Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung

Größe: px
Ab Seite anzeigen:

Download "Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung"

Transkript

1 ud Baubetrieb A Ivestitiosrechug

2 ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff Vollstädige Geschichte vo Zahluge auf (Eizahlug) ud vo (Auszahlug) eiem oto Eigekapital 1.. Fremdkapital t t 1 t 2 t 3 t 4 Ivestitiosarte - Sach- ud Realivestitioe: Grudstücke, Gebäude, Maschie - Fiazivestitioe: Beteiliguge, Wertpapiere - Ivestitioe i de Geschäftswert: F&E, Werbug, Fortbildug Mitarbeiter Ivestitio als Etscheidugsproblem - Vorliege vo Alterative ja/ei- oder Auswahletscheidug - Ziele Maximierug der zuküftige Eikommesströme Recheverfahre

3 ud Baubetrieb Aforderuge a die Recheverfahre Gütekriterie zur Beurteilug der Recheverfahre - Eiheit der Zahlugsströme Das Verfahre soll alle mit der Ivestitio verbudee Zahlugsströme berücksichtige - Etscheidugsregel Es muss ei riterium bestimmt werde köe, mit dem das Ergebis sivoll iterpretiert werde ka - Berücksichtigug vo Zahlugszeitpukte Zwei Zahluge gleicher absoluter Höhe uterscheide sich deoch i ihrem Wert, falls sie zu uterschiedliche Zeitpukte afalle Beispiel Jahr 5% pro Jahr Jahr Ei EURO heute ist mehr wert als ei EURO morge, solage der Zissatz größer ist.

4 ud Baubetrieb Folie 4 Methode der Ivestitiosrechug Jacob; lei; Nick (1994); Basiswisse Ivestitio ud Fiazierug; S.46 Statische Verfahre ostevergleichsrechug Gewivergleichsrechug Retabilitätsberechug Statische Pay-off-Methode / Amortisatiosrechug Methode der Ivestitiosrechug Dyamische Verfahre Abzisug auf t Dyamische Pay-off-Methode Vermögesedwertmethode apitalwertmethode Auitätemethode Methode des itere Zisfußes Aufzisug auf t N Sollzismethode (Baldwi-Zissatz)

5 ud Baubetrieb Folie 5 - ostevergleichsrechug - Beispiel A 2 (oste) Verfahre 1 Verfahre 2 Trasportbeto vs. Baustellebeto Trasportbeto ur variable oste Baustellebeto fixe ud variable oste Wirtschaftlichkeitsgreze ostegleichuge A 1 x x (Mege) 1 = A 1 x * a1 2 = A 2 x * a2

6 ud Baubetrieb Folie 6 - Gewivergleichsrechug - - Recheprizip: Bei der Gewivergleichsrechug wird der Gesamtgewi jeder Alterative berechet ud gegeübergestellt G a = Ertrag Aufwad - Etscheidugsregel ja/ei Etscheidug: Auswahletscheidug: Ist-G a > Soll-G a max (G a ) ~ maximaler Gewi

7 ud Baubetrieb Folie 7 - Retabilitätsrechug - - Recheprizip: Die Retabilität etspricht dem Quotiete aus Gewi i der erste Periode ud dem gebudee apital R a Gewit =1 = gebudees _ apital - Etscheidugsregel ja/ei Etscheidug: Auswahletscheidug: Ist-R a > Soll-R a max (R a ) ~ maximale Afagsredite

8 ud Baubetrieb Folie 8 - Amortisatiosrechug, statisch - - Recheprizip: Summiere die Eizahlugsüberschüsse, bis sie die Afagsauszahlug abdecke A t = p = ( E t A t ) t= 1 A : Afagsauszahlug E t : Eizahlug A t : Auszahlug t: Periode p: Amortisatiosperiode - Etscheidugsregel ja/ei Etscheidug: Auswahletscheidug: A: Amortisatiosdauer Ist-A-dauer < Soll-A-dauer mi (A ) ~ miimale A-dauer

