Finite Differenzen und Elemente

Größe: px
Ab Seite anzeigen:

Download "Finite Differenzen und Elemente"

Transkript

1 Dietrich Marsal Finite Differenzen und Elemente Numerische Lösung von Variationsproblemen und partiellen Differentialgleichungen Mit 64 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo 1989

2 Inhaltsverzeichnis Finite Differenzen 0 Allgemeine Grundlagen 0.1 Zur Schreibweise Synonyma des Wortes "Definitionsbereich" Nebenbedingungen Zur Klassifizierung partieller Differentialgleichungen Iteration Matrizen und Gauß-Elimination Gestaffelte Systeme, Dreiecksmatrizen, LR-Zerlegung 9 1 Grundlagen der Differenzenmethode 1.1 Prinzip und einfachste Formeln Die Formel von Taylor Approximation der ersten Ableitung Approximation der zweiten Ableitung Explizite und implizite Systeme Stabile und instabile Systeme Stabilität im Sinne John von Neumanns Elliptische, parabolische und hyperbolische Gleichungen Gitter und Randbedingungen 23

3 IX 1.10 Unregelmäßige Gitter. Mehrgitterverfahren Lokale Netzverfeinerung Höhere Ableitungen auf quadratischen Gittern Differenzenformeln hoher Genauigkeit Differentialgleichungen mit variablen Koeffizienten Eichung/history matching. Stream weighting Numerische Dispersion Numerische Dispersion Neun-Punkte Formeln für den Laplace Operator Herleitung der Neun-Punkte Formel D(p,u) Praktische Fragen Fehlernormen Diskretisierung der selbstadjungierten Form (Ku x ) x Das Liebmannsche Mittelungsverfahren: Ein elementares klassisches Beispiel der Differenzenmethode Literatur 46 2 Parabolische Gleichungen I 2.1 Zusammenfassung 2.2 Lineare tridiagonale Systeme Das Programm Algorithmus TRIDIA 2.3 Nichtlineare tridiagonale Systeme 2.4 Implizite Lösung von u xx + Q(x,t) = cu ( 2.5 Randbedingungen 2.6 Das Programm implizit.f Die Crank-Nicolson Variante CN. Das Programm cranknic.f Die Gleichung u xx + u + Q(x,y,t) = cu (. ADIP 2.9 Das ADIP-Programm adipr.f77 auf Rechteckgebieten 2.10 Die Gleichung u xx + u yy + u zz + Q(x,y,z,t) = cu t 2.11 Nichtlinearitäten, Nichtrechteckgebiete und Anisotropie 2.12 Explizite Lösung der 2- und 3-diraensionalen Gleichung 2.13 Literatur

4 3 Elliptische Gleichungen 3.1 Zusammenfassung Bandmatrizen Der Gauß-Algorithmus BANDMATRIX Direkte Lösung der Gleichungen von Laplace und Poisson mit hoher Genauigkeit Das Programm poissonl.f Ein einfaches Mehrgitterverfahren für die Gleichungen von Poisson und Laplace Das Programm multigrid.f Die Gleichung von Helmholtz Fehlerabschätzung nach Richardson Die nichtlineare selbstadjungierte elliptischparabolische Gleichung auf inhomogenen, unregelmäßig berandeten Gebieten Die selbstadjungierte elliptische bzw. parabolische Differenzengleichung Die Koeffizienten S und T Die Randbedingungen Das Programm adjung.f Lösung elliptischer Gleichungen mit adjung.f Die Austauschbarkeit elliptischer und parabolischer Programme Douglas-Rachford iterativ (DRI) Die Biharmonische v 4 u=v 2 (v 2 u)so Literatur 87 4 Hyperbolische Gleichungen 4.1 Zusammenfassung Charakteristiken Die Gleichung a(x,y)u xx -c(x,y)u yy =g(x,y)u+f(x,y) mit a(x,y)>0 und c(x,y)> Die Wellengleichungen u tt =uu xx +f, u tt =u(u xx +u )+f und u t t =u(u xx +u yy +u zz )+f mlt u = 2 92

