4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum"

Transkript

1 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden. Ein Entscheidungsbaum liefert eine Entscheidung f ür die Frage, welcher Klasse ein betreffes Objekt zuzuordnen ist. Beispiel 4.1. Gegeben seien die Beschreibungen von Bankkunden. Die Bankkunden können in die beiden Klassen kreditw ürdig und nicht kreditw ürdig eingeteilt werden. Ein Entscheidungsbaum soll eine Entscheidung liefern, ob ein Kunde kreditw ürdig ist oder nicht. Ein neues Objekt wird mit Hilfe eines Entscheidungsbaums klassifiziert, indem man ausgeh von der Wurzel jeweils die den Knoten zugeordneten e überpr üft und solange den Kanten folgt, die mit den werten des Objekts markiert sind, bis man einen Blattknoten erreicht. Der dem Blattknoten zugeordnete Wert entspricht der Klasse, der das Objekt zugeordnet wird Entscheidungsbaum Ein Entscheidungsbaum ist ein Baum mit den folgen Eigenschaften: Ein Blatt repräsentiert eine der Klassen. Beispiel 4.2. Ein Entscheidungsbaum zur Risikoabschätzung f ür eine KFZ-Versicherung: = LKW <> LKW Ein innerer Knoten repräsentiert ein. Eine Kante repräsentiert einen Test auf dem des Vaterknotens. > 60 <= 60 Geht man von nur zwei Klassen aus, repräsentiert der Entscheidungsbaum eine boolsche Funktion

2 Soll man auf einen freien Tisch im Restaurant warten? Patrons? Problem der Generierung von Entscheidungsbäumen None Some Full WaitEstimate? > No nate? Hungry? Yes Ziel ist es, aus einer Menge von Beispielen (der sogenannten Trainingsmenge) einen Entscheidungsbaum zu generieren. Ein Beispiel der Trainingsmenge besteht aus einer Menge von /Wert-Paaren zusammen mit der Klassifikation. Reservation? Bar? Yes Fri/Sat? Yes nate? Yes Raining? Aus dieser Trainingsmenge ist ein Entscheidungsbaum aufzubauen, der die Beispiele richtig klassifiziert. F ür so einen generierten Entscheidungsbaum hofft man, daß dieser auch Beispiele, die nicht aus der Trainingsmenge stammen, mit hoher Wahrscheinlichkeit richtig klassifiziert Entscheidungsbäume und Regeln Entscheidungsbäume repräsentieren Regeln in kompakter Form. Jeder Pfad von der Wurzel zu einem Blattknoten entspricht einer logischen Formel in der Form einer if-then-regel. Beispiel 4.4. Trainingsmenge f ür den Baum aus Beispiel 4.2: ID Risikoklasse 1 23 Familie hoch 2 18 Sport hoch 3 43 Sport hoch 4 68 Familie niedrig 5 32 LKW niedrig Beispiel 4.3. Der Entscheidungsbaum aus Beispiel 4.2 entspricht den folgen Regeln: if = LKW then, if LKW and > 60 then, if LKW and 60 then Risikoklasse hoch

3 Naiver Ansatz der Generierung: Ziel der Generierung ist es, einen Baum aufzubauen, Man entscheidet streng sequentiell anhand der e. Jeder Baumebene ist ein zugeordnet. Der Baum wird dann konstruiert, in dem f ür jedes Beispiel ein Pfad erzeugt wird. Tafel. Keine sinnvolle Generalisierung auf andere Fälle Overfitting Entscheidungsbaum mit vielen Knoten der die Beispiele der gegebenen Trainingsmenge korrekt klassifiziert und der möglichst kompakt ist. Bevorzuge die einfachste Hypothese, die konsistent mit allen Beobachtungen ist. Occam s Razor (William of Occam, engl. Philosoph ): One should not increase, beyond what is necessary, the number of entities required to explain anything Beispiel 4.5. Zwei Entscheidungsbäume f ür die Trainingsmenge aus Beispiel 4.4: Prinzip der Generierung = LKW <> LKW < 30 > 60 >= 30 and <= 60 Man teste das wichtigste zuerst! Die Wichtigkeit hängt von der Differenzierung der Beispielmenge ab. > 60 <= 60 <> LKW = LKW Die Beispielmenge wird gemäß der werte des ausgewählten s auf die Söhne verteilt. Man setze dieses Prinzip in jedem Unterbaum f ür die diesem Unterbaum zugeordnete Beispielmenge fort

