Views in SQL. 2 Anlegen und Verwenden von Views 2

Größe: px
Ab Seite anzeigen:

Download "Views in SQL. 2 Anlegen und Verwenden von Views 2"

Transkript

1 Views in SQL Holger Jakobs Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views Views schreibfähig machen nicht-schreibfähige Views Löschen von Views 6 5 Übungen zu Views für die Krankenhaus-Datenbank 6 Views bedeutet Blick oder Sicht, Ansicht. Es sind virtuelle Tabellen in einer Datenbank. Sie enthalten nur eine bestimmte Sicht auf die Daten. Das heißt, dass sie keine Daten enthalten, aber trotzdem prinzipiell genauso wie reale Tabellen benutzt werden können. Die Daten, die man bei einem SELECT auf einen View erhält, werden genauso wie die einer realen Tabelle angezeigt bzw. dem anfragenden Programm übermittelt. 1 Wozu dienen Views? Views werden vom Datenbankverwalter für bestimmte Benutzer oder Benutzergruppen angelegt, die eine Sicht auf die Daten benötigen, die nicht mit den tatsächlich vorhandenen Tabellen übereinstimmt. Ein View kann Daten aus einer oder auch aus mehreren Tabellen enthalten. Die Rechte an einem View können sich von denen an den Tabellen, auf denen er basiert, unterscheiden. Mit Hilfe eines Views kann man einem Benutzer nur Zugriff auf bestimmte Attribute einer Tabelle geben oder auch nur auf bestimmte Tupel. Ein View kann auch Daten enthalten, die nicht direkt in der Datenbank enthalten sind, sondern erst (über Aggregatfunktionen oder arithmetische Operationen) ermittelt werden müssen. Die Menge der Tabellen und Views, die ein Benutzer sehen und verwenden kann, bilden das externe Schema für diesen Benutzer. Views sind also ein wesentliches Gestaltungsmittel für die externen Schemata. 1

2 2 Anlegen und Verwenden von Views 2 ANLEGEN UND VERWENDEN VON VIEWS Ein View wird wie eine reale Tabelle erzeugt. Allerdings definiert man keine Attribute, sondern gibt stattdessen ein SELECT-Statement an, mit dessen Hilfe die gewünschte Sicht erzeugt wird. Das SELECT-Statement kann alle Kommandos enthalten, einschließlich Subqueries. Die Attributnamen im View können sich von den zugeordneten Attributen der realen Tabellen unterscheiden. Syntax: CREATE VIEW viewname [(columnname1, columnname2,...)] AS SELECT...; Die columnnames müssen angegeben werden, wenn im SELECT Berechnungen verwendet werden, weil diese sonst keinen Namen hätten; ansonsten sind sie wahlfrei. Werden columnnames verwendet, so muss ihre Anzahl mit der Anzahl der Spalten im SELECT übereinstimmen. Beispiele: CREATE VIEW DUSSPIELER AS SELECT * FROM SPIELER WHERE ORT = 'Duesseldorf'; CREATE VIEW BESTRAFTE (NR, NAME, VORNAME, STRAFEN) AS SELECT SP.SPIELNR, SPIELNAME, VORNAME, SUM (BETRAG) FROM SPIELER SP, STRAFEN ST WHERE SP.SPIELNR = ST.SPIELNR GROUP BY SP.SPIELNR, SPIELNAME, VORNAME; Das zweite Beispiel zeigt, dass man eine völlig neue Sicht auf die Daten generieren kann. Das Abfragen der Spieler mit dem Gesamtbetrag ihrer Strafen erfordert ohne View immer wieder das Nachvollziehen der doch recht komplexen Abfrage. Mit dem View ist es nun ganz leicht: SELECT * FROM BESTRAFTE; Beim Abfragen muss es dem Anwender nicht bewusst sein, dass er nur einen View und nicht etwa eine reale Tabelle anspricht. Aus Anwendersicht sind die beiden gleichwertig. Die Rechte an Views können allerdings eingeschränkt sein entweder durch den Datenbankverwalter oder durch technische Gegebenheiten. Ein View kann nur dann zum Schreiben benutzt werden, wenn er sich nur auf eine einzige Tabelle bezieht und alle Spalten enthält, die die NOT NULL-Klausel, aber keinen Default- Wert haben. Beim Eintragen eines neuen Tupels in einen View werden alle Spalten, die im View nicht enthalten sind, mit Default-Werten oder NULL-Werten belegt. Eine eventuelle WHERE-Klausel in einem View wird beim Einfügen von Daten nicht berücksichtigt. Wer Schreibrecht auf obigen View DUSSPIELER hat, kann jeden beliebigen Spieler eintragen, auch wenn dieser nicht in Düsseldorf wohnt. Abfragen kann er die von ihm selbst eingegebenen Daten allerdings nur, wenn sie der WHERE-Klausel genügen. Das Einfügen von Tupeln über einen View, die der View-Bedingung nicht genügen (oder auch das Ändern von Tupeln, so dass sie gegen die Bedingung verstoßen), kann man ausschließen, wenn man bei der Erzeugung des Views die Klausel WITH CHECK OPTION angibt. 2