5 XI 4.5 Die Bestimmung der zulässigen Maschenweiten für Wellengleichungen. Das Kriterium von Courant, Friedrichs und Lewy 4.6 Das Programm welle.f77 für 2D-Wellengleichungen 4.7 Die Charakteristiken der quasi 1inearen Gleichung erster Ordnung 4.8 Die Charakteristiken quasi 1inearer Systeme erster Ordnung 4.9 Die Lösung hyperbolischer kanonischer Systeme 4.10 Beweis der Konvergenz der Näherungslösung 4.11 Systeme vom Telegraphengleichungstyp 4.12 Gleichungen und Systeme vom Typ u t = -ß(x,t)v x 4.13 Das Programm utvx.f Numerische Längsdispersion Das Lax-Wendroff Schema 4.16 Das Programm Iaxwf.f Numerische Längsdispersion Integration der Gleichung u x v y " 4.19 Literatur Parabolische Gleichungen II 5.1 Zusammenfassung Die SOR-Methode zur Lösung linearer Gleichungen Die Verfahren von Jacobi und Gauß-Seidel Neun-Punkte Formel des Operators (Tu x ) x + (Tu ) Minimalisierung der numerischen Querdispersion Mehrdimensionale Grundgebiete beliebiger und wechselnder Gestalt. Gitterabtastung. Dreidimensionale Differentialgleichungen auf beliebigen Bereichen Das Generalprogramm gebiet.f77 für selbstadjungierte Gleichungen auf beliebigen zweidimensionalen Definitionsbereichen mit Dispers ionsminimalisierung Das Arbeiten mit dem Generalprogramm gebiet.f Die Konvektions-Diffusionsgleichung auf beliebigen dreidimensionalen Definitionsbereichen. e-parameter 131

6 XII 5.8 Numerische Dispersion selbstadjungierter Gleichungen und solcher vom Konvektlons-Diffusionstyp Automatische Zeitschrittwahl und Abschätzung der Stabilität und Dispersion nichtlinearer Gleichungen Iteration nichtlinearer Gleichungen. Das Verfahren von Newton und Raphson Tensorgleichungen. Gleichungen mit gemischten Ableitungen Wandernde Fronten. Streara weighting Freie Ränder. Stream weighting Ein Kurzprogramm für selbstadjungierte Gleichungen auf beliebigen dreidimensionalen Bereichen mit allgemeinen Randbedingungen, harmonischer Mittelung und upstream weighting. Lösung explizit Nichtkartesische Koordinaten mit unregelmäßigen Gitterabständen, unendliche Definitionsbereiche, logarithmische Unstetigkeiten und Anfangs-Sprungunstetigkeiten Systeme parabolischer oder elliptischer Gleichungen Eine Bemerkung zu Gleichungen der Form f (v vv., v, V ZZ' V X'V V Z' U =0 t> Zusammengesetzte Medien. Phasenübergänge Literatur 155 ÄÄ y y 6 Große lineare Gleichungssysteme 6.1 Einleitung Vorteile und Nachteile expliziter Lösungsverfahren Vorteile und Nachteile der Mehrgitterverfahren Vorteile und Nachteile von ADIP und Douglas- Rachford iterativ (DRI) Vorteile und Nachteile von SOR Vorteile und Nachteile von Gauß-Seldel (GS) und dem Eliminationsverfahren von Gauß (GE) Vorteile und Nachteile des Verfahrens von Jacobi (J) Gradienten(artlge) Methoden mit ihren Vor- und Nachtellen 162

