolsche lgebra Signatur der booleschen lgebra = (,,,6,, ) ist kleinstes Element und ist größtes Element Gesetze der booleschen lgebra (x, y, z ): V ssoziativität (x y) z = x (y z) (x y) z = x (y z) V2 Kommutativität x y = y x x y =y x V3 Idempotenz x x = x x x=x V4 Verschmelzung (x y) x = x (x y) y = y V5 Distributivität x (y z) = (x y) (x z) x (y z) = (x y) (x z) V6 Modularität (falls z x gilt): x (y z)= (x y) z V7 Neutrales Element x = x = x x = x x = V8 Komplement x x= x x= V9 Involution ( x) = x V0 DeMorgan (x y) = x y (x y) = x y 2

13 oolsche lgebra (2) 0-stellige Operationen:, -stellige Operationen : 2-stellige Operationen:, Negation bindet stärker als Konjunktion und Disjunktion In Info binden Konjunktion und Disjunktion gleich stark! Richtige Klammerung notwendig! 3

14 oolsche lgebra - ufgabe Vereinfache folgenden booleschen usdruck: ( a (a b)) (Distributivität) (( a a) ( a b)) (Komplement) ( ( a b)) (neutr. Element) ( a( a b) (De Morgan) a b 4

15 Kantorowitsch-äume Ein Term der boolschenlgebra lässt sich durch einen sogenannten Kantorowitsch-aum darstellen Ziel: minimale Darstellung der Vorränge in usdrücke us diesem lässt sich leicht die Infix- Präfix- und Postfix-Schreibweise ablesen eispiel: Stelle folgenden Term als Kantorowitsch-aum dar! ( a (a b)) a a b 5

16 Kantorowitsch-äume (2) Präfixschreibweise: Schreibe Knoten bei. esuch auf. Postfixschreibweise: Schreibe Knoten beim letzten esuch auf. Gib den zum folgenden Kantorowitsch-aum gehörigen Term in Präfix- und Postfix-Schreibweise an! Präfixschreibweise: a a b Postfixschreibweise: a ab a a b 6

17 oolsche lgebra - Normalformen Disjunktive Normalform : Disjunktion konjunktiv verknüpfter Teilterme z.. ( a b c) (a b c) (a b c) Konjunktive Normalform : Konjunktion disjunktiv verknüpfter Teilterme z.. ( a b c) (a b c) (a b c) In den Teiltermen müssen jeweils alle Variablen des gesamten usdrucks vorkommen! 7

18 oolsche lgebra Normalformen (2) Eine Möglichkeit, die DNF oder KNF eines booleschen usdrucks zu bestimmen ist das blesen der Normalform aus der Wahrheitstabelle. Für die DNF betrachtet man die Zeilen, an denen der usdruck ergibt. Die Teilterme setzen sich nun so aus den links stehenden Werten zusammen, dass die Konjunktion der Variablen ergibt. Für die KNF betrachtet man die Zeilen, an denen der usdruck 0 ergibt. Die Teilterme setzen sich nun so aus den links stehenden Werten zusammen, dass die Disjunktion der Variablen 0 ergibt. a 0 b 0 a ( a b) 0 DNF: ( a b) (a b) (a b) 0 0 KNF: a b 8

19 oolsche lgebra Normalformen (3) Weitere Möglichkeit zur estimmung der Normalform ist das nwenden der booleschen Rechenregeln. eispiel : Überführe folgenden usdruck in disjunktive Normalform! (a b) c (a b) ( a b) c (a b ) ( a b ) (c ) (a b (c c)) ( a b (c c)) (c (a a)) (a b c) (a b c) ( a b c) ( a b c) (c a) (c a) (a b c) (a b c) ( a b c) ( a b c) (c a ) (c a ) Fehlt hier nur aus Platzgründen! lle Schritte angeben! (a b c) (a b c) ( a b c) ( a b c) (a b c) ( a b c) Ülatt: in jeder Zeile angewendete Regel angeben! 9

20 Semi-Thue-Systeme Ein Semi-Thue-System besteht aus zwei Mengen: Zeichenvorrat Σ Menge von Regeln T Eine Regel aus T besteht aus einer linken und einer rechten Seite, getrennt durch einen einfachen Pfeil ( ) Existiert der linke Teil im eingegebenen Wort, so kann dieser durch den rechten Teil ersetzt werden Die Reihenfolge der Regeln oder die Position der zu ersetzenden Zeichen im Wort spielt keine Rolle es kann jede Regel zu jeder Zeit angewendet werden (!) Der Übergang zwischen zwei Worten wird durch einen Doppfelpfeil( ) gekennzeichnet + edeutet, dass oder mehr Regeln angewendet wurden * edeutet, dass 0 oder mehr Regeln angewendet wurden 20