4 Trainingsmenge zum Thema Kinobesuch : Nr. Attr. Preis Loge Wetter Warten Bes. Kat. Land Res. Gr. Kino? 1 + $$ ja - ja + AC int ja F ja 2 o $ ja o nein o KO int nein P ja 3 o $ nein o ja o DR int nein F nein 4 - $ ja o ja o SF int nein a nein 5 o $ ja o nein o DR int nein P ja 6 + $$ ja + nein + SF int ja F ja 7 o $ ja - nein o KO nat nein F ja 8 o $ nein - ja o AC int nein F ja 9 - $ ja + nein o KO nat nein F nein 10 o $ ja + nein o KO int nein P nein 11 + $ ja o ja + DR int nein P ja 12 o $ nein - ja o AC nat nein a nein 13 + $$ ja o ja o SF int nein a nein 14 o $ ja + ja + DR int ja F nein 15 o $ ja - nein o AC int nein P ja Bei der rekursiven Konstruktion können die folgen Situationen auftreten: 1. Alle Beispiele zu einem Knoten haben die gleiche Klassifikation. Dann wird der Knoten mit der entsprechen Klasse markiert und die Rekursion beet. 2. Die Menge der Beispiele zu einem Knoten ist leer. In diesem Fall kann man eine Default-Klassifikation angeben. Man wählt zum Beispiel die Klasse, die unter den Beispielen des Vaters am häufigsten vorkommt. 3. Falls Beispiele mit unterschiedlicher Klassifikation existieren und es e gibt, die noch nicht in den Vorgängerknoten verwet wurden, dann wähle aus diesen en ein a gemäß seiner Wichtigkeit aus auswahl f ür das Kinoproblem: ja: 1, 6, 7, 8 nein: 3, 9, 14 F ja: 1, 2, 5, 6, 7, 8, 11, 15 nein: 3, 4, 9, 10, 12, 13, 14 Gruppe a ja: nein: 4, 12, 13 ja: 1, 2, 5, 6, 7, 8, 11, 15 nein: 3, 4, 9, 10, 12, 13, 14 P ja: 2, 5, 11, 15 nein: 10 Generiere f ür jeden möglichen wert einen Nachfolgerknoten und verteile die Beispiele auf die Nachfolger gemäß ihres werts. Setze das Verfahren f ür jeden Nachfolger fort. 4. Falls Beispiele mit unterschiedlicher Klassifikation existieren, es aber kein noch nicht verwetes gibt, dann ist die Trainingsmenge inkonsistent. Inkonsistent bedeutet hier, daß keine funktionale Abhängigkeit der Klassifikation von den en existiert. DR ja: 5, 11 nein: 3, 14 AC ja: 1, 8, 15 nein: 12 Kategorie KO ja: 2, 7 nein: 9, 10 SF ja: 6 nein: 4, 13 Beispiel 4.6. Kinoproblem: Als Grad f ür die Wichtigkeit eines s nehme man die Anzahl der Beispiele, die damit g ültig klassifiziert werden. Tafel