7 XIII r6.9 Schlußworte zur Besprechung der Vor- und Nachteile der einzelnen Lösungsverfahren Definitionen: positiv definite, unzerlegbare, diagonal dominierte Matrizen Anwendung auf selbstadjungierte Gleichungen, Konvergenz iterativer Verfahren und Gauß-ElImination Spärlich besetzte Bandmatrizen Das speicherplatzsparende Programm gauss.f Die Gradientenmethode CG (conjugate gradient algorithm) für positiv definite Systeme 173 '6.15 Die Gradientenmethode CGS (conjugate gradlents squared) für Navier-Stokes Gleichungen und andere asymmetrische Probleme Vorkonditionierung (preconditioning) Platzsparendes Abspeichern der Koeffizientenmatrix Einfachindizierung der Gitterpunkte bei Anwendung direkter Verfahren und Gradientenmethoden Literatur 189 Finite Elemente 7 Einführung in die Methode der finiten Elemente 7.1 Finite Elemente und ihre Knoten Variationsaufgaben. Die Verfahren von Ritz und Galerkin Vergleich der Differenzenmethode mit der finiten Elementmethode bei Lösung partieller Differentialgleichungen Die Überführung von Variationsaufgaben in Differentialgleichungen. Natürliche Randbedingungen Der Arbeitsablauf bei der Ritz-Variante Die Berechnung von 3J/3U r Eindimensionale Elemente Die Lösung eindimensionaler Variationsaufgaben Die Entfernung von Innenknoten 208

8 XIV 7.10 Die wichtigsten Eulerschen Gleichungen zu Variationsaufgaben Variationsaufgaben zu gewöhnlichen Differentialgleichungen Variationsaufgaben zu elliptischen Differentialgleichungen in der Ebene und im Raum Literatur Die Lösung von Variationsaufgaben I 8.1 Einleitung Rechteckelemente Dreidimensionale Blockelemente Numerische Integration auf Intervall-, Rechteckund Blockelementen Dreieckelemente Dreieckelemente mit drei oder sechs Knoten Tetraederelemente Die Behandlung nicht 1inearer Randwertprobleme. Minimalflächen Bemerkungen zur Programmierung und Gebietsaufteilung Literatur Die Lösung von Variationsaufgaben II 9.1 Allgemeine finite Elemente Schiefwinklige 4-Knoten-Viereckelemente Windschiefe dreidimensionale Blöcke Die numerische Integration über schiefwinklige Vierecke und windschiefe dreidimensionale Blöcke Dreieckelemente mit gekrümmten Rändern Dreieckelemente mit gekrümmten Rändern Dreieckelemente mit einem gekrümmten Rand Integration über krummlinig berandete Dreiecke 252

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Einführung Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung,

Mehr

Numerische Mathematik für Ingenieure und Physiker

Numerische Mathematik für Ingenieure und Physiker Willi Törnig Peter Spellucci Numerische Mathematik für Ingenieure und Physiker Band 1: Numerische Methoden der Algebra Zweite, überarbeitete und ergänzte Auflage Mit 15 Abbildungen > Springer-Verlag Berlin

Mehr

Inhaltsverzeichnis. Vorwort zur ersten Auflage. Bezeichnungen

Inhaltsverzeichnis. Vorwort zur ersten Auflage. Bezeichnungen Inhaltsverzeichnis Vorwort zur vierten Auflage Vorwort zur ersten Auflage Bezeichnungen v vi xv Kapitel I Einführung 1 1. Beispiele und Typeneinteilung 2 Beispiele 2 Typeneinteilung 7 Sachgemäß gestellte

Mehr

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker FB IV Mathematik Universität Trier Präsentation von Nadja Wecker 1) Einführung Beispiele 2) Mathematische Darstellung 3) Numerischer Fluss für Diffusionsgleichung 4) Konvergenz 5) CFL-Bedingung 6) Zusammenfassung

Mehr

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Inhaltsverzeichnis Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Kapitel I Einführung 1 1. Beispiele und Typeneinteilung... 2 Beispiele 2 Typeneinteilung 7 Sachgemäß gestellte Probleme

Mehr

Inhaltsverzeichnis. TEIL I: Einführung in EXCEL

Inhaltsverzeichnis. TEIL I: Einführung in EXCEL Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm EXCEL... 1 1.1 Tabellenkalkulation... 1 1.2 Anwendungsgebiete... 1 1.3 Hilfefunktionen... 2 2 Benutzeroberflächen der Versionen

Mehr

Einführung in die Mathematik für Volks- und Betriebswirte

Einführung in die Mathematik für Volks- und Betriebswirte Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS

Mehr

ANALYSE NUMERISCHER VERFAHREN

ANALYSE NUMERISCHER VERFAHREN ANALYSE NUMERISCHER VERFAHREN von Eugene Isaacson Professor für Mathematik Leiter des Rechenzentrums Courant Institute of Mathematical Sciences New York University und Herbert Bishop Keller Professor für

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

EXCEL in der Wirtschaftsmathematik

EXCEL in der Wirtschaftsmathematik Hans Benker EXCEL in der Wirtschaftsmathematik Anwendung von Tabellenkalkulationsprogrammen für Studenten, Dozenten und Praktiker Springer Vieweg Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm

Mehr

Finite Elemente in der Baustatik

Finite Elemente in der Baustatik Horst Werkle Finite Elemente in der Baustatik Statik und Dynamik der Stab- und Flachentragwerke 3., aktualisierte und erweiterte Auflage mit 305 Abbildungen und 43 Tabellen vieweg IX Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke IX Inhaltsverzeichnis 1 Matrizenrechnung... 1 1.1 Matrizen und Vektoren... 1 1.2 Matrizenalgebra... 3 1.2.1 Addition und Subtraktion... 3 1.2.2 Multiplikation... 4 1.2.3 Matrizeninversion... 6 1.3 Gleichungssysteme...

Mehr

Inhaltsverzeichnis Einleitung Mathematische Grundlagen

Inhaltsverzeichnis Einleitung Mathematische Grundlagen Inhaltsverzeichnis 1 Einleitung 1.1 Vorgehensweise bei der FEM... 3 1.2 Verschiedene Elementtypen... 5 1.3 Beispiele zur Finite-Elemente-Methode... 10 1.3.1 Beispiel zu nichtlinearen Problemen... 10 1.3.2

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr

Schnelle Lösung großer Gleichungssysteme

Schnelle Lösung großer Gleichungssysteme Schnelle Lösung großer Gleichungssysteme Anton Schüller 1 Ulrich Trottenberg 1,2 Roman Wienands 2 1 Fraunhofer-Institut Algorithmen und Wissenschaftliches Rechnen SCAI 2 Mathematisches Institut der Universität

Mehr

Einführung in die Numerik mit VBA

Einführung in die Numerik mit VBA Stefan Kolling Einführung in die Numerik mit VBA 2005 Fachhochschulverlag DER VERLAG FÜR ANGEWANDTE WISSENSCHAFTEN Inhaltsverzeichnis 1 Einführung 1 1.1 Einige Grundbegriffe aus der EDV 2 1.1.1 Darstellung

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

Computational Biology: Bioelektromagnetismus und Biomechanik

Computational Biology: Bioelektromagnetismus und Biomechanik Computational Biology: Bioelektromagnetismus und Biomechanik Simulation der Hyperthermie Potentielle Prüfungsfragen Gliederung Wiederholung: Implementierung Motivation Rechnerarchitektur Parallelisierung

Mehr

Lineare Gleichungssysteme Hierarchische Matrizen

Lineare Gleichungssysteme Hierarchische Matrizen Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Finite Elemente in Materialwissenschaften

Finite Elemente in Materialwissenschaften Finite Elemente in Materialwissenschaften Dieter Süss Institut für Festkörperphysik (8. Stock gelb) Vienna University of Technology dieter.suess@tuwien.ac.at http:/// http:///suess/papers Outline Geschichte

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4 Inhalt 1 GRUNDLAGEN 1 1.1 Zahlen 1 1.1.1 Natürliche Zahlen 1 1.1.2 Ganze Zahlen 2 1.1.3 Rationale Zahlen 3 1.1.4 Reelle Zahlen 4 1.2 Rechnen mit reellen Zahlen 8 1.2.1 Grundgesetze der Addition 8 1.2.2

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task Group "CFD Steam Property Formulation"

Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task Group CFD Steam Property Formulation M. Kunick, H. J. Kretzschmar Hochschule Zittau/Görlitz, Fachgebiet Technische Thermodynamik, Zittau Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task

Mehr

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26.