3 3 SCHREIBFÄHIGKEIT VON VIEWS 3 Schreibfähigkeit von Views Bei Oracle sind Views vollständig und mit realen Tabellen gleichberechtigt integriert. Bei PostgreSQL dienen Views lediglich zum Abfragen von Daten, d. h. dort sind View niemals direkt schreibfähig. Das liegt daran, dass Views über Regeln realisiert werden, die eine Abfrage entsprechend umschreiben, was beim Einfügen und Aktualisieren leider nicht unmittelbar funktioniert. 3.1 Views schreibfähig machen bei PostgreSQL Allerdings kann man über eine entsprechende Regel Schreibvorgänge auf die Ursprungstabelle umlenken. Regeln, die Einfügeoperationen auf die reale Tabelle umlenken, sehen prinziell so aus: CREATE RULE Beispiel_View_INS AS ON INSERT TO Beispiel_View INSERT INTO echte_tabelle VALUES (NEW.spalte1, NEW.spalte2); CREATE RULE Beispiel_View_UPD AS ON UPDATE TO Beispiel_View UPDATE echte_tabelle SET spalte1 = NEW.spalte1, spalte2 = NEW.spalte2 WHERE spalte1 = OLD.spalte1; -- Prüfung auf Primärschlüssel CREATE RULE Beispiel_View_DEL AS ON DELETE TO Beispiel_View DELETE FROM echte_tabelle WHERE spalte1 = OLD.spalte1; -- Prüfung auf Primärschlüssel Hier wird vorausgesetzt, dass die Tabelle nur 2 Spalten hat und dass die Spalte 1 der Primärschlüssel ist. Falls die Tabelle ein auto-increment-feld 1 hat (über eine Sequenz), und man anderen Benutzern das Recht zum Einfügen nicht direkt an einer Tabelle, sondern nur über eine Sicht (View) erlaubt hat, ist es notwendig, den Benutzern auch das UPDATE-Recht an der Sequenz ausdrücklich zu geben: grant update on sequenzname to benutzer/gruppe 1) siehe Dokument Auto-Increment-Spalten in Datenbanken DB-anlegen/auto_increment.pdf 3

4 3.2 nicht-schreibfähige Views 3 SCHREIBFÄHIGKEIT VON VIEWS 3.2 Views mit Join und/oder Aggregatfunktionen Sobald Views Join-Operationen oder Aggregatfunktionen enthalten, sind sie in keinem Datenbanksystem schreibfähig, weil das System nicht wissen kann, wie die Daten in die Tabellen zu übertragen sind. Bei Join-Operationen müssten die Daten auf mehrere Tabellen aufgeteilt werden; bei Aggregatfunktionen müssten die Daten, die in einem Tupel eingegeben werden, auf mehrere verteilt werden. Gelegentlich scheint eine Schreiboperation aber auch auf solche Views wünschenswert und sinnvoll. Ein schönes Beispiel dafür sind Joins, die über Tabellen gehen, die eine Teilmengen-Beziehung (is-a) haben. Das können Mitarbeiter und Verkaufsrepräsentanten sein. Die Verkaufsrepräsentanten sind eine Teilmenge der Mitarbeiter, haben aber zwei zusätzliche Attribute, nämlich einen Prozentwert für die Provision und eine Mobiltelefonnummer. So könnten die Tabellen und die Sicht definiert sein: CREATE TABLE Mitarbeiter ( mnr integer primary key, name varchar(30) not null, gehalt integer not null ); CREATE TABLE Verkaeufer ( mnr integer primary key REFERENCES Mitarbeiter, provision integer not null CHECK (provision > 1 AND provision < 10), mobilfon varchar(15) not null ); CREATE VIEW Mitarb2 AS SELECT mnr, name, gehalt, provision, mobilfon FROM Mitarbeiter NATURAL LEFT JOIN Verkaeufer; Um auf die Sicht Mitarb2 schreiben zu können, müssen bei allen Datenbanksystemen besondere Vorkehrungen getroffen werden. Diese unterscheiden sich leider syntaktisch etwas. Bei PostgreSQL heißen sie Rules, bei Oracle dagegen instead-of-trigger. Da PostgreSQL- Rules bereits im Abschnitt 3.1 auf der vorherigen Seite erläutert wurden, hier die Oracleinstead-of-Trigger: CREATE TRIGGER Mitarb2_ins INSTEAD OF INSERT ON Mitarb2 FOR EACH ROW BEGIN insert into Mitarbeiter values (:new.mnr, :new.name, :new.gehalt); insert into Verkaeufer values (:new.mnr, :new.provision, :new.mobilfon); 4