5 Algorithmus zur Konstruktion Partitionen für e Typen von Partitionen für nominale e Algorithmus 4.1. [Entscheidungsbaum-Konstruktion] procedure Entscheidungsbaum( T, A, W ) if T = then markiere W mit einer Default-Klasse; return else if t T : Klasse(t) = c then markiere W mit c; return else if A = then error else =a1 =a2 <a1 <=a2 Typen von Partitionen für numerische e =a3 <=a3 in A1 in A2 < a >= a for each a A do for each mögliche Partition P von a do if (a, P) besser als best then best := (a, P) Sei best = (a, P); Seien P 1,..., P n die Teilmengen von P; for i := 1 to n do erzeuge Knoten K i als Sohn von W; T i := {t T t fällt in P i } Entscheidungsbaum( T i, A \ {a}, K i ) 206

4. Lernen von Entscheidungsbäumen

4. Lernen von Entscheidungsbäumen 4. Lernen von Entscheidungsbäumen Entscheidungsbäume 4. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

3. Lernen von Entscheidungsbäumen

3. Lernen von Entscheidungsbäumen 3. Lernen von Entscheidungsbäumen Entscheidungsbäume 3. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

4 Induktion von Regeln

4 Induktion von Regeln 4 Induktion von egeln Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- aare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden. Ein Entscheidungsbaum liefert eine Entscheidung

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume. von Lars-Peter Meyer. im Seminar Methoden wissensbasierter Systeme

Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume. von Lars-Peter Meyer. im Seminar Methoden wissensbasierter Systeme Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume von Lars-Peter Meyer im Seminar Methoden wissensbasierter Systeme bei Prof. Brewka im WS 2007/08 Übersicht Überblick maschinelles Lernen

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Entscheidungsbäume Darstellung durch Regeln ID3 / C4.5 Bevorzugung kleiner Hypothesen Overfitting Entscheidungsbäume

Mehr

Maschinelles Lernen. Kapitel 5

Maschinelles Lernen. Kapitel 5 Kapitel 5 Maschinelles Lernen Im täglichen Leben begegnet uns das Lernen meist in einer Mischung aus den Aspekten der Vergrößerung von Wissen und der Verbesserung von Fähigkeiten. Beim Erlernen einer Fremdsprache

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen Unüberwachtes

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

Data Mining und Text Mining Einführung. S2 Einfache Regellerner

Data Mining und Text Mining Einführung. S2 Einfache Regellerner Data Mining und Text Mining Einführung S2 Einfache Regellerner Hans Hermann Weber Univ. Erlangen, Informatik 8 Wintersemester 2003 hans.hermann.weber@gmx.de Inhalt Einiges über Regeln und Bäume R1 ein

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Musterlösung für das 7. Übungsblatt Aufgabe 1 Gegeben sei folgende Beispielmenge: Day Outlook Temperature Humidity Wind PlayTennis D1? Hot High Weak No D2 Sunny

Mehr

Entscheidungsbäume. Minh-Khanh Do Erlangen,

Entscheidungsbäume. Minh-Khanh Do Erlangen, Entscheidungsbäume Minh-Khanh Do Erlangen, 11.07.2013 Übersicht Allgemeines Konzept Konstruktion Attributwahl Probleme Random forest E-Mail Filter Erlangen, 11.07.2013 Minh-Khanh Do Entscheidungsbäume

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

3.3 Nächste-Nachbarn-Klassifikatoren

3.3 Nächste-Nachbarn-Klassifikatoren 3.3 Nächste-Nachbarn-Klassifikatoren Schrauben Nägel Klammern Neues Objekt Instanzbasiertes Lernen (instance based learning) Einfachster Nächste-Nachbar-Klassifikator: Zuordnung zu der Klasse des nächsten

Mehr

Entscheidungsbaum-Lernen: Übersicht

Entscheidungsbaum-Lernen: Übersicht Entscheidungsbaum-Lernen: Übersicht Entscheidungsbäume als Repräsentationsformalismus Semantik: Klassifikation Lernen von Entscheidungsbäumen vollst. Suche vs. TDIDT Tests, Ausdrucksfähigkeit Maße: Information

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Modellbasierte Diagnosesysteme