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Nebenfach Mathematik im Informatik-Studium Martin Gugat martin.gugat@fau.de FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Oktober 2016 Motivation Die rigorose Analyse von Algorithmen erfordert

Mehr

Methode der f initen Elemente

Methode der f initen Elemente r Methode der f initen Elemente Eine Einführung unter besonderer Berücksichtigung der Rechenpraxis Von Dr. sc. math. Hans Rudolf Schwarz ord. Professor an der Universität Zürich 3., neubearbeitete Auflage

Mehr

Parallele und verteilte Programmierung

Parallele und verteilte Programmierung Thomas Rauber Gudula Rünger Parallele und verteilte Programmierung Mit 165 Abbildungen und 17 Tabellen Jp Springer Inhaltsverzeichnis 1. Einleitung 1 Teil I. Architektur 2. Architektur von Parallelrechnern

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Glättung durch iterative Verfahren

Glättung durch iterative Verfahren Numerische Methoden in der Finanzmathematik II Sommersemester 211 Glättung durch iterative Verfahren Vorlesung Numerische Methoden in der Finanzmathematik II Sommersemester 211 Numerische Methoden in der

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

W Lauterborn T. Kurz M. Wiesenfeldt. Kohärente Optik. Grundlagen für Physiker und Ingenieure

W Lauterborn T. Kurz M. Wiesenfeldt. Kohärente Optik. Grundlagen für Physiker und Ingenieure W Lauterborn T. Kurz M. Wiesenfeldt Kohärente Optik Grundlagen für Physiker und Ingenieure Mit 183 Abbildungen, 1 Hologramm, 73 Aufgaben und vollständigen Lösungen Physikalische Bibliothek Fachbereich

Mehr

Finite-Elemente-Methode

Finite-Elemente-Methode Finite-Elemente-Methode Rechnergestützte Einführung von Peter Steinke 1. Auflage Finite-Elemente-Methode Steinke schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Springer 2012 Verlag

Mehr

Numerik und Simulation in der Geoökologie

Numerik und Simulation in der Geoökologie 1/43 Reapitulation Instationärer Transport Bac to reality Numeri und Simulation in der Geoöologie Sylvia Moenices VL 8 WS 2007/2008 2/43 Reapitulation Instationärer Transport Bac to reality Parcours Reapitulation

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

6.8 Newton Verfahren und Varianten

6.8 Newton Verfahren und Varianten 6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)

Mehr

Modellierung, Simulation, Optimierung Diskretisierung 1

Modellierung, Simulation, Optimierung Diskretisierung 1 Modellierung, Simulation, Optimierung Diskretisierung Prof. Michael Resch Dr. Martin Bernreuther, Dr. Natalia Currle-Linde, Dr. Martin Hecht, Uwe Küster, Dr. Oliver Mangold, Melanie Mochmann, Christoph

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Kurze Einführung in die Finite-Elemente-Methode

Kurze Einführung in die Finite-Elemente-Methode Kurze Einführung in die Finite-Elemente-Methode Stefan Girke Wissenschaftliches Rechnen 23 Die Finite-Elemente-Methode In diesem Skript soll eine kurze Einführung in die Finite-Elemente-Methode gegeben

Mehr

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann,

Mehr

2 Kapitel 1. Einleitung

2 Kapitel 1. Einleitung 1 1 Einleitung Zahlreiche Phänomene in den Natur- und Ingenieurswissenschaften werden durch Systeme partieller Differentialgleichungen und insbesondere hyperbolischer Erhaltungsgleichungen modelliert,

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort

Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort Vorwort V I Lineare Gleichungssysteme und Matrizen 1 1 Der Begriff des Körpers 3 1.1 Mengen 3 1.2 Köiperaxiome 3 1.3 Grundlegende Eigenschaften von Körpern 5 1.4 Teilkörper 7 1.5 Aufgaben 8 1.5.1 Grundlegende

Mehr

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik Christian B. Lang / Norbert Pucker Mathematische Methoden in der Physik Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung xv 1 Unendliche Reihen 1 1.1 Folgen und Reihen 1 1.1.1

Mehr

Technische Universität Berlin Institut für Mathematik. Bachelorarbeit im Studiengang Technomathematik

Technische Universität Berlin Institut für Mathematik. Bachelorarbeit im Studiengang Technomathematik Technische Universität Berlin Institut für athematik Bachelorarbeit im Studiengang Technomathematik Vorkonditionierte Krylov-Unterraum-Verfahren zur Lösung linearer Gleichungssysteme arkus Wolff 323994

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Iterative Lösung Linearer Gleichungssysteme

Iterative Lösung Linearer Gleichungssysteme Iterative Lösung Linearer Gleichungssysteme E. Olszewski, H. Röck, M. Watzl 1. Jänner 00 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Vorwort C.F.Gauß in einem Brief vom 6.1.18 an Gerling:

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

5.1 Einführung. 5.2 Die Raumdiskretisierung. Vorlesungsskript Hydraulik II 5-1

5.1 Einführung. 5.2 Die Raumdiskretisierung. Vorlesungsskript Hydraulik II 5-1 Vorlesungsskript Hydraulik II 5-5 Numerische Methoden Das vorliegende Kapitel dient dazu, numerische Methoden unabhängig vom Anwendungsgebiet einzuführen. Es soll die Grundzüge der verschiedenen Verfahren

Mehr

Inhaltsverzeichnis. 4 Lagrange-Funktion und Dualität... 63 4.1 Lagrange-FunktionmitGleichheitsrestriktionen... 63

Inhaltsverzeichnis. 4 Lagrange-Funktion und Dualität... 63 4.1 Lagrange-FunktionmitGleichheitsrestriktionen... 63 1 Einleitung... 1 1.1 Optimierungstypen.............................................. 3 1.2 Motivation und Grundbegriffe der Optimierung........................... 4 1.3 Allgemeine Form des Optimierungsproblems............................

Mehr

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII Inhaltsverzeichnis Vorwort................................................................. V Symbolverzeichnis...................................................... XIII Kapitel 1: Einführung......................................................

Mehr

Die Methode der Finiten Elemente

Die Methode der Finiten Elemente KAPITEL 2 Die Methode der Finiten Elemente 1. Theoretische Grundlagen Wir bezeichnen im Folgenden mit H m (Ω) L 2 (Ω), Ω R n offen, den Sobolevraum aller Funktionen mit schwachen Ableitungen α u in L 2

Mehr

7.11. Extrema unter Nebenbedingungen

7.11. Extrema unter Nebenbedingungen 7.11. Extrema unter Nebenbedingungen Randextrema Wir haben schon bemerkt, daß die üblichen Tests mit Hilfe von (eventuell höheren) Ableitungen nur Kriterien für (lokale) Extrema im Inneren des Definitionsgebietes

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Das Zinsänderungsrisiko variabler Bankgeschäfte

Das Zinsänderungsrisiko variabler Bankgeschäfte Das Zinsänderungsrisiko variabler Bankgeschäfte Risikoanalyse und Bewertung variabler Hypotheken und Spargelder von Dr. Werner Burger Verlag Paul Haupt Bern Stuttgart Wien xi Inhaltsübersicht IX XI Abbildungsverzeichnis

Mehr

Einführung in Statistik und Messwertanalyse für Physiker

Einführung in Statistik und Messwertanalyse für Physiker Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Finite Elemente in der Baustatik

Finite Elemente in der Baustatik Horst Werkle Finite Elemente in der Baustatik Statik und Dynamik der Stab- und Flächentragwerke Mit 208 Abbildungen, 36 Tabellen und zahlreichen Beispielen 2., überarbeitete und erweiterte Auflage vieweg

Mehr

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgaben der Elastostatik.... 1 1.2 Einige Meilensteine in der Geschichte der Elastostatik... 4 1.3 Methodisches Vorgehen zur Erarbeitung der vier Grundlastfälle...

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr

Inhaltsverzeichnis Vorwort Grundlagen

Inhaltsverzeichnis Vorwort Grundlagen Inhaltsverzeichnis Vorwort... 1 Grundlagen... 1 1.1 Mengenlehre... 1 1.1.1 Mengenbegriff... 2 1.1.2 Mengenoperationen... 4 1.1.3 Abbildungen... 7 1.2 Logik... 12 1.2.1 Aussagenlogik... 12 1.2.2 Prädikatenlogik...