9 ud Baubetrieb - apitalwertmethode - Vergleichsmaßstab Geldalage - 1. zu 1% für 5 Jahre = 1. 1 (1,1) 1 1 (1,1) 2 1 (1,1) 3 1 (1,1) (1,1) 5 = 1. 9,9 82,7 75,1 68,3 683, = >> Die Verzisug im Ausgagsfall liefert eie apitalwert vo Null ud erfüllt damit geau die Erwartuge

10 ud Baubetrieb - apitalwertmethode - Prüfug der Wirtschaftlichkeit eier Ivestitio mit ugleichmäßige Rückzahluge = 1. 6 (1,1) 1 8 (1,1) 2 1 (1,1) 3 13 (1,1) (1,1) 5 = 1. 54,5 66,1 75,1 88,8 72,3 = 4,8 >> Die Berechug liefert eie apitalwert größer Null, damit ist die erwartete Redite der Alterative größer als die geforderte

11 ud Baubetrieb - apitalwertmethode - FORMELN der apitalwertmethode apitalwertformel bei gleiche jährliche Rückflüsse = I G 1 p R Retebarwertfaktor RBF RBF 1 p = = I G RBF R apitalwertformel bei gleiche moatliche Rückflüsse = I G ( 1 1) R >> Oft lasse sich gleichmäßige Zahlugsströme bilde, so dass die Berechug des apitalwerts vereifacht werde ka : apitalwert im Zeitpukt I: Ivestitioskoste G: Ei- bzw. Auszahlugsüberschuss : Diskotfaktor (=1p) R: Restwert p: Zis : Betrachtugshorizot i Jahre

12 ud Baubetrieb - Auitätemethode - Ziel & Berechugsprizip ZIEL Berechug des durchschittliche Zahlugsüberschusses je Periode auf Basis der apitalwertmethode PRINZIP 1) Ermittlug des apitalwertes = G 1 p = G RBF 2) Umwadlug des apitalwertes i jährliche Zahlugsüberschüsse mit Hilfe des Wiedergewiugsfaktors G = = 1 = RBF p = 1 WGF = A >> Da die Auitätemethode periodisierte Zahlugsüberschüsse liefert, köe mit ihr Projekte mit uterschiedliche Laufzeite vergliche werde : apitalwert im Zeitpukt G: Ei- bzw. Auszahlugsüberschuss : Diskotfaktor (=1p) p: Zis : Betrachtugshorizot i Jahre A: Auität

13 ud Baubetrieb Folie 13 - Auitätemethode - Beispiel Auitätedarlehe: Rückzahlug i gleichbleibede Rate Auitätedarlehe Laufzeit 1 Jahre, Zis 1% Jährliche Rate, gleichbleibed (Auität) reditbetrag Afag reditbetrag Ede Zisateil Tilgugsateil Auität des Jahres des Jahres Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr A = p = 1 D * WGF A: Auität D: Darlehe : apitalwert p: Zissatz : Azahl der Periode

14 ud Baubetrieb Folie 14 - Methode des Itere Zisfußes (IZF) - - Ziel: Ermittlug der Verzisug des durch die Ivestitio gebudee apitals - Recheprizip: Ermittlug des Zissatzes, bei dem sich ei apitalwert vo Null ergibt 1 p = I G R = : apitalwert E t : Eizahlug A t : Auszahlug p: Diskotierugsfaktor t: Periode : Azahl der Periode - Lösugsskizze: Aufgrud vo Polyome -te Grades ist der IZF per Iterpolatio zu bestimme 1. Bestimmug vo zwei Eckwerte (obere ud utere Itervallschrake) 2. äherugsweise Bestimmug des IZF durch Iterpolatio 1 2 apitalwert p 1 IZF p 2 Zissatz IZF = p 1 [ 1 / ( 1-2 )] * (p 2 p 1 )

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Dynamische Investitionsrechnung

