1 topologisches Sortieren

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1 topologisches Sortieren"

Transkript

1 Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung möglich) b) v an Ausgabeliste anhängen c) v und alle Kanten welche von v ausgehen löschen. Grundidee Häufig können Daten nicht eindimensional in Listen dargestellt werden, sondern es sind kompliziertere Datenstrukturen nötig. Wenn auch Bäume nicht ausreichen, bietet sich eine Darstellung als Graph an. Diese bestehen aus Knoten (mit einer Beschriftung) und Kanten, welche je zwei Knoten (gegebenenfalls mit Richtung) verbinden können. Bäume (und damit auch Listen) sind daher offenbar Spezialfälle von Graphen. Offenbar sind auch für diese komplexeren Strukturen Sortier- und Suchalgorithmen notwendig. Im Folgenden wird daher die topologische Sortierung sowie die Tiefen- und Breitensuche erläutert. Ein gerichteter Graph ist sehr gut geeignet, um Abhängigkeiten darzustellen. Beispielsweise benötigt man zum Bestehen der Logikklausur Wissen über Aussagen- und Prädikatenlogik. Die Prädikatenlogik setzt die Aussagenlogik voraus. Damit man weiß, worauf man sich einlässt, sollte man Lord of Logic sehen und zur Vorbereitung auf die Prädikatenlogik bietet sich hoelli.avi an. Insgesamt lässt sich dies als Graph darstellen: Aussagenlogik Prädikatenlogik Lord of Logic Klausur hoelli.avi Die Frage der topologischen Sortierung ist nun: In welcher Reihenfolge sollte man lernen, um die Klausur zu bestehen? (Zum Beispiel könnte man zuerst Lord of Logic schauen, dann die Aussagenlogik lernen, danach hoelli.avi anschauen, die Prädikatenlogik lernen und schließlich zur Klausur gehen.). Erklärung am Beispiel Folgender gerichteter Graph soll topologisch sortiert werden: Ausgabeliste: Zuerst sucht man einen Knoten in dem Graphen, zu dem keine Kante führt. In diesem Fall gehen von Knoten und je zwei Kanten aus, aber es führt keine Kante zu den beiden Knoten. Wir können also entweder den Knoten oder wählen. Im folgenden Bild

2 Wolfgang Hönig / Andreas Ecke WS 09/0 wurde Knoten gewählt und deshalb an die Ausgabeliste drangehängt. Da dieser Knoten nun komplett abgearbeitet wurde, kann er ohne weiteres inklusive der zugehörigen Kanten gelöscht werden: Ausgabeliste: Jetzt wird wieder ein Knoten gesucht, zu dem keine Kanten führen ( oder erfüllen die Bedingung). Nach dem Anhängen an die Liste und löschen von Knoten ergibt sich: Ausgabeliste:, Diesmal fällt die Auswahl auf Knoten : Ausgabeliste:,, Jetzt bleibt nur noch Knoten übrig, welcher die Eigenschaft erfüllt: Ausgabeliste:,,, Nun ist nur noch Knoten auswählbar: Ausgabeliste:,,,, Es ergibt sich schließlich:,,,,,. Aus dem Text ist ersichtlich, dass die Wahl des Knotens v teilweise beliebig ist (Am Anfang zum Beispiel oder ). Deshalb gibt es auch mehrere korrekte Lösungen:,,,,, oder,,,,, oder,,,,, oder,,,,,... Eigenschaften Komplexität: O(n + m) mit n... Anzahl Knoten, m... Anzahl Kanten