5 3 SCHREIBFÄHIGKEIT VON VIEWS 3.2 nicht-schreibfähige Views END; CREATE TRIGGER Mitarb2_upd INSTEAD OF UPDATE ON Mitarb2 FOR EACH ROW BEGIN UPDATE Verkaeufer SET mnr = :new.mnr, provision = :new.provision, mobilfon = :new.mobilfon WHERE mnr=:old.mnr; UPDATE Mitarbeiter SET mnr = :new.mnr, name = :new.name, gehalt = :new.gehalt WHERE mnr=:old.mnr; END; CREATE TRIGGER Mitarb2_del INSTEAD OF DELETE ON Mitarb2 FOR EACH ROW BEGIN DELETE FROM Verkaeufer WHERE mnr = :old.mnr; DELETE FROM Mitarbeiter WHERE mnr = :old.mnr; END; Besonderheit bei Oracle ist, dass vor dem new und dem old jeweils ein Doppelpunkt geschrieben werden muss, dass der Zusatz FOR EACH ROW notwendig ist, und dass die Anweisungen in BEGIN und END; eingeschlossen werden müssen. Letzteres bringt aber den Vorteil mit sich, dass ein Trigger mehrere Kommandos ausführen kann. Bei einer Regel in PostgreSQL kann dagegen immer nur ein einziges Kommando enthalten sein. Man bräuchte da also immer je zwei Regeln für INSERT, UPDATE und DELETE. So könnte es z. B. für das Löschen aussehen: CREATE RULE Mitarb2_del_v ON DELETE TO Mitarb2 DELETE FROM Verkaeufer WHERE mnr = old.mnr; CREATE RULE Mitarb2_del_m ON DELETE TO Mitarb2 DELETE FROM Mitarbeiter WHERE mnr = old.mnr; 5

6 5 ÜBUNGEN ZU VIEWS FÜR DIE KRANKENHAUS-DATENBANK 4 Löschen von Views Views kann man mit dem Kommando drop view viewname wieder löschen genauso wie Tabellen, Indexe und andere Objekte. Die zugehörigen Regeln und Trigger werden analog mit drop rule rulename und drop trigger triggername gelöscht. 5 Übungen zu Views für die Krankenhaus-Datenbank 1. Vollziehen Sie die im Text gegebenen Beispiele mit eigenen Tabellen komplett nach in PostgreSQL und/oder Oracle. 2. Legen Sie einen View namens ANGEST2 an, der nur einen Teil der Tabelle der Angestellten enthält, nämlich alles bis auf die Adresse. 3. Schränken Sie beim View ARZT2 nicht die Anzahl der Spalten ein, sondern geben Sie nur die Ärzte aus, aber mit vollständigen Angaben, d. h. Angaben aus der Arzt- und der Angestellten-Tabelle. 4. Ganz knifflig ist eine Zusatzspalte BEHANDELT für den Arzt-View, der als ARZT3 gespeichert werden soll, die angibt, ob der jeweilige Arzt zur Zeit Patienten behandelt oder nicht (eine Ja/Nein-Spalte). Sortiert werden soll alphabetisch aufsteigend nach Name. 5. Legen Sie einen View namens ZIMMER2 an, der dieselben Daten enthält wie ZIMMER, aber zusätzlich über die Attribute ANZAHLFREI und ANZAHLBELEGT verfügt, die die Anzahl freier und belegter Betten angibt. Die Ausgabe soll absteigend nach Anzahl freier Betten sortiert sein, d. h. die Zimmer mit den meisten freien Betten zuerst ausgeben. 6. Machen Sie alle Views nach Möglichkeit schreibfähig, indem Sie die notwendigen Regeln (PostgreSQL) bzw. Trigger (Oracle) für alle Schreiboperationen (Einfügen, Ändern, Löschen) einbauen. 7. Vergeben Sie an Views andere Rechte als an den Grundtabellen, z. B. an andere Studierende Ihrer Klasse. Wie fein können Sie nun die Rechte vergeben? Auf bestimmte Zeilen einer Tabelle? Auf bestimmte Spalten einer Tabelle? $RCSfile: views.tex,v $ $Date: 2009/03/23 14:15:07 $ $Revision: efcb5b $ 6

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

5.3 Datenänderung/-zugriff mit SQL (DML)

5.3 Datenänderung/-zugriff mit SQL (DML) 5.3 Datenänderung/-zugriff mit SQL (DML) Hinweis: - DML-Anweisungen sind mengenorientiert - Mit einer Anweisungen kann mehr als ein Tupel eingefügt, geändert, gelöscht oder gelesen werden Benutzungs- und

Mehr

Unterabfragen (Subqueries)

Unterabfragen (Subqueries) Unterabfragen (Subqueries) Die kürzeste Formulierung ist folgende: SELECT Felderliste FROM Tabelle1 WHERE Tabelle1.Feldname Operator (SELECT Feldname FROM Tabelle2 WHERE Bedingung); wobei Tabelle1 und

Mehr

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung Informa=onssysteme Sommersemester 2015 6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt.

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt. Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Datenbanken und Informationssysteme II Szenario: Projektverwaltung. Es gibt Projekte, Projektleiter, Mitarbeiter und ihre Zuordnung zu Projekten.