Dynamische Investitionsrechnung Fiazierug (Mitschrifte aus Vorlesuge a der FH Merseburg/ Feiiger) Dyamische Ivestitiosrechug - berücksichtigt mehrere oder alle Ivestitioe eier Periode (bei statisch wird ur mit eier Periode gerechet,

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Methodische Grundlagen der Kostenkalkulation

Methodische Grundlagen der Kostenkalkulation Methodische Grudlage der Kostekalkulatio Plaugsebee Gebrauchsgüter Die i der ladwirtschaftliche Produktio eigesetzte Produktiosmittel werde i Gebrauchsgüter ud Verbrauchsgüter uterteilt. Zu de Gebrauchsgüter

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Einführung in die Investitionsrechnung

Einführung in die Investitionsrechnung Eiführug i die Ivestitiosrechug Geld ud / oder Zeit Frage: Wie viel ist mei Geld morge wert? Wie viel muss ma jährlich zahle, um i Jahre eie bestimmte Betrag gespart zu habe? Wie lage muss bei eiem gegebee

Mehr

Übungsaufgaben zur Investitionsrechnung

Übungsaufgaben zur Investitionsrechnung Übugsaufgabe zur Ivestitiosrechug Übugsaufgabe (Statische Ivestitiosrechug): Ihre Uterehmug plat die Aschaffug eier eue Maschie. Zur Wahl stehe die beide Alterative A ud B. Folgede Date sid für die beide

Mehr

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist.

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist. . Folge ud Reihe.... Folge..... Grudlage.....2 Arithmetische Folge... 2..3 Geometrische Folge... 2.2 Reihe... 2.2. Grudlage... 2.2.2 Arithmetische Reihe... 2.2.3 Geometrische Reihe... 3.3 Eiige spezielle

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor.

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor. - 12 - Aufgabe 3: (50 Pukte) Dyamische Ivestitiosrechug 1. Ivestitiosrechug 1.1 Kalkulatioszissatz: Gewichteter Mittelwert vo Fremd- ud Eigekapitalkoste: Für das Eigekapital würde der Ivestor als alterative

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung)

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung) 3 Die Außefiazierug durch Fremdkapital (Kreditfiazierug) 3.1 Die Charakteristika ud Forme der Kreditfiazierug Aufgabe 3.1: Idealtypische Eigeschafte vo Eige- ud Fremdkapital Stelle Sie die idealtypische

Mehr

Investitionsrechnung

Investitionsrechnung Ivestitiosrechug Gliederug: 1. Grudlage der Ivestitiosrechug 2. Statistische Ivestitiosrechug 3. Dyamische Ivestitiosrechug 4. Ivestitiosetscheiduge mit Gewisteuer 5. Ivestitiosetscheiduge uter Usicherheit

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Investition und Finanzierung

Investition und Finanzierung Ivestitio ud Fiazierug - Vorlesug 3 - Prof. Dr. Raier Elsche Prof. Dr. Raier Elsche - 37 - 2.1 Strategiewahl als Ivestitiosobjekt Prof. Dr. Raier Elsche - 38 - Ivestitiosobjekte eizele Gegestäde des Uterehmugsvermöges

Mehr

Bewertung von Anleihen

Bewertung von Anleihen Bewertug vo Aleihe Arithmetik der Aleihebewertug: Überblick Zerobods ud Koupoaleihe Ziskurve: Spot Zise ud Yield to Maturity Day cout Kovetioe Replikatio ud Arbitrage Forward Zise Yield ud ex post realisierte

Mehr

Die grundsätzlichen Aufgaben der Investitionsrechnung Unterschiedliche Verfahren der Investitionsrechnung

Die grundsätzlichen Aufgaben der Investitionsrechnung Unterschiedliche Verfahren der Investitionsrechnung 2 Ivestitio 2.1 Grudlage der Ivestitiosrechug Lerziele Dieses Kapitel vermittelt: Die grudsätzliche Aufgabe der Ivestitiosrechug Uterschiedliche Verfahre der Ivestitiosrechug 2.1.1 Ivestitiosbegriffe ud