21 Semi-Thue-Systeme (2) Pseudcode : Solange anwendbare Regel vorhanden { wähle beliebige anwendbare Regel wähle beliebige nwendungsstelle wende Regel an } eispiel: Gegeben ist das Semi-Thue-System mit Σ= {I} T = {IIII I, III I} Geben Sie alle bleitungen des Wortes IIIIII an:. Möglichkeit: IIIIII III I (Regel, 2) 2. Möglichkeit: IIIIII IIII I (Regel 2, ) 3. Möglichkeit: IIIIII IIII II (Regel 2, 2) 2

22 Semi-Thue-Systeme (3) Terminieren folgende Semi-Thue-Systeme? egründung! Σ= {I} und T = {II I, ε I} Terminiert nie, da Semi-Thue-Systeme mit ε-regeln nicht terminieren Σ= {a, b} und T = {aaa a, aa b, a aa} Terminiert nicht immer. Wenn z.. immer nur die erste und letzte Regel angewendet werden, terminiert das Semi-Thue-System nicht: aaa a aa aaa a Σ= {I} und T = {III I, IIII II} Terminiert immer, da die Wortlänge bei jeder Regelanwendung echt kleiner wird 22

23 Das wars für heute Fragen??? Viel Spaß mit dem Übungsblatt! 23

Informatik I Tutorium WS 07/08

Informatik I Tutorium WS 07/08 Informatik I Tutorium WS 07/08 Vorlesung: Prof. Dr. F. Bellosa Übungsleitung: Dipl.-Inform. A. Merkel Tutorium: 2 Tutor: Jens Kehne Tutorium 7: Dienstag,. Dezember 2007 Agenda des heutigen Tutoriums Übersicht

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Grundbegriffe der Informatik Tutorium 8

Grundbegriffe der Informatik Tutorium 8 Grundbegriffe der Informatik Tutorium 8 Tutorium Nr. 16 Philipp Oppermann 22. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery. WOCHE 4 AM

DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery.  WOCHE 4 AM DuE-Tutorien 4 und 6 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery WOCHE 4 AM 13.11.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/?? Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

TU5 Aussagenlogik II

TU5 Aussagenlogik II TU5 Aussagenlogik II Daniela Andrade daniela.andrade@tum.de 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

TU9 Aussagenlogik. Daniela Andrade

TU9 Aussagenlogik. Daniela Andrade TU9 Aussagenlogik Daniela Andrade daniela.andrade@tum.de 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /

Mehr

Übung 4: Aussagenlogik II

Übung 4: Aussagenlogik II Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Informatik A (Autor: Max Willert)

Informatik A (Autor: Max Willert) 2. Aufgabenblatt Wintersemester 2012/2013 - Musterlösung Informatik A (Autor: Max Willert) 1. Logik im Alltag (a) Restaurant A wirbt mit dem Slogan Gutes Essen ist nicht billig!, das danebenliegende Restaurant

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche

Mehr

Konjunktive und disjunktive Normalformen

Konjunktive und disjunktive Normalformen Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert,

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 20.12.07 Bastian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Rückblick Semi-Thue-Systeme Ein Semi-Thue-System besteht

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 31.01.08 Bastian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches Anmeldung Hauptklausur : allerspätestens

Mehr

Graphen und Bäume. A.1 Graphen

Graphen und Bäume. A.1 Graphen Algorithmen und Datenstrukturen 96 A Graphen und Bäume A.1 Graphen Ein gerichteter Graph (auch Digraph) G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Relation auf V ist, d.h. E V V. V heißt

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0

Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0 Satz von De Morgan A + = A A A + A + A A 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 Transistoren: A U a A 0 0 Vcc 1 0 1 Vcc 1 1 0 Vcc 1 1 1 0 V 0 eispiel: Schaltung zur Erkennung gültiger

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik

Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik Zusammenfassung Einführung in die Theoretische Informatik Woche 5 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung der letzten LV Jede binäre Operation hat maximal ein

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Relationen und Graphentheorie

Relationen und Graphentheorie Seite Graphentheorie- Relationen und Graphentheorie Grundbegriffe. Relationen- und Graphentheorie gehören zu den wichtigsten Hilfsmitteln der Informatik, die aus der diskretenmathematik stammen. Ein Graph

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

183.580, WS2012 Übungsgruppen: Mo., 22.10.