Mehr

5.8 Bibliotheken für PostgreSQL

5.8 Bibliotheken für PostgreSQL 5.8 Bibliotheken für PostgreSQL Haskell/WASH: Modul Dbconnect PHP: pqsql-funktionen Java/JSP: JDBC Perl: DBI database interface modul Vorläufige Version 80 c 2004 Peter Thiemann, Matthias Neubauer 5.9

Mehr

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 Kapitel 33 Der xml-datentyp In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 995 996 Kapitel 33: Der xml-datentyp Eine der wichtigsten

Mehr

Benutzerverwaltung, Sichten und Datenintegrität

Benutzerverwaltung, Sichten und Datenintegrität Benutzerverwaltung, Sichten und Einige Vergleiche zwischen MySQL, Oracle und PostgreSQL OStR Michael Dienert, StR Ahmad Nessar Nazar 29. November und 30. November 2011 1 von 113 OStR Michael Dienert, StR

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

PostgreSQL unter Debian Linux

PostgreSQL unter Debian Linux Einführung für PostgreSQL 7.4 unter Debian Linux (Stand 30.04.2008) von Moczon T. und Schönfeld A. Inhalt 1. Installation... 2 2. Anmelden als Benutzer postgres... 2 2.1 Anlegen eines neuen Benutzers...

Mehr

SQL-Befehlsliste. Vereinbarung über die Schreibweise

SQL-Befehlsliste. Vereinbarung über die Schreibweise Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche Teile

Mehr

Konstante Relationen

Konstante Relationen Konstante Relationen values-syntax erzeugt konstante Relation values ( [, Konstante] * )[, ( [, Konstante] * )]* Beispiel values (1, eins ), (2, zwei ), (3, drei ); Resultat ist eine

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Informations- und Wissensmanagement

Informations- und Wissensmanagement Übung zur Vorlesung Informations- und Wissensmanagement (Übung 1) Frank Eichinger IPD, Lehrstuhl für Systeme der Informationsverwaltung Zur Person Beruflicher Hintergrund Studium an der TU Braunschweig

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Datenbanken SQL. Insert, Update, Delete, Drop. Krebs

Datenbanken SQL. Insert, Update, Delete, Drop. Krebs Datenbanken SQL Insert, Update, Delete, Drop Krebs Inhalt 1. Datensätze einfügen: INSERT 2. Datensätze verändern: UPDATE 3. Datensätze löschen: DROP vs. DELETE Beispiel Datenbank Schule Klasse P_Klasse

Mehr

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 Hochschule Darmstadt DATENBANKEN Fachbereich Informatik Praktikum 3 Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 PL/SQL Programmierung Anwendung des Cursor Konzepts und Stored Procedures Und Trigger

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

(Von der Nähe zur Distanz zum User geordnet)

(Von der Nähe zur Distanz zum User geordnet) Datebanken Was ist eigentlich eine Datenbank? Datenbanken, Datenhaltungsschicht und Datenbankensysteme (hier als Synonyme zu verstehen) finden viele unterschiedliche Anwendungsbereiche. Datenbanken kann

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3) Vorlesung #5 SQL (Teil 3) Fahrplan Besprechung der Übungsaufgaben Rekursion Rekursion in SQL-92 Rekursion in DBMS- Dialekten (Oracle und DB2) Views (Sichten) - gespeicherte Abfragen Gewährleistung der

Mehr

Datumsangaben, enthält mindestens Jahr, Monat, Tag

Datumsangaben, enthält mindestens Jahr, Monat, Tag Datenbanken mit SQL Informatik - Sprenger Häufig wird mit Tabellenkalkulationen gearbeitet, obwohl der Einsatz von Datenbanken sinnvoller ist. Tabellenkalkulationen wie Microsoft Excel oder LibreOffice

Mehr

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2 SQL SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R IV-1 Beispielrelationen Filiale ( Name Leiter Stadt Einlagen ) Konto ( KontoNr KundenNr FilialName Saldo ) Kredit

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

Fachhochschule Kaiserslautern Labor Datenbanken mit MySQL SS2006 Versuch 1

Fachhochschule Kaiserslautern Labor Datenbanken mit MySQL SS2006 Versuch 1 Fachhochschule Kaiserslautern Fachbereiche Elektrotechnik/Informationstechnik und Maschinenbau Labor Datenbanken Versuch 1 : Die Grundlagen von MySQL ------------------------------------------------------------------------------------------------------------

Mehr

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007 6. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007 Aufgabe 1: Rekursion Betrachten Sie die folgende Tabelle

Mehr

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13 Auf einen Blick Vorwort 13 Teil 1 Vorbereitung Kapitel 1 Einleitung 17 Kapitel 2 SQL - der Standard relationaler Datenbanken 21 Kapitel 3 Die Beispieldatenbanken 39 Teil 2 Abfrage und Bearbeitung Kapitel

Mehr

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language) Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data

Mehr

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin PhpMyAdmin = grafsches Tool zur Verwaltung von MySQL-Datenbanken Datenbanken erzeugen und löschen Tabellen und Spalten einfügen,

Mehr

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL Relationales Modell: SQLDDL SQL als Definitionssprache SQLDDL umfaßt alle Klauseln von SQL, die mit Definition von Typen Wertebereichen Relationenschemata Integritätsbedingungen zu tun haben Externe Ebene

Mehr

Universität Duisburg-Essen Informationssysteme Prof. Dr.-Ing. N. Fuhr. Praktikum Datenbanken / DB2 Woche 8: Trigger, SQL-PL

Universität Duisburg-Essen Informationssysteme Prof. Dr.-Ing. N. Fuhr. Praktikum Datenbanken / DB2 Woche 8: Trigger, SQL-PL Betreuer: Sascha Kriewel, Tobias Tuttas Raum: LF 230 Bearbeitung: 26., 27. und 29. Juni 2006 Datum Team (Account) Vorbereitung Präsenz Aktuelle Informationen, Ansprechpartner und Material unter: http://www.is.inf.uni-due.de/courses/dbp_ss07/index.html

Mehr

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL Datenmodifikation mit SQL Folie 45 SQL - Datenmodifikation Einfügen INSERT INTO Relation [(Attribut, Attribut,...)] VALUES (Wert, Wert,...) INSERT INTO Relation [(Attribut, Attribut,...)] SFW-Anfrage Ändern

Mehr

Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press

Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press Marcus Throll, Oliver Bartosch Einstieg in SQL Verstehen, einsetzen, nachschlagen Galileo Press Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT

Mehr

Datenbanken für Online Untersuchungen

Datenbanken für Online Untersuchungen Datenbanken für Online Untersuchungen Im vorliegenden Text wird die Verwendung einer MySQL Datenbank für Online Untersuchungen beschrieben. Es wird davon ausgegangen, dass die Untersuchung aus mehreren

Mehr

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) DDL ist Teil von SQL (Structured

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15

Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15 Vorwort..................................................... 13 Kapitel 1 Einleitung.......................................... 15 Kapitel 2 SQL der Standard relationaler Datenbanken... 19 2.1 Die Geschichte................................

Mehr

Oracle: Abstrakte Datentypen:

Oracle: Abstrakte Datentypen: Oracle: Abstrakte Datentypen: Oracle bietet zwei mögliche Arten um abstrakte Datentypen zu implementieren: Varying Array Nested Table Varying Array (kunde) kdnr kdname gekaufteart 1 Mustermann 1 4 5 8

Mehr

SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";

SET SQL_MODE=NO_AUTO_VALUE_ON_ZERO; phpmyadmin SQL Dump version 3.2.4 http://www.phpmyadmin.net Host: localhost Erstellungszeit: 13. April 2011 um 18:44 Server Version: 5.1.41 PHP-Version: 5.3.1 SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO"; /*!40101

Mehr

VO Datenmodellierung. Katrin Seyr

VO Datenmodellierung. Katrin Seyr Datenintegrität Datenintegrität VO Datenmodellierung Katrin Seyr Institut für Informationssysteme Technische Universität Wien Katrin Seyr Seite 1 Datenintegrität 1. Überblick Überblick 1 Überblick 2 Integritätsbedingungen

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,

Mehr

DB2 SQL, der Systemkatalog & Aktive Datenbanken

DB2 SQL, der Systemkatalog & Aktive Datenbanken DB2 SQL, der Systemkatalog & Aktive Datenbanken Lehr- und Forschungseinheit Datenbanken und Informationssysteme 1 Ziele Auf DB2 Datenbanken zugreifen DB2 Datenbanken benutzen Abfragen ausführen Den Systemkatalog

Mehr

6. Datenintegrität. Integritätsbedingungen

6. Datenintegrität. Integritätsbedingungen 6. Integritätsbedingungen dienen zur Einschränkung der Datenbankzustände auf diejenigen, die es in der realen Welt tatsächlich gibt. sind aus dem erstellten Datenmodell ableitbar (semantisch) und können

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

Inhaltsverzeichnis. jetzt lerne ich

Inhaltsverzeichnis. jetzt lerne ich Inhaltsverzeichnis jetzt lerne ich Einführung 15 1 Erste Schritte 21 1.1 Datenbanken und Datenbank-Managementsysteme 21 1.2 Zugriff auf Datenbanken 22 1.3 Was der Großvater noch wusste... 22 1.4 Einordnung

Mehr

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. Metadaten

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. Metadaten Fakultät für Informatik & Wirtschaftsinformatik Metadaten Metadaten sind Daten über Daten Data-Dictionary speichert Informationen über die Struktur der Daten, z.b.: Tabellen, Spalten, Datentypen Primär-

Mehr

Referentielle Integrität

Referentielle Integrität Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische

Mehr

Fortgeschrittene SQL-Techniken für APEX-Formulare und Reports

Fortgeschrittene SQL-Techniken für APEX-Formulare und Reports Fortgeschrittene SQL-Techniken für APEX-Formulare und Reports Andreas Wismann WHEN OTHERS Beratung Projektmanagement Coaching rund um Oracle Application Express rund um Application Express Beratung Projektmanagement

Mehr

4.14.3 Bedingungen über Werte. 4.14.4 Statische Integrität. CHECK-Klausel

4.14.3 Bedingungen über Werte. 4.14.4 Statische Integrität. CHECK-Klausel 4.14.3 Bedingungen über Werte 4.14.4 Statische Integrität Zu jeder Tabelle werden typischerweise ein Primärschlüssel und möglicherweise weitere Schlüssel festgelegt (UNIQUE-Klausel). In jeder Instanz zu

Mehr

Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien

Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien 1.1 Definition Datenbank Ein Datenbanksystem (DBS) ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS

Mehr

4. Objektrelationales Typsystem Kollektionstypen. Nested Table

4. Objektrelationales Typsystem Kollektionstypen. Nested Table Nested Table Bei einer Nested Table handelt es sich um eine Tabelle als Attributwert. Im Gegensatz zu Varray gibt es keine Beschränkung bei der Größe. Definition erfolgt auf einem Basistyp, als Basistypen

Mehr

MySQL-Befehle. In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben.

MySQL-Befehle. In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben. MySQL-Befehle 1. Einleitung In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben. 2. Arbeiten mit Datenbanken 2.1 Datenbank anlegen Eine Datenbank kann man wie folgt

Mehr

ACCESS SQL ACCESS SQL

ACCESS SQL ACCESS SQL ACCESS SQL Datenbankabfragen mit der Query-Language ACCESS SQL Datenbankpraxis mit Access 34 Was ist SQL Structured Query Language Bestehend aus Datendefinitionssprache (DDL) Datenmanipulationssprache

Mehr

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung 6. Datenintegrität Motivation Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung nur sinnvolle Attributwerte (z.b. keine negativen Semester) Abhängigkeiten

Mehr

Einführung in die Informatik II

Einführung in die Informatik II Einführung in die Informatik II Die Structured Query Language SQL Prof. Dr. Nikolaus Wulff SQL Das E/R-Modell lässt sich eins zu eins auf ein Tabellenschema abbilden. Benötigt wird eine Syntax, um Tabellen

Mehr

Referentielle Integrität

Referentielle Integrität Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische

Mehr

Abfragen (Queries, Subqueries)

Abfragen (Queries, Subqueries) Abfragen (Queries, Subqueries) Grundstruktur einer SQL-Abfrage (reine Projektion) SELECT [DISTINCT] {* Spaltenname [[AS] Aliasname ] Ausdruck} * ; Beispiele 1. Auswahl aller Spalten SELECT * ; 2. Auswahl

Mehr

3.17 Zugriffskontrolle

3.17 Zugriffskontrolle 3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man

Mehr

Übungsblatt 8- Lösungsvorschlag

Übungsblatt 8- Lösungsvorschlag Universität Innsbruck - Institut für Informatik Prof. Günther Specht, R.Binna, N.Krismer, M. Tschuggnall 30. November 2012 Proseminar Datenbanksysteme Übungsblatt 8- Lösungsvorschlag Aufgabe 1 (Trigger)

Mehr

Kapitel DB:VI (Fortsetzung)

Kapitel DB:VI (Fortsetzung) Kapitel DB:VI (Fortsetzung) VI. Die relationale Datenbanksprache SQL Einführung SQL als Datenanfragesprache SQL als Datendefinitionssprache SQL als Datenmanipulationssprache Sichten SQL vom Programm aus

Mehr

SQL: Weitere Funktionen

SQL: Weitere Funktionen Vergleich auf Zeichenketten SQL: Weitere Funktionen LIKE ist ein Operator mit dem in Zeichenketten andere Zeichenketten gesucht werden; zwei reservierte Zeichen mit besonderer Bedeutung sind hier % (manchmal

Mehr

SQL. Abfragesprache Datenmanipulation - DML

SQL. Abfragesprache Datenmanipulation - DML SQL Abfragesprache Datenmanipulation - DML SQL DML-Operationen DML = Data Manipulation Language Sprache zur Veränderung der Daten Operationen Daten selektieren Daten einfügen Daten ändern Daten löschen

Mehr

Datenbanksysteme Kapitel: SQL Data Definition Language

Datenbanksysteme Kapitel: SQL Data Definition Language Datenbanksysteme Kapitel: SQL Data Definition Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni - Prof.

Mehr

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt DBS ::: SERIE 5 Die Relation produkt enthält Hersteller, Modellnummer und Produktgattung (pc, laptop oder drucker aller Produkte. Die Modellnummer ist (der Einfachheit halber eindeutig für alle Hersteller

Mehr

Projektbericht Gruppe 12. Datenbanksysteme WS 05/ 06. Gruppe 12. Martin Tintel Tatjana Triebl. Seite 1 von 11

Projektbericht Gruppe 12. Datenbanksysteme WS 05/ 06. Gruppe 12. Martin Tintel Tatjana Triebl. Seite 1 von 11 Datenbanksysteme WS 05/ 06 Gruppe 12 Martin Tintel Tatjana Triebl Seite 1 von 11 Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Datenbanken... 4 2.1. Oracle... 4 2.2. MySQL... 5 2.3 MS