Modellbasierte Diagnosesysteme Modellbasierte Diagnosesysteme Diagnose: Identifikation eines vorliegenden Fehlers (Krankheit) auf der Basis von Beobachtungen (Symptomen) und Hintergrundwissen über das System 2 Arten von Diagnosesystemen:

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

Unterscheidung: Workflowsystem vs. Informationssystem

Unterscheidung: Workflowsystem vs. Informationssystem 1. Vorwort 1.1. Gemeinsamkeiten Unterscheidung: Workflowsystem vs. Die Überschneidungsfläche zwischen Workflowsystem und ist die Domäne, also dass es darum geht, Varianten eines Dokuments schrittweise

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2009/2010 Musterlösung für das 9. Übungsblatt Aufgabe 1: Decision Trees Gegeben sei folgende Beispielmenge: Age Education Married Income Credit?

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Rotation. y T 3. Abbildung 3.10: Rotation nach rechts (analog links) Doppelrotation y

Rotation. y T 3. Abbildung 3.10: Rotation nach rechts (analog links) Doppelrotation y Die AVL-Eigenschaft soll bei Einfügungen und Streichungen erhalten bleiben. Dafür gibt es zwei mögliche Operationen: -1-2 Rotation Abbildung 3.1: Rotation nach rechts (analog links) -2 +1 z ±1 T 4 Doppelrotation

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Grundzüge DS & Alg (WS14/15) Lösungsvorschlag zu Aufgabenblatt 3. Aufgabe 1. (a) nicht-heap (b) Heap 25. (c) Beinahe-Heap 9.

Grundzüge DS & Alg (WS14/15) Lösungsvorschlag zu Aufgabenblatt 3. Aufgabe 1. (a) nicht-heap (b) Heap 25. (c) Beinahe-Heap 9. Lösungsvorschlag zu Aufgabenblatt Aufgabe 1 (a) nicht-heap 1 1 5 5 1 1 (b) Heap 5 1 1 14 5 10 4 (c) Beinahe-Heap 1 1 4 1 10 Heapify 1. Iteration. Iteration. Iteration 1 1 1 1 1 1 10 4 1 10 4 1 10 4 1 1

Mehr

Kapitel ML: III. III. Entscheidungsbäume. Repräsentation und Konstruktion Impurity-Funktionen Entscheidungsbaumalgorithmen Pruning

Kapitel ML: III. III. Entscheidungsbäume. Repräsentation und Konstruktion Impurity-Funktionen Entscheidungsbaumalgorithmen Pruning Kapitel ML: III III. Entscheidungsbäume Repräsentation und Konstruktion Impurity-Funktionen Entscheidungsbaumalgorithmen Pruning ML: III-1 Decision Trees c STEIN/LETTMANN 2005-2011 Spezifikation von Klassifikationsproblemen

Mehr

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Computational Linguistics Universität des Saarlandes Sommersemester 2011 28.04.2011 Entscheidungsbäume Repräsentation von Regeln als Entscheidungsbaum (1) Wann spielt Max Tennis?

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Kapitel 7 Fortgeschrittene Datenstrukturen Motivation: Lineare Liste: Suchen eines Elements ist schnell O(log n) Einfügen eines Elements ist langsam

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

fuzzy-entscheidungsbäume

fuzzy-entscheidungsbäume fuzzy-entscheidungsbäume klassische Entscheidungsbaumverfahren fuzzy Entscheidungsbaumverfahren Entscheidungsbäume Was ist ein guter Mietwagen für einen Familienurlaub auf Kreta? 27. März 23 Sebastian

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge von Datensätzen. Beispiele

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 122 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 123 Das Suchproblem Gegeben Menge von Datensätzen.