Mehr

Mathematische Probleme lösen mit Maple

Mathematische Probleme lösen mit Maple Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >

Mehr

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

1 Einführung Allgemeine Bemerkungen Einleitende Beispiele Überblick... 10

1 Einführung Allgemeine Bemerkungen Einleitende Beispiele Überblick... 10 Inhaltsverzeichnis 1 Einführung...................................................... 1 1.1 Allgemeine Bemerkungen....................................... 1 1.2 Einleitende Beispiele...........................................

Mehr

MATHEMATIK. Numerische Mathematik. Hans-Görg Roos/Hubert Schwetlick. Das Grundwissen für jedermann. B. G. Teubner Stuttgart Leipzig

MATHEMATIK. Numerische Mathematik. Hans-Görg Roos/Hubert Schwetlick. Das Grundwissen für jedermann. B. G. Teubner Stuttgart Leipzig MATHEMATIK FÜR INGENIEURE UND NATURWISSENSCHAFTLER Hans-Görg Roos/Hubert Schwetlick Numerische Mathematik Das Grundwissen für jedermann B. G. Teubner Stuttgart Leipzig Begründer dieses Lehrwerkes: Prof.

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM)

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Partielle Differenzialgleichungen FE-Methode. Finite Elemente. Fakultät Grundlagen. April 2011

Partielle Differenzialgleichungen FE-Methode. Finite Elemente. Fakultät Grundlagen. April 2011 Finite Elemente Fakultät Grundlagen April 2011 Fakultät Grundlagen Finite Elemente Übersicht 1 Lösungsmethoden Balkenbiegung Wärmeleitung 2 Fakultät Grundlagen Finite Elemente Folie: 2 Lösungsmethoden

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

CARL HANSER VERLAG. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik

CARL HANSER VERLAG. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik CARL HANSER VERLAG Wolfgang Eichholz, Eberhard Vilkner Taschenbuch der Wirtschaftsmathematik 3-446-22080-1 www.hanser.de Inhaltsverzeichnis 1 Grundlagen... 11 1.1 Mengen... 11 1.2 Aussagenlogik... 13 1.3

Mehr

Übungen aus den numerischen Methoden der Astronomie SS 2011

Übungen aus den numerischen Methoden der Astronomie SS 2011 Übungen aus den numerischen Methoden der Astronomie SS 2011 1. Fermat Teil I : Berechnen Sie die Fläche eines rechtwinkeligen Dreiecks mit Hilfe des pythagoräischen Lehrsatzes. Die beiden Katheten sollen

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover

Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover ! H W B - Bibliothek!nv.-Nr. p Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover BERICHT NR. 24/1987 Technische Universität Darmslacit Bibliothek Wasser und Umwelt

Mehr

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung A Maple-Skripte A.1 Einleitung Bei der Ausführung mechanischer Rechnungen können Computeralgebra-Programme sehr nützlich werden. Wenn man genau weiß, was eingesetzt, umgeformt, zusammengefaßt oder entwickelt

Mehr

Hydroinformatik II Prozess-Simulation und Systemanalyse

Hydroinformatik II Prozess-Simulation und Systemanalyse Version 7.01-10. August 2016 Hydroinformatik II Prozess-Simulation und Systemanalyse Prof. Dr.-Ing. Olaf Kolditz TU Dresden / UFZ Leipzig Angewandte Umweltsystemanalyse Department Umweltinformatik Sommersemester

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Mathematik für Ökonomen

Mathematik für Ökonomen Springer-Lehrbuch Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab Bearbeitet von Wolfgang Kohn, Riza Öztürk 1. Auflage 2012. Taschenbuch. xv, 377 S. Paperback

Mehr

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode K.Bräuer: Computersimulation physikalischer Phänomene mit der Finiten-Elemente-Methode 1 Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode Kurt Bräuer Privatdozent am Institut

Mehr