Mehr

SQL (Structured Query Language) Schemata Datentypen

SQL (Structured Query Language) Schemata Datentypen 2 SQL Sprachelemente Grundlegende Sprachelemente von SQL. 2.1 Übersicht Themen des Kapitels SQL Sprachelemente Themen des Kapitels SQL (Structured Query Language) Schemata Datentypen Im Kapitel SQL Sprachelemente

Mehr

SQL-Anweisungen. SELECT (SQL Data Query Language)

SQL-Anweisungen. SELECT (SQL Data Query Language) SQL-Anweisungen SELECT (SQL Data Query Language) SELECT * SELECT * FROM "meine Tabelle"; SELECT feldname1, feldname2 SELECT feldname1, feldname2 FROM meinetabelle ORDER BY feldname2, feldname1 DESC; WHERE

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

dbis Praktikum DBS I SQL Teil 2

dbis Praktikum DBS I SQL Teil 2 SQL Teil 2 Übersicht Fortgeschrittene SQL-Konstrukte GROUP BY HAVING UNION / INTERSECT / EXCEPT SOME / ALL / ANY IN / EXISTS CREATE TABLE INSERT / UPDATE / DELETE 2 SELECT Syntax SELECT FROM [WHERE [GROUP

Mehr

SQL. Fortgeschrittene Konzepte Auszug

SQL. Fortgeschrittene Konzepte Auszug SQL Fortgeschrittene Konzepte Auszug Levels SQL92 Unterteilung in 3 Levels Entry Level (i.w. SQL89) wird von nahezu allen DBS Herstellern unterstützt Intermediate Level Full Level SQL DML 2-2 SQL92 behebt

Mehr

8 Access-Abfragen migrieren

8 Access-Abfragen migrieren Leseprobe aus Access und SQL Server http://www.acciu.de/asqllesen 8 Access-Abfragen migrieren Mit der Migration der Tabellen Ihrer Anwendung zu einer SQL Server-Datenbank und dem Verknüpfen der SQL Server-Tabellen

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse & Einführung Online Analytical Processing (OLAP) (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse M. Lange, S.

Mehr

Einteilung von Datenbanken

Einteilung von Datenbanken Datenbanksysteme (c) A.Kaiser; WU-Wien 1 Einteilung von Datenbanken 1. formatierte Datenbanken 2. unformatierte Datenbanken Information Retrieval Systeme 2 Wozu Datenbanken? Speicherung und Verwaltung

Mehr

Relationales Datenbanksystem Oracle

Relationales Datenbanksystem Oracle Relationales Datenbanksystem Oracle 1 Relationales Modell Im relationalen Modell wird ein relationales Datenbankschema wie folgt beschrieben: RS = R 1 X 1 SC 1... R n X n SC n SC a a : i=1...n X i B Information

Mehr

SQL C.J. Dates Empfehlungen

SQL C.J. Dates Empfehlungen In seinem Buch SQL and Relational Theory: How to Write Accurate SQL Code, erschienen 2009 bei O Reilly, setzt sich C.J. Date mit SQL auseinander. Kurz gesagt: es ist beklagenswert, wie weit entfernt SQL

Mehr

Funktion definieren Gibt Summe der Gehälter zurück. Aufruf in einem SQL-Statement

Funktion definieren Gibt Summe der Gehälter zurück. Aufruf in einem SQL-Statement Funktion definieren Gibt Summe der Gehälter zurück Aufruf in einem SQL-Statement Dr. Christian Senger Einführung PL/SQL 1 Procedures & Transaktionen CREATE OR REPLACE PROCEDURE write_log ( log_code IN

Mehr

DBMS-Übungsserver. Seite 1 von 13

DBMS-Übungsserver. Seite 1 von 13 Aufgabe Nr. 1, BETWEEN-Prädikat Welche Fahrten finden von Heiligabend bis Neujahr 2001/2002 einschließlich statt? Rückgabe-Typ sei (fahrtnr). SELECT fahrtnr FROM Fahrt WHERE tag BETWEEN '2001-12-24' AND

Mehr

1 Hartmann Anna Cäcilienstr Köln (0221) Behrens-Hoffmeister Heidi Lindenweg Köln (0221)

1 Hartmann Anna Cäcilienstr Köln (0221) Behrens-Hoffmeister Heidi Lindenweg Köln (0221) Erstellen einer Mitarbeiter-Datenbank 1 Erstellen einer Mitarbeiter-Datenbank Arbeitsauftrag Ziel der Übung Erstellen von Datenbanken mit Hilfe von SQL-Abfragen Aufgabe (1.) Erstellen Sie eine neue Datenbank

Mehr

Details zu den Ausdrücken nach FROM, WHERE, GROUP BY und HAVING finden Sie in den Abschnitten über JOIN, WHERE und GROUP BY.

Details zu den Ausdrücken nach FROM, WHERE, GROUP BY und HAVING finden Sie in den Abschnitten über JOIN, WHERE und GROUP BY. SELECT - Der Grundbefehl zur Auswahl von Daten Die SELECT-Anweisung fragt Daten aus einer Datenbank ab und stellt diese in einer virtuellen Tabelle zur Verfügung. Diese virtuelle Tabelle, eine Menge von

Mehr

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung Technische Universität München WS 2003/04, Fakultät für Informatik Datenbanksysteme I Prof. R. Bayer, Ph.D. Lösungsblatt 8 Dipl.-Inform. Michael Bauer Dr. Gabi Höfling 12.01. 2004 Integritätsbedingungen

Mehr

Datenintegrität. Bisherige Integritätsbedingungen

Datenintegrität. Bisherige Integritätsbedingungen Datenintegrität Integitätsbedingungen chlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Bedingungen an den Zustand der Datenbasis dynamische Bedingungen an Zustandsübergänge

Mehr

SQL und MySQL. Kristian Köhntopp

SQL und MySQL. Kristian Köhntopp SQL und MySQL Kristian Köhntopp Wieso SQL? Datenbanken seit den frühen 1950er Jahren: Hierarchische Datenbanken Netzwerkdatenbanken Relationale Datenbanken = SQL Relational? 10 9 8 7 6 f(y) := y = x r(y)

Mehr

Datenbankanfragen und -operationen mittels SQL

Datenbankanfragen und -operationen mittels SQL Datenbankanfragen und -operationen mittels SQL Über den verschiedenen Tabellen einer Datenbank werden Operationen ausgeführt, die immer wieder eine Tabelle als Ergebnis zurückgeben. Mathematisch modelliert

Mehr

Whitepaper. Produkt: combit Relationship Manager. Datensatzhistorie mit dem SQL Server 2000 und 2005. combit GmbH Untere Laube 30 78462 Konstanz

Whitepaper. Produkt: combit Relationship Manager. Datensatzhistorie mit dem SQL Server 2000 und 2005. combit GmbH Untere Laube 30 78462 Konstanz combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager Datensatzhistorie mit dem SQL Server 2000 und 2005 Datensatzhistorie mit dem SQL Server 2000 und 2005-2 - Inhalt

Mehr

Die SQL-Syntax für den Befehl CREATE TABLE sieht folgendermassen aus:

Die SQL-Syntax für den Befehl CREATE TABLE sieht folgendermassen aus: Einführung in MySQL SQL (Structured Query Language) ist eine Computersprache zum Speichern, Bearbeiten und Abfragen von Daten in relationalen Datenbanken. Eine relationale Datenbank kann man sich als eine

Mehr

2) Nennen Sie die Namen der 3 Ebenen des 3-Ebenen-Modells, und geben Sie an, was in jeder Ebene dargestellt wird.

2) Nennen Sie die Namen der 3 Ebenen des 3-Ebenen-Modells, und geben Sie an, was in jeder Ebene dargestellt wird. Übungen und Lösungen 1. Einführung Datenbanken 1) Welche Datenbanktypen kennen Sie? Wodurch sind sie gekennzeichnet? Hierarchische Datenbanken: Zwischen den Datensätzen besteht eine untergeordnete Rangfolge.

Mehr

Einstieg in das SQL- und Datenbanktuning 14.01.2009. Loblied auf den Tabellen-Index!

Einstieg in das SQL- und Datenbanktuning 14.01.2009. Loblied auf den Tabellen-Index! 1/40 PHP-User-Group Stuttgart 14.01.2009 Warum Datenbanken einen Hals bekommen und was sich dagegen tun lässt. Tuning und Performancesteigerung ohne zusätzliche Hardware. Ein. Loblied auf den Tabellen-Index!

Mehr

cs241: Datenbanken mit Übungen HS 2011

cs241: Datenbanken mit Übungen HS 2011 UNIVERSITÄT BASEL Prof. Dr. Heiko Schuldt MSc. Nenad Stojnić BSc. Ivan Giangreco BSc. Florian Lindörfer cs241: Datenbanken mit Übungen HS 2011 Übung 5 Abgabe bis: 4.11.2011 Hinweise: Modalitäten der Abgabe:

Mehr

4. Datenbanksprache SQL

4. Datenbanksprache SQL 4. Datenbanksprache SQL Standard-Sprache für das Arbeiten mit relationalen Datenbanken: Structured Query Language Datendefinition: Anlegen, Ändern und Löschen von Datenbankstrukturen Datenmanipulation:

Mehr

Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs])

Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs]) Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs]) Hochschule für Technik, Wirtschaft und Kultur Leipzig 06.06.2008 Datenbanken II,Speicherung und Verarbeitung großer Objekte

Mehr

Labor 3 - Datenbank mit MySQL

Labor 3 - Datenbank mit MySQL Labor 3 - Datenbank mit MySQL Hinweis: Dieses Labor entstand z.t. aus Scripten von Prof. Dr. U. Bannier. 1. Starten des MySQL-Systems MySQL ist ein unter www.mysql.com kostenlos erhältliches Datenbankmanagementsystem.

Mehr

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme Handout zur Unit Web-Technologien SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: nane.kratzke@fh-luebeck.de (Praktische

Mehr