3 Tiefensuche (DFS). Aufgabentyp Der gerichtete Graph G = (V, E) sei durch folgende Darstellung gegeben: [...] Wenden Sie auf den Graphen G den DFS-Algorithmus mit dem Startknoten [...] an, und bestimmen Sie auf diese Weise einen depth first forest. Geben Sie mindestens drei unterschiedliche Lösungen an. Zwischenschritte zu den Lösungen brauchen Sie nicht anzugeben.. Überblick. Startknoten v übernehmen, falls noch nicht besucht. für jeden nicht besuchten Nachfolger u in v a) Kante von v nach u b) Tiefensuche(u) (rekursiv!). Falls Tiefensuche komplett beendet (inklusive rekursiver Abbau): Tiefensuche(u) für einen noch nicht besuchten Knoten u. Grundidee Große Graphen sind meist nicht in ihrem gesamten Ausmaß bekannt (d.h. die komplette Menge der Knoten und Kanten ist nicht bekannt), sondern es existiert ein bekannter Knoten. Jeder Knoten wiederum kennt seine Nachfolger (also die Kanten). Zum Beispiel kann das Internet als Graph aufgeschrieben werden, wobei nur ein Startknoten bekannt ist (der eigene Computer) sowie einige Kanten (Nachbarcomputer). Soll nun ein bestimmter Knoten gesucht werden, muss natürlich verhindert werden, dass ein Knoten mehrmals besucht wird. Ansonsten könnte die Suchanfrage durch Zyklen in dem Graphen ewig andauern. Ziel einer Suche auf Graphen ist also primär doppeltes Besuchen von Knoten zu vermeiden. Letztendlich gibt es zwei verschiedene Strategien: Tiefen- und Breitensuche. Bei der Tiefensuche wird ein Nachfolgerknoten bevorzugt behandelt, während bei der Breitensuche (nahezu) alle Nachfolger gleichmäßig abgearbeitet werden. Die eigentliche Suche rückt bei uns etwas in den Hintergrund - es wird jeweils nur der Suchbaum (bzw. Suchwald) betrachtet. Das ist die Datenstruktur, welche im worst-case (Element nicht gefunden) entstehen würde. Um eine vollständige Suche herzustellen ist nur bei jedem neuen Element ein jeweiliger Vergleich nötig. Prüfungsrelevant ist jedoch nur der Wald, welcher bei der Tiefensuche auf gerichteten Graphen entsteht, beziehungsweise der Baum, welcher bei der Breitensuche auf ungerichteten Graphen entsteht.. Erklärung am Beispiel Folgender gerichteter Graph sei gegeben:

4 Wolfgang Hönig / Andreas Ecke WS 09/0 Als erstes kann ein Startknoten ausgesucht werden (in der Klausur ist dieser meist vorgegeben). Hier soll Knoten gewählt werden. Dieser hat die Nachfolgerknoten, und. Alle drei Nachfolger wurden noch nicht besucht. Also wählen wir einen Nachfolger - z.b. die - aus, ziehen eine Kante von nach, rufen Tiefensuche() auf und erhalten: Die hat keinen Nachfolger, sodass kein weiterer rekursiver Aufruf erfolgen kann. Also betrachten wir wieder eine Ebene obendrüber den Knoten. Dieser hat jetzt noch zwei nicht besuchte Nachfolger: und. Wir wählen wiederum einen Nachfolger aus (hier die ), ziehen eine Kante von nach und rufen Tiefensuche() auf. Damit ergibt sich: Der Knoten hat nur einen noch nicht besuchten Nachfolger: die. Damit erhalten wir: Die hat wiederum nur einen Nachfolger (die ). Allerdings wurde diese schon besucht, sodass kein rekursiver Aufruf erfolgen kann. Wir betrachten also wieder eine Ebene niedriger: den Knoten. Auch dieser Knoten hat keine noch nicht besuchten Nachfolger, so dass wiederm eine Ebene tiefer betrachtet wird: die. Hier ist noch ein nicht besuchter Knoten übrig, nämlich die, sodass sich ergibt: Die hat keine noch nicht besuchten Nachfolger. Also betrachten wir wieder die nächsthöhere Ebene. Auch die hat keine noch nicht besuchten Nachfolger mehr. Also muss die Tiefensuche noch einmal für einen anderen Startknoten aufgerufen werden. In diesem Beispiel bietet sich die an:

5 Wolfgang Hönig / Andreas Ecke WS 09/0 Der Knoten hat nur einen noch nicht besuchten Nachfolger: die : Die hat keine nicht besuchten Knoten mehr, ebenso wenig wie die Ebene obendrüber (Knoten ). Also wurden alle Knoten mit der Tiefensuche erschlossen und der Algorithmus ist fertig. In der Klausur ist Baum und kein gerichteter Graph gefordert. Damit ergibt sich als korrekte Schreibweise: Auch hier sind wieder sehr viele verschiedene Lösungen möglich, je nachdem wie die Knotenreihenfolge gewählt wird. Bei Startknoten ist zum Beispiel auch folgende Lösungen korrekt: oder.. Eigenschaften Komplexität: O(n + m) mit n... Anzahl Knoten, m... Anzahl Kanten

6 Breitensuche (BFS). Aufgabentyp Der ungerichtete Graph G = (V, E) sei durch folgende Darstellung gegeben: [...] Wenden Sie auf den Graphen G den BFS-Algorithmus mit dem Startknoten [...] an, und bestimmen Sie auf diese Weise einen breadth first tree. Geben Sie mindestens drei unterschiedliche Lösungen an. Zwischenschritte zu den Lösungen brauchen Sie nicht anzugeben.. Überblick. Startknoten an Warteschlänge hängen. Solange Warteschlage nicht leer: Element v aus der Warteschlage entnehmen und für jeden nicht besuchten Nachfolger u von v: Kante von v nach u u an Warteschlange hängen. Grundidee siehe Tiefensuche.. Erklärung am Beispiel Folgender ungerichteter Graph sei gegeben: Warteschlange: Als erstes kann ein Startknoten ausgesucht werden (in der Klausur ist dieser meist vorgegeben). Hier soll Knoten gewählt werden. Also wird die an unsere Warteschlange W = gehängt. Jetzt wird das erste Element aus der Warteschlange entnommen, in diesem Fall also die. Knoten hat die Nachfolgerknoten,, und. Alle vier Nachfolger wurden noch nicht besucht. Also zeichnen wir eine Kante von nach, nach, nach und nach. Und hängen diese Nachfolgerknoten an die Warteschlange: Warteschlange:,,, Jetzt wird wieder das erste Element - diesmal die - aus der Schlange entnommen. Es gibt nur einen noch nicht besuchten Nachfolgerknoten: Knoten. Also zeichnen wir eine Kante von nach und fügen die der Warteschlange hinzu:

7 Wolfgang Hönig / Andreas Ecke WS 09/0 Warteschlange:,,, Das nächste Element, welches entnommen wird ist die. Der einzige Nachfolgerknoten ist die, welche an die Warteschlange gehängt wird. Zustätzlich entsteht die neue Kante von nach : Warteschlange:,,, Nun müssen der Reihe nach noch die,, und abgearbeitet werden. Da aber keiner dieser Knoten noch nicht besuchte Nachfolger hat, ist die Breitensuche beendet. In der Klausur ist ein Baum und kein Graph gefordert. Damit ergibt sich als korrekte Schreibweise: Auch hier sind wieder sehr viele verschiedene Lösungen möglich, je nachdem wie die Knotenreihenfolge gewählt wird. Bei Startknoten ist zum Beispiel auch folgende Lösung korrekt: Mit Startknoten ergibt sich: oder.. Eigenschaften Komplexität: O(n + m) mit n... Anzahl Knoten, m... Anzahl Kanten

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Datenstrukturen: Anordnung von Daten, z.b. als Liste (d.h. in bestimmter Reihenfolge) Beispiel: alphabetisch sortiertes Wörterbuch... Ei - Eibe - Eidotter... als Baum (d.h.

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Kapitel 6: Graphalgorithmen Gliederung

Kapitel 6: Graphalgorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss.