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

12. Maschinelles Lernen

12. Maschinelles Lernen 12. Maschinelles Lernen Maschinelles Lernen dient der Herbeiführung vn Veränderungen im System, die adaptiv sind in dem Sinne, daß sie es dem System ermöglichen, dieselbe der eine ähnliche Aufgabe beim

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet

22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet 22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet Autor Volker Claus, Universität Stuttgart Volker Diekert, Universität Stuttgart Holger Petersen, Universität Stuttgart

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 119 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 120 Das Suchproblem Gegeben

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

4. OBDDs und Modellüberprüfung

4. OBDDs und Modellüberprüfung 4. OBDDs und Modellüberprüfung OBDD Ordered Binary Decision Diagrams Geordnete binäre Entscheidungsdiagramme Binäres Entscheidungsdiagramm: in der einfachsten Form ein binärer Entscheidungsbaum, in dem

Mehr

TU München. Hauptseminar: WS 2002 / Einführung in Suffix - Bäume

TU München. Hauptseminar: WS 2002 / Einführung in Suffix - Bäume TU München Hauptseminar: WS 2002 / 2003 Einführung in Suffix - Bäume Bearbeiterin: Shasha Meng Betreuerin: Barbara König Inhalt 1. Einleitung 1.1 Motivation 1.2 Eine kurze Geschichte 2. Tries 2.1 Basisdefinition

Mehr

5. Assoziationsregeln

5. Assoziationsregeln 5. Generieren von Assoziationsregeln Grundbegriffe 5. Assoziationsregeln Assoziationsregeln beschreiben gewisse Zusammenhänge und Regelmäßigkeiten zwischen verschiedenen Dingen, z.b. den Artikeln eines

Mehr

Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8

Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8 ETH Zürich Institut für Theoretische Informatik Prof. Dr. Angelika Steger Florian Meier, Ralph Keusch HS 2017 Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8 Lösungsvorschlag zu Aufgabe 1

Mehr

Informatik II Übung 2

Informatik II Übung 2 Informatik II Übung 2 Florian Scheidegger florsche@student.ethz.ch Folien mit freundlicher Genehmigung adaptiert von Gábor Sörös und Simon Mayer gabor.soros@inf.ethz.ch, simon.mayer@inf.ethz.ch 7.3.2013

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen II: Klassifikation mit Entscheidungsbäumen Prof Dr. Matthew Crocker Universität des Saarlandes 9. Juli 2015 Matthew Crocker (UdS) Mathe III 9. Juli 2015

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

Objektorientierte Programmierung. Kapitel 3: Syntaxdiagramme und Grammatikregeln

Objektorientierte Programmierung. Kapitel 3: Syntaxdiagramme und Grammatikregeln Stefan Brass: OOP (Java), 3. Syntaxdiagramme und Grammatikregeln 1/32 Objektorientierte Programmierung Kapitel 3: Syntaxdiagramme und Grammatikregeln Stefan Brass Martin-Luther-Universität Halle-Wittenberg

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

1. Lernen von Konzepten

1. Lernen von Konzepten 1. Lernen von Konzepten Definition des Lernens 1. Lernen von Konzepten Lernziele: Definitionen des maschinellen Lernens kennen, Klassifikationen des maschinellen Lernens kennen, Das Prinzip des induktiven

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Organic Computing: Peer-to-Peer-Netzwerke

Organic Computing: Peer-to-Peer-Netzwerke Organic Computing Peer-to-Peer-Netzwerke Rolf Wanka Sommersemester 2015 rwanka@cs.fau.de Inhalte Kurze Geschichte der Peer-to-Peer- Netzwerke Das Internet: Unter dem Overlay Die ersten Peer-to-Peer-Netzwerke

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Entscheidungsbäume aus großen Datenbanken: SLIQ

Entscheidungsbäume aus großen Datenbanken: SLIQ Entscheidungsbäume aus großen Datenbanken: SLIQ C4.5 iteriert häufig über die Trainingsmenge Wie häufig? Wenn die Trainingsmenge nicht in den Hauptspeicher passt, wird das Swapping unpraktikabel! SLIQ:

Mehr

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen reguläre Grammatiken/prachen Beschreibung für Bezeichner in Programmiersprachen Beschreibung für wild cards in kriptsprachen (/* reguläre Ausdrücke */)?; [a-z]; * kontextfreie Grammatiken/prachen Beschreibung

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Grundlagen des Maschinellen Lernens Kap. 4: Lernmodelle Teil II

Grundlagen des Maschinellen Lernens Kap. 4: Lernmodelle Teil II 1. Motivation 2. Lernmodelle Teil I 2.1. Lernen im Limes 2.2. Fallstudie: Lernen von Patternsprachen 3. Lernverfahren in anderen Domänen 3.1. Automatensynthese 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen.

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen. Wiederholung Baum: Gerichteter Graph, der die folgenden drei Bedingungen erfüllt: Es gibt einen Knoten, der nicht Endknoten einer Kante ist. (Dieser Knoten heißt Wurzel des Baums.) Jeder andere Knoten

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum

Mehr

5.4 Nächste-Nachbarn-Klassifikatoren

5.4 Nächste-Nachbarn-Klassifikatoren 5.4 Nächste-Nachbarn-Klassifikatoren Schrauben Nägel Klammern Neues Objekt Instanzbasiertes Lernen (instance based learning) Einfacher Nächster-Nachbar-Klassifikator: Zuordnung zu der Klasse des nächsten

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen II: Klassifikation mit Entscheidungsbäumen Vera Demberg Universität des Saarlandes 12. Juli 2012 Vera Demberg (UdS) Mathe III 12. Juli 2012 1 / 38 Einleitung

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Beispiellösungen DM. Prof. Dr. Jürgen Cleve. Das Beispiel zum Support und der Kondenz

Beispiellösungen DM. Prof. Dr. Jürgen Cleve. Das Beispiel zum Support und der Kondenz Beispiellösungen DM Prof. Dr. Jürgen Cleve Inhaltsverzeichnis 1 Einführung 1 Grundlagen 1 Anwendungsklassen 1 4 Wissensrepräsentation 1 Methoden und Verfahren 6 Vorverarbeitung 9 7 Bewertung 9 Im folgenden

Mehr

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen (Kontextsensitive) Sprachen L 2 Menge aller kontextfreien

Mehr

Entwurf von Algorithmen - Kontrollstrukturen

Entwurf von Algorithmen - Kontrollstrukturen Entwurf von Algorithmen - Kontrollstrukturen Eine wichtige Phase in der Entwicklung von Computerprogrammen ist der Entwurf von Algorithmen. Dieser Arbeitsschritt vor dem Schreiben des Programmes in einer

Mehr

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20 Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 22. Constraint-Satisfaction-Probleme: Kantenkonsistenz Malte Helmert Universität Basel 14. April 2014 Constraint-Satisfaction-Probleme: Überblick Kapitelüberblick

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Kapitel 7: Formaler Datenbankentwurf

Kapitel 7: Formaler Datenbankentwurf 7. Formaler Datenbankentwurf Seite 1 Kapitel 7: Formaler Datenbankentwurf Die Schwierigkeiten der konzeptuellen Modellierung sind zu einem großen Teil dadurch begründet, dass sich die relevanten Strukturen

Mehr

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G

Mehr

Mathias Krüger / Seminar Datamining

Mathias Krüger / Seminar Datamining Entscheidungsbäume mit SLIQ und SPRINT Mathias Krüger Institut für Informatik FernUniversität Hagen 4.7.2008 / Seminar Datamining Gliederung Einleitung Klassifikationsproblem Entscheidungsbäume SLIQ (

Mehr

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen 4.4 MX-Quadtrees (I) MatriX Quadtree Verwaltung 2-dimensionaler Punkte Punkte als 1-Elemente in einer quadratischen Matrix mit Wertebereich {0,1} rekursive Aufteilung des Datenraums in die Quadranten NW,

Mehr