183.580, WS2012 Übungsgruppen: Mo., 22.10. VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen Ordnungsrelationen auf Mengen! Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage

Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6 Programmierbare Logik Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6: Programmierbare Logik und VLSI Seite Kapitel 6: Programmierbare Logik

Mehr

Künstliche Intelligenz Logische Agenten & Resolution

Künstliche Intelligenz Logische Agenten & Resolution Künstliche Intelligenz Logische Agenten & Resolution Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Inferenz-Algorithmus Wie könnte ein

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Aus Knoten und Kanten, die Bezeichnungen haben können. Ein Graph, bei dem die Kanten Richtungen haben.

Aus Knoten und Kanten, die Bezeichnungen haben können. Ein Graph, bei dem die Kanten Richtungen haben. ormale Methoden der Informatik WS 2/2 Lehrstuhl für atenbanken und Künstliche Intelligenz ProfrrJRadermacher H Ünver T Rehfeld J ollinger 3 ufgabenblatt esprechung in den Tutorien vom 72 (ab Übungstermin)

Mehr

8. Übung zu Algorithmen I 15. Juni 2016

8. Übung zu Algorithmen I 15. Juni 2016 8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl Lisa.Kohl@kit.edu (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Aussagenlogik. Mengenlehre. Relationen. Funktionen. Zahlentheorie. Vollständige Induktion. Reihen. Zahlenfolgen. WS 2016/17 Torsten Schreiber

Aussagenlogik. Mengenlehre. Relationen. Funktionen. Zahlentheorie. Vollständige Induktion. Reihen. Zahlenfolgen. WS 2016/17 Torsten Schreiber Mengenlehre Aussagenlogik Relationen Zahlentheorie Funktionen Vollständige Induktion Zahlenfolgen Reihen 193 Definition einer Menge: Beziehungsjunktoren: ist Element, d.h. Wert und Format stimmen überein

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 24-6. Sitzung Marcus Georgi tutorium@marcusgeorgi.de 04.12.2009 1 Repräsentation von Graphen im Rechner Adjazenzlisten Adjazenzmatrizen Wegematrizen 2 Erreichbarkeitsrelationen

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Institut für Informatik. Aufgaben zum Seminar Technische Informatik

Institut für Informatik. Aufgaben zum Seminar Technische Informatik UNIVERSITÄT LEIPZIG Institut für Informatik bt. Technische Informatik Dr. Hans-Joachim Lieske ufgaben zum Seminar Technische Informatik ufgabe 2.4.1. - erechnung einer Transistorschaltung mit Emitterwiderstand

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

= { } Absolutes Komplement Universe Relatives Komplement von

= { } Absolutes Komplement Universe Relatives Komplement von Allgemeines ist Teiler von Mengen Mächtigkeit Anzahl Elemente in der Menge Potenzmenge Menge aller Teilmengen von { } { { } { } { }} Beziehungen bzw. ist in enthalten ist Teilmenge von ist Obermenge von

Mehr

Beispiele für Relationen

Beispiele für Relationen Text Relationen 2 Beispiele für Relationen eine Person X ist Mutter von einer Person Y eine Person X ist verheiratet mit einer Person Y eine Person X wohnt am gleichen Ort wie eine Person Y eine Person

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Boolesche Algebra (1)

Boolesche Algebra (1) Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Graphentheorie Mathe-Club Klasse 5/6

Graphentheorie Mathe-Club Klasse 5/6 Graphentheorie Mathe-Club Klasse 5/6 Thomas Krakow Rostock, den 26. April 2006 Inhaltsverzeichnis 1 Einleitung 3 2 Grundbegriffe und einfache Sätze über Graphen 5 2.1 Der Knotengrad.................................

Mehr

Signalverarbeitung 1

Signalverarbeitung 1 TiEl-F000 Sommersemester 2008 Signalverarbeitung 1 (Vorlesungsnummer 260215) 2003-10-10-0000 TiEl-F035 Digitaltechnik 2.1 Logikpegel in der Digitaltechnik In binären Schaltungen repräsentieren zwei definierte

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr

Formale Systeme, WS 2010/2011 Lösungen zum Übungsblatt 1

Formale Systeme, WS 2010/2011 Lösungen zum Übungsblatt 1 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. r. B. Beckert Thorsten Bormer Formale Systeme, WS 2/2 Lösungen zum Übungsblatt ieses Blatt wurde in der Übung am 29..2 besprochen.

Mehr

Kapitel 2. Boolesche Algebra. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 2. Boolesche Algebra. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 2 oolesche lgebra Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of pplied Sciences w Fakultät für Informatik Schaltalgebra, und sind Operatoren über der Menge {0,1} a b a b 0 0 0

Mehr

Codes und Informationsgehalt

Codes und Informationsgehalt Aufgaben 2 Codes und Informationsgehalt Auf wie viele Dezimalziffern genau können vorzeichenlose ganze Zahlen in einem binären Code der Länge 32 bit dargestellt werden? 2 Codes und Informationsgehalt Auf

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

Schaltfunktion, Definition

Schaltfunktion, Definition Schaltfunktion, Definition Sei S = { 0,1}. Dann heißt eine Abbildung f: S n S eine Schaltfunktion. = f(x n-1,x n-2,...,,, ), x n-1, x n-2,...,,, S x i X = (x n-1,x n-2,...,,, ) Eingangsvariable Eingangsvektor

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Binary Decision Diagrams

Binary Decision Diagrams Hauptseminar Model Checking Binary Decision Diagrams Kristofer Treutwein 23.4.22 Grundlagen Normalformen Als kanonische Darstellungsform für boolesche Terme gibt es verschiedene Normalformen, u.a. die

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

3 Terme und Algebren 3.1 Terme

3 Terme und Algebren 3.1 Terme 3 Terme und Algebren 3.1 Terme Mod - 3.1 In allen formalen Kalkülen benutzt man Formeln als Ausdrucksmittel. Hier betrachten wir nur ihre Struktur - nicht ihre Bedeutung. Wir nennen sie Terme. Terme bestehen

Mehr

9 Multiplexer und Code-Umsetzer

9 Multiplexer und Code-Umsetzer 9 9 Multiplexer und Code-Umsetzer In diesem Kapitel werden zwei Standard-Bauelemente, nämlich Multiplexer und Code- Umsetzer, vorgestellt. Diese Bausteine sind für eine Reihe von Anwendungen, wie zum Beispiel

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

Einheit 11 - Graphen

Einheit 11 - Graphen Einheit - Graphen Bevor wir in medias res (eigentlich heißt es medias in res) gehen, eine Zusammenfassung der wichtigsten Definitionen und Notationen für Graphen. Graphen bestehen aus Knoten (vertex, vertices)

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden.

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. Logische Operationen Logische ussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. ezeichnung Schreibweise (Sprechweise) wahr, genau dann wenn Negation (nicht ) falsch

Mehr

3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): doppelte Negation

3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): doppelte Negation 3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): Häufig verwendeten Umformungen sind: Idempotenz doppelte Negation De Morgan a = a a a = a a + b = a b ADS-EI 3.6 Bemerkungen zur Umformung boolescher

Mehr

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007 Graphentheorie Rainer Schrader Organisatorisches Zentrum für Angewandte Informatik Köln 23. Oktober 2007 1 / 79 2 / 79 Organisatorisches Organisatorisches Dozent: Prof. Dr. Rainer Schrader Weyertal 80

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Dank. Theoretische Informatik II. Teil VI. Vorlesung

Dank. Theoretische Informatik II. Teil VI. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D)

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D) INTA - Lösungshinweise zum Übungsblatt 4, Version 1.0α. Wenn sie Fehler finden oder Ihnen etwas auch nach dem Gespräch mit ihren Kommilitonen noch unklar ist, dann schicken sie mir bitte eine Email! Aufgabe

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Grundlagen der Technischen Informatik. 7. Übung

Grundlagen der Technischen Informatik. 7. Übung Grundlagen der Technischen Informatik 7. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 7. Übungsblatt Themen Aufgabe : Aufgabe : Aufgabe : Aufgabe : KMF, Nelson/Petrick-Verfahren Quine-McCluskey-Verfahren

Mehr

Algorithmen. Von Labyrinthen zu. Gerald Futschek

Algorithmen. Von Labyrinthen zu. Gerald Futschek Von Labyrinthen zu Algorithmen Gerald Futschek Wie kommt man aus einem Labyrinth heraus? Labyrinth (griechisch: Haus der Doppelaxt, wahrscheinlich Knossos auf Kreta) Labrys Grundriss des Palastes von Knossos

Mehr