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. (a, b)-bäume / 1. Szenario: Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. Konsequenz: Kommunikation zwischen Hauptspeicher und Festplatte - geschieht nicht Byte für Byte,

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die nformatik 2 raphenexploration Sven Kosub A Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdurchläufe Maike Buchin 22. und 27.6.2017 Graphexploration Motivation: Für viele Zwecke will man den gesamten Graphen durchlaufen, zb. um festzustellen ob er (stark) zusammenhängt.

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

Breiten- und Tiefensuche in Graphen

Breiten- und Tiefensuche in Graphen Breiten- und Tiefensuche in Graphen Inhalt Theorie. Graphen. Die Breitensuche in der Theorie am Beispiel eines ungerichteten Graphen. Die Tiefensuche in der Theorie am Beispiel eines gerichteten Graphen

Mehr

Wie halte ich Ordnung auf meiner Festplatte?

Wie halte ich Ordnung auf meiner Festplatte? Wie halte ich Ordnung auf meiner Festplatte? Was hältst du von folgender Ordnung? Du hast zu Hause einen Schrank. Alles was dir im Wege ist, Zeitungen, Briefe, schmutzige Wäsche, Essensreste, Küchenabfälle,

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Algorithmen und Datenstrukturen 1-5. Seminar -

Algorithmen und Datenstrukturen 1-5. Seminar - Algorithmen und Datenstrukturen 1-5. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Wintersemester 2009/10 Outline 5.+6. Übungsserie: 5 Aufgaben, insgesamt 40 Punkte A17 Baum-Traversierung

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

1 AVL-Bäume. 1.1 Aufgabentyp. 1.2 Überblick. 1.3 Grundidee

1 AVL-Bäume. 1.1 Aufgabentyp. 1.2 Überblick. 1.3 Grundidee AVL-Bäume. Aufgabentyp Fügen Sie in einen anfangs leeren AVL Baum die folgenden Schlüssel ein:... Wenden Sie hierbei konsequent den Einfüge /Balancierungsalgorithmus an und dokumentieren Sie die ausgeführten

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe?

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Aufgabe 1: Das Stanzblech: Löcher In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Bei dieser Aufgabe kann rückwärts gearbeitet

Mehr

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / Traversierung ADS: Algorithmen und Datenstrukturen Teil Prof. Peter F. Stadler & Sebastian

Mehr

Datenstrukturen. einfach verkettete Liste

Datenstrukturen. einfach verkettete Liste einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten

Mehr

Produktentwicklung damit sollten Sie rechnen

Produktentwicklung damit sollten Sie rechnen Produktentwicklung damit sollten Sie rechnen 0. Zusammenfassung Wer Produktentwicklung betreiben will, muss in erster Linie sehr viel lesen: Dokumente aus unterschiedlichsten Quellen und in vielen Formaten.

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen

Mehr

NAME, VORNAME: Studiennummer: Matrikel:

NAME, VORNAME: Studiennummer: Matrikel: TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Breitensuche, Tiefensuche Wir besprechen nun zwei grundlegende Verfahren, alle Knoten eines Graphen zu

Mehr

12. AuD Tafelübung T-C3

12. AuD Tafelübung T-C3 12. AuD Tafelübung T-C3 Simon Ruderich 2. Februar 2011 Kollisionen (Primär)Kollision Stelle mit normal eingefügtem Element schon belegt (gleicher Hashwert) tritt bei verketteten Listen und Sondierung auf

Mehr

Pro Informatik 2009: Objektorientierte Programmierung Tag 18. Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik

Pro Informatik 2009: Objektorientierte Programmierung Tag 18. Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik Tag 18 Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik 09.09.2009 Agenda Tag 16 Datenstrukturen Abstrakte Datentypen, ADT Folge: Stack, Queue, Liste, ADT Menge: Bäume:

Mehr

Windows. Workshop Internet-Explorer: Arbeiten mit Favoriten, Teil 1

Windows. Workshop Internet-Explorer: Arbeiten mit Favoriten, Teil 1 Workshop Internet-Explorer: Arbeiten mit Favoriten, Teil 1 Wenn der Name nicht gerade www.buch.de oder www.bmw.de heißt, sind Internetadressen oft schwer zu merken Deshalb ist es sinnvoll, die Adressen

Mehr

Algorithmen und Datenstrukturen Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor

Algorithmen und Datenstrukturen Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor Die Klausur besteht aus 6 Aufgaben und umfasst 60 Punkte. Bitte schreiben Sie die Lösungen auf die Aufgabenblätter. Vergessen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Graphen 9/1 Begriffsdefinitionen Ein Graph besteht aus Knoten und Kanten. Ein Knoten(Ecke) ist ein benanntes Objekt. Eine Kante verbindet zwei Knoten. Kanten haben ein Gewicht

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012 Algorithmen und Datenstrukturen Tafelübung 14 Jens Wetzl 8. Februar 2012 Folien Keine Garantie für Vollständigkeit und/oder Richtigkeit Keine offizielle Informationsquelle LS2-Webseite Abrufbar unter:

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 13. Übung minimale Spannbäume, topologische Sortierung, AVL-Bäume Clemens Lang Übungen zu AuD 4. Februar 2010 Clemens Lang (Übungen zu AuD) Algorithmen und Datenstrukturen

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

1 Exploration geordneter Wurzelbäume

1 Exploration geordneter Wurzelbäume Exploration geordneter Wurzelbäume Ein geordneter Wurzelbaum ist ein Baum, bei welchem ein Knoten als Wurzel ausgezeichnet wird und bei welchem die Kinder eines Knotens linear, sagen wir von links nach

Mehr

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer Algorithmen und Datenstrukturen Große Übung vom 29.10.09 Nils Schweer Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/courses/ws0910/aud/index.html Kleine Übungen

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. Bäume und Wälder 2 / 37 Bäume

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Muster. Informatik 3 (Februar 2004) Name: Matrikelnummer: Betrachten Sie den folgenden Suchbaum. A G H J K M N

Muster. Informatik 3 (Februar 2004) Name: Matrikelnummer: Betrachten Sie den folgenden Suchbaum. A G H J K M N 2 von 15 Aufgabe 1: Suchbäume (14 ) Betrachten Sie den folgenden Suchbaum. A B C D E F G H I J K L M N O P R (a) (1 Punkt ) Geben Sie die Höhe des Knotens F an. (b) (1 Punkt ) Geben Sie die Tiefe des Knotens

Mehr

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Verbindung Windows-Explorer mit Webablage (DMS) Alfresco

Verbindung Windows-Explorer mit Webablage (DMS) Alfresco Verbindung Windows-Explorer mit Webablage (DMS) Alfresco Anleitung Anton Kejr, system worx PartG http://www.system-worx.de V1.0 / 20.10.08 Inhaltsverzeichnis 0. Gegenstand dieser kurzen Anleitung...2 1.

Mehr

13 OOP MIT DELPHI. Records und Klassen Ein Vergleich

13 OOP MIT DELPHI. Records und Klassen Ein Vergleich 13 OOP MIT DELPHI Delphi war früher "Object Pascal". Dieser Name impliziert eine Funktionalität, welche in der Welt der Programmierung nicht mehr wegzudenken ist: die objektorientierte Programmierung,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2017/18 20. Vorlesung Tiefensuche und topologische Sortierung Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Themen für den 3. Kurztest (Do, 25.01.18)

Mehr

Fotogalerie mit PWGallery in Joomla (3.4.0) erstellen

Fotogalerie mit PWGallery in Joomla (3.4.0) erstellen Fotogalerie mit PWGallery in Joomla (3.4.0) erstellen Als ersten Schritt müssen wir alle Fotos die in die Galerie sollen hochladen. Wir gehen davon aus, dass das Plugin PWGallery bereits installiert und

Mehr

PROSEMINAR ONLINE ALGORITHMEN

PROSEMINAR ONLINE ALGORITHMEN PROSEMINAR ONLINE ALGORITHMEN im Wintersemester 2000/2001 Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans (Betreuer) Vortrag vom 15.11.2000 von Jan Schmitt Thema : Finden eines

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten.