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik Prof. Dr. Güter Hellmig Aufgabeskript Fiazmathematik Ihalt: Aufgabe -: Eifache achschüssige Zise Aufgabe : Eifache vorschüssige Zise Aufgabe 4-5: Ziseszise bei Zisasammlug Aufgabe 6-: Ziseszise bei Zisauszahlug

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Klausur Grundlagen der Investition und Finanzierung

Klausur Grundlagen der Investition und Finanzierung Fachhochschule Bochum /Fachhochschule Müster /Fachhochschule Südwestfale (Weiterbildeder) Verbudstudiegag Techische Betriebswirtschaft Prof. Dr. Wolfgag Hufagel / Prof. Dr. Wifried Rimmele/ Fachhochschule

Mehr

Leitfaden zu den Zertifikate-Indizes. Discount-Index Outperformance-Index Bonus-Index Kapitalschutz-Index Aktienanleihen-Index

Leitfaden zu den Zertifikate-Indizes. Discount-Index Outperformance-Index Bonus-Index Kapitalschutz-Index Aktienanleihen-Index Leitfade zu de Zertifikate-Idizes Discout-Idex Outerformace-Idex Bous-Idex Kaitalschutz-Idex Aktiealeihe-Idex Fassug vom 22.02.2011 Versiosübersicht Versios- ID 1.00 1.10 1.20 1.30 Datum 28.02.2009 28.04.2009

Mehr

Factoring. Alternative zur Bankfinanzierung?

Factoring. Alternative zur Bankfinanzierung? Factorig Alterative zur Bakfiazierug? Beschreibug Factorig Im Factorigverfahre schließ e Uterehme ud Factor eie Vertrag, auf desse Grudlage alle kü ftige Forderuge des Uterehmes laufed gekauft werde. Zuvor

Mehr

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek Uterehmesbewertug ud Aktieaalyse vo Karia Liebestei & Bartholomäus Fietzek Uterehmesbewertug Es gibt kei allgemei verbidliches Verfahre, soder eie Vielzahl vo Methode Sie diee zur Bewertug vo Uterehme

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

IWW Studienprogramm. Aufbaustudium. Gründungscontrolling. Lösungshinweise zur 3. Musterklausur

IWW Studienprogramm. Aufbaustudium. Gründungscontrolling. Lösungshinweise zur 3. Musterklausur Istitut für Wirtschaftswisseschaftliche Forschug ud Weiterbildug GmbH Istitut a der FerUiversität i Hage IWW Studieprogramm Aufbaustudium Grüdugscotrollig Lösugshiweise zur 3. Musterklausur Lösugshiweise

Mehr

Finanzwirtschaftliche Formeln

Finanzwirtschaftliche Formeln Bueffelcoach Olie Service Bilazbuchhalter Übersichte Fiazwirtschaft Fiazwirtschaftliche Formel AuF Aufzisugsfaktor ( 1+ i) Zist eie heutige Wert mit Zis ud Ziseszis für Jahre auf, hilft also bei der Frage,

Mehr

Investitions- und Wirtschaftlichkeitsrechnung. Investitionsrechnungsmodelle bei Sicherheit. Kapitalwertmethode. Kostenvergleich

Investitions- und Wirtschaftlichkeitsrechnung. Investitionsrechnungsmodelle bei Sicherheit. Kapitalwertmethode. Kostenvergleich Ivestitiosrechugsmodelle bei Sicherheit Notwedige Formel fide Sie i der Formelsammlug (Dowload) Ivestitios- ud Statische Verfahre (Eiperiodemodelle) Dyamische Verfahre (Mehrperiodemodelle) Kostevergleich

Mehr

Kurs P = Preis für den Ankauf von Zahlungsverpflichtungen (z.b. Wertpapiere/Anleihen), wird auch als Marktwert bezeichnet

Kurs P = Preis für den Ankauf von Zahlungsverpflichtungen (z.b. Wertpapiere/Anleihen), wird auch als Marktwert bezeichnet . Zusammehag zwische Kurs ud Redite Kurs P = Preis für de Akauf vo Zahlugsverpflichtuge (z.b. Wertpapiere/Aleihe), wird auch als Marktwert bezeichet Nomialwert NW = Newert (oder Rückzahlugsbetrag) der

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

Skript Mathematik. Inhaltsverzeichnis

Skript Mathematik. Inhaltsverzeichnis Skript Mathematik Ihaltsverzeichis Folge ud Reihe.... Arithmetische Folge ud Reihe.... Geometrische Folge ud Reihe.... Aufgabe... Zis- ud Ziseszisrechug...4. Eifache Verzisug...4. Ziseszisrechug...5. Gemischte

Mehr

Investitionsrechnungen in der Wohnungswirtschaft

Investitionsrechnungen in der Wohnungswirtschaft Wohugswirschafliche Theorie I Vorlesug vom 28. 1. 24 Folie Ivesiiosrechuge i der Wohugswirschaf Dr. Joachim Kircher Isiu Wohe ud Umwel GmbH (IWU) Theoreische Grudlage Eiführug 1. Ivesoregruppe 2. Besoderheie

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

AXA Immoselect. Ein solides Fundament für jedes Anlegerportfolio

AXA Immoselect. Ein solides Fundament für jedes Anlegerportfolio Hattersheim, Philipp-Reis-Straße AXA Immoselect Ei solides Fudamet für jedes Alegerportfolio Bitte beachte Sie, dass die Rückahme der Ateile vom AXA Immoselect mit Wirkug zum 17.11.2009 ausgesetzt wurde.

Mehr

Aufgabe 1. Die Abschreibungen erfolgen linear. Der Kalkulationszinssatz beträgt i = 0,10.

Aufgabe 1. Die Abschreibungen erfolgen linear. Der Kalkulationszinssatz beträgt i = 0,10. Aufgabe Der Vechtaer Esse auf Räder -Service beötigt eie eue Küche zur Zubereitug der Mahlzeite. Sie köe zwische de Modelle A ud B wähle. Die Eiahme durch die Auslieferug der Esse sid uabhägig davo, welche

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

Steuerplanung Sommersemester 2008 2 SWS Teil IV

Steuerplanung Sommersemester 2008 2 SWS Teil IV Otto-vo-Guericke-Uiverität Magdeburg Lehrtuhl für BWL, ibeodere Betriebwirtchaftliche Steuerlehre Steuerplaug Sommeremeter 2008 2 SWS Teil IV Jae: Steuerplaug 1 Ihaltüberblick 1 Eiführug Steuerplaug ud

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung osterechug Bei der Vorkalkulatio werde die eies Erzeugisses vor der Herstellug ermittelt. Sie ist Grudlage für ei Preisagebot. Die Nachkalkulatio wird ach der Herstellug eies Erzeugisses durchgeführt.

Mehr

Finanzwirtschaft. Investitionsentscheidung: langfristige Verwendung von Finanzmitteln

Finanzwirtschaft. Investitionsentscheidung: langfristige Verwendung von Finanzmitteln I. Fiazierugsetscheiduge. Kurzfristige Liquiditätspositio fiazwirtschaftliche Etscheiduge Fiazierugsetscheidug: über Beschaffug, Umschichtug ud Verwedug vo Fiazmittel auf de Bestadskote Ivestitiosetscheidug:

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fiazplaer/i mit eidg. Fachausweis Formelsammlug Autor: Iwa Brot Diese Formelsammlug wird a de Olie- ud a de müdliche Prüfuge abgegebe soweit erforderlich. A der schriftliche Klausur

Mehr

provadis School of International Managemet & Technology

provadis School of International Managemet & Technology Testvorbereitug Mathematik, V9 Prof. Dr. L. Eicher provadis School of Iteratioal Maagemet & Techology Hiweis: Alle Aufgabe sid ohe Hilfsmittel zu löse.. Bereche Sie: a 7, b, c, d, e 7, f 4. Kürze Sie ud

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkomme zur der Aufgabesammlug Um sich schell ierhalb der ca. 35. Mathematikaufgabe zu orietiere, beutze Sie ubedigt das Lesezeiche Ihres Acrobat Readers: Das Ico fide Sie i der liks stehede

Mehr

52 % * ERTRAGS- CHANCE STEIGEN SIE AUF! 13,0 MaxiRend Control 23 ZEICHNUNGSFRIST: 19.02. BIS 16.03.2007

52 % * ERTRAGS- CHANCE STEIGEN SIE AUF! 13,0 MaxiRend Control 23 ZEICHNUNGSFRIST: 19.02. BIS 16.03.2007 QUALITÄT ZAHLT SICH AUS. 13,0 MaxiRed Cotrol 23 52 % * ERTRAGS- CHANCE STEIGEN SIE AUF! * Effektive Redite: 9,81 % p. a. uter Berücksichtigug des Ausgabeaufschlages (Aahme: Zahlug des Bous vo 52 % am Ede

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Herzlich willkommen zum Informationsabend «Frau und Finanz»

Herzlich willkommen zum Informationsabend «Frau und Finanz» Herzlich willkomme zum Iformatiosabed «Frau ud Fiaz» Frau ud Fiaz Fiazielle Sicherheit: Müsse Fraue aders vorsorge? Stefaia Cerfeda-Salvi Ageda Allgemeier Teil 3-Säule-System der Schweiz Aktuelles aus

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Grundlagen der Biostatistik und Informatik

Grundlagen der Biostatistik und Informatik Vergleich vo mehrere Stichprobe Grudlage der Biostatisti ud Iformati Hypotheseprüfuge III., Nichtparametrische Methode dr László Smeller Semmelweis Uiversität 0 Vergleich vo mehrere Stichprobe Boferroi

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Zur Bewertung einer Wagniskapitalbeteiligung aus Sicht des kapitalnachfragenden Unternehmens bei Erhalt der finanziellen Mittel in Tranchen

Zur Bewertung einer Wagniskapitalbeteiligung aus Sicht des kapitalnachfragenden Unternehmens bei Erhalt der finanziellen Mittel in Tranchen Ekoomia Meedżerska 2009, r 6, s. 33 48 Thomas Herig*, Christia Toll* Zur Bewertug eier Wagiskapitalbeteiligug aus Sicht des kapitalachfragede Uterehmes bei Erhalt der fiazielle Mittel i Trache 1. Problemstellug

Mehr

Fingerprinting auf Basis der Geometrischen Struktur von Videos

Fingerprinting auf Basis der Geometrischen Struktur von Videos 35.1 Figerpritig auf Basis der Geometrische Struktur vo Videos Dima Pröfrock, Mathias Schlauweg, Erika Müller Uiversität Rostock, Istitut für Nachrichtetechik, Richard Wager Str. 31, 18119 Rostock, {dima.proefrock,

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

Investition und Finanzierung

Investition und Finanzierung Ivestitio ud Fiazierug - Vorlesug 11 - Prof. Dr. Raier Elsche Prof. Dr. Raier Elsche - 186 - Eiheitskursfeststellug Kursfeststellug ach dem Meistausführugsprizip durch Börsemakler. Kaufaufträge Verkaufsaufträge

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Leitfaden zum. Bondm-Index

Leitfaden zum. Bondm-Index Leitfade zum Bodm-Idex Versio 1.0 vom 01. September 2011 1 Ihalt Eiführug 1 Parameter des Idex 1.1 Kürzel ud ISIN 1.2 Startwert 1.3 Verteilug 1.4 Preise ud Berechugsfrequez 1.5 Gewichtug 1.6 Idex-Komitee

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Kursthemen 5. Sitzung. Lagemaße

Kursthemen 5. Sitzung. Lagemaße Kurstheme 5. Sitzug Folie I - 5 - Lagemaße A) Arithmetisches Mittel (AM), Media ud Modus (Folie 2 bis 8) A) Arithmetisches Mittel (AM), Media ud Modus (Folie 2 bis 8) B) Der Additiossatz für AM (Folie

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle Praktikum Vorbereitug Fertigugsmesstechik Statistische Qualitätskotrolle Bei viele Erzeugisse ist es icht möglich jedes Werkstück zu prüfe, z.b.: bei Massefertigug. Hier ist es aus ökoomische Grüde icht

Mehr

Daten und Zufall in der Jahrgangsstufe 9 Seite 1

Daten und Zufall in der Jahrgangsstufe 9 Seite 1 Date ud uall i der Jahrgagsstue Seite usammegesetzte uallsexperimete, Padregel Aubaued au de Erahruge aus de vorhergehede Jahrgagsstue beschätige sich die Schüler systematisch mit zusammegesetzte uallsexperimete

Mehr

Aktueller Status hinsichtlich der angekündigten Kursgewinnsteuer

Aktueller Status hinsichtlich der angekündigten Kursgewinnsteuer ÄNDERUNGEN IM JAHR 2011 Aktueller Status hisichtlich der ageküdigte Kursgewisteuer Abei möchte wir Sie über wesetliche Ihalte aus der Regierugsvorlage Budgetbegleitgesetz 2011-2014 vom 30.11.2010 zur Kursgewibesteuerug

Mehr

Sorgen Sie flexibel vor und sparen Sie Steuern Die 3. Säule Private Vorsorge

Sorgen Sie flexibel vor und sparen Sie Steuern Die 3. Säule Private Vorsorge Sorge Sie fexibe vor ud spare Sie Steuer Die 3. Säue Private Vorsorge Die NAB-3 Vorsorge ergäzt die staatiche ud die berufiche Vorsorge, da diese zusamme ur eie Tei Ihres etzte Eikommes vor der Pesioierug

Mehr

Übersicht. über die Vorlesung Solarenergie. Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005

Übersicht. über die Vorlesung Solarenergie. Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005 Übersicht über die Vorlesug Solareergie Vorläufige Termiplaug Vorlesug Solareergie WS 2005/2006 Stad: 10.11.2005 Termi Thema Dozet Di. 25.10. Wirtschaftliche Lemmer/Heerig Aspekte/Eergiequelle Soe Fr.

Mehr

Industrieökonomie Vorlesung Dr. Kübler (Mitschrift von Timo Schygulla)

Industrieökonomie Vorlesung Dr. Kübler (Mitschrift von Timo Schygulla) Idustrieökooie Vorlesug Dr. Kübler (Mitschrift vo Tio Schygulla) 14.4.05: (Vorlesug gehalte vo eier Assisteti des Lehrstuhls) Teri-Überscheidug it der Vorlesug Fiazwisseschaft I vo Prof. Dr. K.-D. Heke.

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

Auswirkungen der betrieblichen Altersversorgung: Belastungen des Cashflow durch Direktzusage und Direktversicherung

Auswirkungen der betrieblichen Altersversorgung: Belastungen des Cashflow durch Direktzusage und Direktversicherung Die Kompetez i Pesioszusage Hartwig Kraft Auswirkuge der betriebliche Altersversorgug: Belastuge des Cashflow durch Direktzusage ud Direktversicherug Zusammefassug Für ei eifaches Modell der Fiazierug

Mehr

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht.

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht. Ziseszisechug. Auf welche Betag wächst ei Kapital vo K 0 bei jähliche Vezisug zu p % i Jahe a. a. K 0 5.200,- p 4 ½ % 6 Jahe b. K 0 3.250,- p 6 % 7 Jahe c. K 0 7.500,- p 5 ½ % 5 Jahe d. K 0 8.320,- p 5

Mehr

19. Zinseszinsrechnungen

19. Zinseszinsrechnungen 19. Ziseszisrechuge 19.1 Eileitug Jede Beutzug vo fremdem apital für eie bestimmte Zeitraum ist mit oste verbude. Diese oste, die Zise, etspreche der Etschädigug des apitalehmers a de apitalgeber für die

Mehr

Wenn Sie Fragen haben, melden Sie sich bitte bei uns. Wir sind gern für Sie da.

Wenn Sie Fragen haben, melden Sie sich bitte bei uns. Wir sind gern für Sie da. ING-DiBa AG 60628 Frakfurt am Mai Mustervermittler Musterstr. 1 61234 Musterstadt ING-DiBa AG Immobiliefiazierug Theodor-Heuss-Allee 2 60486 Frakfurt am Mai Telefo 069 / 50 60 30 90 16.03.2016 Vorgagsummer:

Mehr

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher

Mehr

Drucklufttechnik Potenziale zur Energieeinsparung. www.energieagentur.nrw.de

Drucklufttechnik Potenziale zur Energieeinsparung. www.energieagentur.nrw.de Drucklufttechik Poteziale zur Eergieeisparug www.eergieagetur.rw.de 2 Drucklufttechik optimiere ud Eergieverluste miimiere I fast jeder Produktiosstätte wird Druckluft geutzt. Die Eisatzgebiete reiche

Mehr

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I Model CreditRisk + : The Ecoomic Perspective of Portfolio Credit Risk Part I Semiar: Portfolio Credit Risk Istructor: Rafael Weißbach Speaker: Pablo Kimmig Ageda 1. Asatz ud Ziele Was ist CreditRisk +

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Die Instrumente des Personalmanagements

Die Instrumente des Personalmanagements 15 2 Die Istrumete des Persoalmaagemets Zur Lerorietierug Sie solle i der Lage sei:! die Ziele, Asätze ud Grüde eier systematische Persoalplaug darzulege;! die Istrumete der Persoalplaug zu differeziere;!

Mehr

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten.

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten. Aufgabe 36 (S. 346: Schätzverfahre für Mittelwert ud Stadardabweichug a Puktschätzuge für µ aufgrud der Werte der kleie Stichprobe aus Aufgabe 3 Bei eier Puktschätzug wird für de zu schätzede Parameter

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

Kennwerte Univariater Verteilungen

Kennwerte Univariater Verteilungen Kewerte Uivariater Verteiluge Kewerte Beschreibug vo Verteiluge durch eie (oder weige) Werte Werde auch als Parameter oder Maße vo Verteiluge bezeichet Ma uterscheidet: Lagemaße oder auch Maße der zetrale

Mehr

Dynamische Programmierung Matrixkettenprodukt

Dynamische Programmierung Matrixkettenprodukt Dyamische Programmierug Matrixketteprodukt Das Optimalitätsprizip Typische Awedug für dyamisches Programmiere: Optimierugsprobleme Eie optimale Lösug für das Ausgagsproblem setzt sich aus optimale Lösuge

Mehr

Renditewissen für Ratingagenturen und Kredit-Praxis

Renditewissen für Ratingagenturen und Kredit-Praxis Reditewisse für Ratigageture ud Kredit-Praxis vo Diplomkaufma (Uiv.) Edmud J. Raosch (Wöllstadt) ud RA, M.B.A. (Uiv.) Johaes Fiala (Müche) Redite-Methode ud Ratighaftug I oder Ratig-Haftug bei Awedug der

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Investitionsrechnung: Übungsserie I

Investitionsrechnung: Übungsserie I Thema Dokumetart Ivestitiosrechug: Übugsserie I Lösuge Theorie im Buch "Itegrale Betriebswirtschaftslehre" Teil: Kapitel: D1 Fiazmaagemet 3 Ivestitio Ivestitiosrechug: Übugsserie I Aufgabe 1 Die BAU AG

Mehr