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten. 7. KURVEN UND KNOTEN INFORMATION: Sämtliche Objekte bestehen in CorelDRAW aus Linien oder Kurven. So ist ein Rechteck ein Gebilde aus einem Linienzug, ein Kreis hingegen besteht aus einer Kurve. Zum Bearbeiten

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind. 3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Graphenalgorithmen I

Graphenalgorithmen I Graphenalgorithmen I Vortrag im Seminar Hallo Welt! für Fortgeschrittene 7. Juni 211 Graphenalgorithmen I 1/33 Motivation Problem Wie komme ich am schnellsten ins Kanapee? Problem Wie kommt ein Datenpaket

Mehr

Klinikmütze. Es eignen sich Jersey- oder Interlockstoffe, am Besten mit Elasthananteil.

Klinikmütze. Es eignen sich Jersey- oder Interlockstoffe, am Besten mit Elasthananteil. Klinikmütze Das Klinik-Mützen-Projekt möchte mit bunten Mützen ein bisschen Farbe in den tristen Klinikalltag bringen und den kleinen Patienten ein Lächeln ins Gesicht zaubern. Die Mützen sollen sowohl

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Des Kaisers neue Kleider

Des Kaisers neue Kleider Des Kaisers neue Kleider (Dänisches Märchen nach H. Chr. Andersen) Es war einmal. Vor vielen, vielen Jahren lebte einmal ein Kaiser. Er war sehr stolz und eitel. Er interessierte sich nicht für das Regieren,

Mehr

Struktur am Beispiel einer Liste

Struktur am Beispiel einer Liste Struktur am Beispiel einer 1 Einfügen(neues element ) Aktiv Wartend knoten knoten 2 Einfügen(neues element ) Aktiv Wartend knoten knoten 3 Einfügen(neues element ) Aktiv Wartend knoten knoten 4 Aha, ich

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (2) Spannbäume Kürzeste Wege Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 455 Wiederholung Traversierung eines Graphen via Tiefendurchlaufs

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH

MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH MORE Profile Pass- und Lizenzverwaltungssystem erstellt von: Thorsten Schumann erreichbar unter: thorsten.schumann@more-projects.de Stand: MORE Projects GmbH Einführung Die in More Profile integrierte

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

Wir arbeiten mit Zufallszahlen

Wir arbeiten mit Zufallszahlen Abb. 1: Bei Kartenspielen müssen zu Beginn die Karten zufällig ausgeteilt werden. Wir arbeiten mit Zufallszahlen Jedesmal wenn ein neues Patience-Spiel gestartet wird, muss das Computerprogramm die Karten

Mehr

Herzlich Willkommen beim Webinar: Was verkaufen wir eigentlich?

Herzlich Willkommen beim Webinar: Was verkaufen wir eigentlich? Herzlich Willkommen beim Webinar: Was verkaufen wir eigentlich? Was verkaufen wir eigentlich? Provokativ gefragt! Ein Hotel Marketing Konzept Was ist das? Keine Webseite, kein SEO, kein Paket,. Was verkaufen

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

25 kann ohne Rest durch 5 geteilt werden! ist wahr

25 kann ohne Rest durch 5 geteilt werden! ist wahr Lehrbrief 2: Lektion 8 - C -Praxis 4-1 - 5.2 Einfache Entscheidungen mit if und die Vergleichsoperatoren Nun tauchen wir immer tiefer in die Geheimnisse von C ein und beschäftigen uns mit einem sehr wichtigen

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr