Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1

Größe: px
Ab Seite anzeigen:

Download "Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1"

Transkript

1 Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 FIR-Filter sind nichtrekursive LTD-Systeme werden meistens in Transversalstruktur (Direktform 1) realisiert + linearer Phasengang realisierbar + immer stabil (alle Pole im Ursprung) + toleranter gegenüber Quantisierungseffekten als IIR-Filter - höhere Filterordnung als vergleichbare IIR-Filter (mehr Realisierungsaufwand, dafür effiziente Struktur für DSP) - Zeitverzögerung bzw. Gruppenlaufzeit relativ gross IIR-Filter sind rekursive LTD-Systeme werden meistens als Biquad-Kaskade realisiert + kleine Filterordnung (Aufwand) dank Pol-Selektivität + kleine Zeitverzögerung - linearer Phasengang für kausale Filter nicht realisierbar - mehr Probleme mit Quantisierungseffekten als bei FIR-Filter

2 Frequenzgang eines LTD-Systems H(z): Übertragungsfunktion (UTF) z-transformierte der Impulsantwort h[n] H(f): Frequenzgang H(f) = H(z=e j2πfts ) Fourier-Transformierte von h[n] Polarkoordinatendarstellung => IH(f)I: Amplitudengang meistens in db, d.h. 20*log 10 (IH(f)I) gerade Funktion, d.h. IH(f)I = IH(-f)I DSV 1, 2005/01, Rur, Filterentwurf, 2 H(f) IH(f)I Im[H(f)] φ(f) Re[H(f)] H(f) = H(f) H *(-f) = H(-f) e e j ϕ (f) wenn h[n] reell: H(f) = H*(-f) -j ϕ (-f) φ(f): Phasengang ungerade Funktion, d.h. φ(f) = -φ(-f) φ(f) = arctan( Im[H(f)] / Re[H(f)] )

3 Frequenzgang eines LTD-Systems DSV 1, 2005/01, Rur, Filterentwurf, 3 Bedeutung des Amplituden- und Phasengangs cos(2πf 0 nt s ) H(f) IH(f 0 )I cos[2πf 0 nt s +φ(f 0 )] = IH(f 0 )I cos[2πf 0 (nt s -Δ 0 )] wobei Zeitverzögerung Δ 0 (f0 ) = ϕ 2π f 0 Linearer Phasengang φ(f) = -K f H(f) verzögert alle Frequenzkomponenten um Δ=K/2π

4 Frequenzgang eines LTD-Systems DSV 1, 2005/01, Rur, Filterentwurf, 4

5 Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 5 Stempel-Matrizen-Schema 1 db A max R p Durchlassbereich A min, Rippel R s Sperrbereich f DB f SB f s /2 Filterordnung (Aufwand) abhängig von Steilheit im Übergangsbereich

6 FIR-Filter mit linearer Phase DSV 1, 2005/01, Rur, Filterentwurf, 6 Linearphasige FIR-Filtern der Ordnung N Filterkoeffizienten symmetrisch sind, d.h. b n = b N-n Filterkoeffizienten antisymmetrisch sind, d.h. b n = - b N-n 4 Typen linearphasiger FIR-Filter und H(f)-Restrikitionen Typ Symmetrie Ordnung N H(0) H(f s /2) 1 sym. gerade sym. ungerade - Nullstelle 3 anti-sym. gerade Nullstelle Nullstelle 4 anti-sym. ungerade Nullstelle - Beispiel: H(z) = b 0 (1+z -1 ) FIR-Filter der Ordnung N=1 vom Typ 2 Frequenzgang: H(f) = 2b 0 cos(πft s ) e -jπfts Nullstelle H(f s /2) = 0 linearer Phasengang φ(f) = -π f T s bzw. Zeitverzögerung Δ = T s /2

7 FIR-Filterentwurf mit Fenstermethode DSV 1, 2005/01, Rur, Filterentwurf, 7 Ziel: b n = h[n] so bestimmen, dass H(f) die Spezifikationen erfüllt Fenstermethode 1. Analoge Referenzstossantwort abtasten: h d [n] = T s h(t=nt s ) sin(nπf DB/(f s/2)) idealer TP: h[n]= d - < n < nπ 2. relevanten Anteil ausschneiden: h c [n] = w[n] h d [n] für -N/2 n N/2 Fenster w[n]: Rechteck-Fenster Blackman-Fenster Hamming-Fenster Hanning-Fenster -N/2 0 N/2 3. FIR-Filter mit Zeitverschiebung kausal machen: h[n] = h c [n-n/2]

8 Beispiel zum Windowing DSV 1, 2005/01, Rur, Filterentwurf, 8 Gibbs sches Phänomen

9 Einfluss des Fensters h FIR [n] = w[n] h d [n] H FIR (f) = W(f) * H d (f) DSV 1, 2005/01, Rur, Filterentwurf, 9 H d (f) IW(f 0 -f)i f DB Gibbs sches Phänomen: Überschwingen von H FIR (f 0 f DB ) Nebenkeule von W(f) klein => Überschwingen von H FIR (f) klein Hauptkeule von W(f) schmal => Übergangsbereich von H FIR (f) steil

10 Spektren verschiedener Fenster DSV 1, 2005/01, Rur, Filterentwurf, 10 L=N+1=51 A = - 13 db A = - 41 db Δf (1/L) fs Δf (2/L) fs A = - 31 db A = - 57 db Δf (2/L) fs Δf (3/L) fs

11 TP BP/BS/HP-Transformationen DSV 1, 2005/01, Rur, Filterentwurf, 11 Ziel: Erhalt der linearen Phase TP-BP-Frequenztranslation Typ 1,2: b BP [n] = 2 cos(ω 0 nt s ) b TP [n] Typ 3,4: b BP [n] = 2 sin(ω 0 nt s ) b TP [n] BP-BS-Transformation BS und BP sind komplementär: H BP (z) + H BS (z) = z -N/2 b BS [n] = δ[n-n/2] - b BP [n] TP-HP-Frequenztranslation TP-BP-Trafo mit f 0 =f s /2: b HP [n] = (-1) n b TP [n] Beispiel linearphasiges Typ 2 FIR-Filter 1. Ordnung mit f DB =f s /4 TP: H TP (z) = 0.5 (1+z -1 ) => HP: H HP (z) = 0.5 (1-z -1 )

12 FIR-Differentiator-Filter DSV 1, 2005/01, Rur, Filterentwurf, 12 Referenzfilter: H a (f) = j2πf => h d [n] = cos(nπ)/n - sin(nπ)/(n 2 π) Beispiel: FIR-Differentiator 10. Ordnung (Hamming-Fenster) FIR-Differentiatoren, die höhere Frequenzen (Rauschen) unterdrücken H Diff (z) H TP (z) siehe auch Matlab fdatool zwei FIR-Filter

13 FIR-Hilbert-Filter DSV 1, 2005/01, Rur, Filterentwurf, 13 Referenzfilter: H a (f) = -j sgn(f) Anwendung: Beispiel: => h d [n] = [1 - cos(nπ)] / (nπ) breitbandige Phasenschieber (z.b. Einseitenband-Signale in Telekommunikation) FIR-Hilbert-Filter 10. Ordnung (Rechteck-Fenster) Allpass Phasensprung von Linearer Abfall (Zeitverschiebung beim Windowing)

14 Raised-cosine-FIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 14 Anwendung: Beispiel: Pulsformung bei der Signalübertragung Raised-Cosine-FIR-Filter, N=20, Rechteck-Fenster Datenrate R = 2 kb/s, f s = 8 khz, Rolloff r=0.5 Pulsform T=1/R Übergangsbereich (r=0.5)

15 FIR-Filterentwurf: Frequenzabtastung DSV 1, 2005/01, Rur, Filterentwurf, Vorgabe N+1 äquidistante Abtastwerte von H(f) im Bereich [0,f s ] H[m] N+1=80 periodisch! f s = 2. IFFT h[n] b FIR [n] 3. Zeitverschiebung (oder Vorgabe Phase) H FIR (f) Verbesserungen: Vorgabe weniger steil (siehe ) oder Windowing Vorgabe wird eingehalten dazwischen aber Überschwingen

16 FIR-Filterentwurf im z-bereich DSV 1, 2005/01, Rur, Filterentwurf, 16 Iterative Optimierungsverfahren (CAD) am bekanntesten ist der Remez-Algorithmus (Parks-McClellan) Vorgabe Stempel-Matrize (auch Multiband) => Minimax-Optimierung Equiripple im Durchlass- und Sperrbereich => kleinste Ordnung für A min A min Least-Square Optimierungsverfahren

17 IIR-Filterentwurf: Analoge Prototypen DSV 1, 2005/01, Rur, Filterentwurf, 17 Approximation von Brickwall -Filtern ist im Analogen gelöst Beispiel: Butterworth-TP N. Ordnung N=1 IH(f)I = 1+ 1 ( ) 2N f/f DB N=3 N=2 IIR-Filterentwurf sz-trafo (bilinear) H TP (s) [ => H BP (s) ] => H(z) => b-,a-filterkoeffizienten TP-HP/BP/BS-Trafo (Achtung: BP und BS haben doppelte Ordnung)

18 IIR-Filterentwurf: Analoge Prototypen DSV 1, 2005/01, Rur, Filterentwurf, 18 Vergleich mit Filter 4. Ordnung => A max =1dB, f DB =1 khz, A min =30 db, f SB =2 khz A min =3 db Butterworth-Filter Steilheit: klein IH(f)I: monoton φ(f): Nichtlinearität klein Chebyscheff-Filter Steilheit: mittel IH(f)I: Rippel im DB oder SB φ(f): Nichtlinearität mittel Elliptisches Filter (Cauer) Steilheit: gross IH(f)I: Rippel im DB und SB φ(f): Nichtlinearität gross Besselfilter Steilheit: sehr klein IH(f)I: monoton φ(f): Nichtlinearität sehr klein

19 Bilineare Transformation DSV 1, 2005/01, Rur, Filterentwurf, 19 sz-trafo s 2 z 1 = T z+ 1 s f-trafo: j2πf analog = j(2/t s ) tan(πf digital T s ) kein Aliasing! aber Frequenzstauchung! f analog IH a (f)i f analog -f s /2 f DB f s /2 f digital IH(f)I prewarping f DB f s /2 f digital

20 IIR-Filterentwurf im z-bereich DSV 1, 2005/01, Rur, Filterentwurf, 20 Ziel H(f) soll möglichst gut mit Vorgabe übereinstimmen (least-square) Filterkoeffizienten von H(z) variieren bzw. optimieren (CAD) Beispiel Yule-Walker-Filter 10. Ordnung mit 2 Durchlassbereichen

Kapitel 5: FIR- und IIR-Filterentwurf

Kapitel 5: FIR- und IIR-Filterentwurf ZHW, DSV 1, 2007/03, Rur&Hrt 5-1 ZHW, DSV 1, 2007/03, Rur&Hrt 5-2 5.1. Einleitung In diesem Kapitel betrachten wir den klassischen Digitalfilterentwurf, in dem primär ideale Tiefpass- (TP), Hochpass- (HP),

Mehr

Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 6 Analoge Filter 3 6. Motivation..................................

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13 FB ET/IT Filterentwurf WS 2/3 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung ein mathematisches Formelwerk Wichtige Hinweise: Ausführungen,

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 6 146 2. Teil Ziele der Filteranwendung Signal-Trennung (z.b. EKG eines Kindes im Mutterleib, Spektralanalyse) Signal-Restauration (z.b. unscharfes

Mehr

Realisierung digitaler Filter in C

Realisierung digitaler Filter in C Realisierung digitaler Filter in C Begleitmaterial zum Buch Grundlagen der digitalen Kommunikationstechnik Übertragungstechnik Signalverarbeitung Netze Carsten Roppel E-Mail: c.roppel@fh-sm.de Fachbuchverlag

Mehr

Versuch: Digitale Filter

Versuch: Digitale Filter Versuch: Digitale Filter Diese Unterlagen dienen zum einen als Versuchsunterlagen für den Versuch: Digitale Filter". Sie enthalten aber auch in komprimierter Form alles Wissenswerte zu diesem Thema und

Mehr

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 3 Senden Sie die Hausübung bis spätestens 15.06.2015 per Email an hw1.spsc@tugraz.at. Verwenden Sie MatrikelNummer1

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A- Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling (Sigma-Delta

Mehr

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches: Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung

Mehr

MATLAB Signal Processing Toolbox Inhaltsverzeichnis

MATLAB Signal Processing Toolbox Inhaltsverzeichnis Inhaltsverzeichnis Signal Processing Toolbox 1 Was ist Digitale Signalverarbeitung? 2 Inhalt 3 Aufbereitung der Messdaten 4 Interpolation 6 Approximation 7 Interpolation und Approximation 8 Anpassung der

Mehr

Hinweis: Dies ist eine gekürzte Version des C-Projektes für unser ATMEL-Board ATM1

Hinweis: Dies ist eine gekürzte Version des C-Projektes für unser ATMEL-Board ATM1 Hinweis: Dies ist eine gekürzte Version des C-Projektes für unser ATMEL-Board ATM Einführung in die Digitale Verarbeitung von Analogen Signalen ( DSP- Grundlage mit dem Microcontroller. Das vollständige

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A-Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling DACs Dr.

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Alan V. Oppenheim, Ronald W. Schafer, John R. Buck Zeitdiskrete Signalverarbeitung 2., überarbeitete Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

Signale und Systeme 2

Signale und Systeme 2 Signale und Systeme Beispielsammlung c G. Doblinger, C. Novak, J. Gonter, May 03 gerhard.doblinger@tuwien.ac.at johannes.gonter@tuwien.ac.at www.nt.tuwien.ac.at/teaching/courses/summer-term/389055/ Vorwort

Mehr

Seminar-Praktikum Nachrichtentechnik. Nachrichtentechnische Systeme. Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden.

Seminar-Praktikum Nachrichtentechnik. Nachrichtentechnische Systeme. Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden. Seminar-Praktikum Nachrichtentechnik Seminarversuch 4 Digitale Filter Fachgebiet: Nachrichtentechnische Systeme Name: Matr-Nr: Betreuer: Datum: N T S Die Vorbereitungsaufgaben müssen vor dem Seminartermin

Mehr

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch R. Brigola, TH Nürnberg Georg Simon Ohm, 2014 Mathematica - Notebooks als Bonusmaterial zum Lehrbuch [1] Rolf Brigola Fourier-Analysis und Distributionen, Eine Einführung mit Anwendungen, edition swk,

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Klausur zur Vorlesung: Signale und Systeme Aufgabe : Kontinuierliche und diskrete Signale. Zwei Systeme sollen auf ihre Eigenschaften untersucht werden: v(t) S { } y (t) v(t) S { } y (t) Abbildung : zeitkontinuierliche

Mehr

1. Differentialgleichung der Filter zweiter Ordnung

1. Differentialgleichung der Filter zweiter Ordnung Prof. Dr.-Ing. F. Keller abor Elektronik 3 Filter zweiter Ordnung Info v.doc Hochschule Karlsruhe Info-Blatt: Filter zweiter Ordnung Seite /6. Differentialgleichung der Filter zweiter Ordnung Ein- und

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1 Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe System zur digitalen Signalverarbeitung: Signal- Quelle AAF ADC DAC RCF DSP Po rt Po rt Signal- Ziel Das Bild zeigt ein allgemeines System zur

Mehr

= {} +{} = {} Widerstand Kondensator Induktivität

= {} +{} = {} Widerstand Kondensator Induktivität Bode-Diagramme Selten misst man ein vorhandenes Zweipolnetzwerk aus, um mit den Daten Amplituden- und Phasengang zu zeichnen. Das kommt meistens nur vor wenn Filter abgeglichen werden müssen oder man die

Mehr

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB MATLAB Kurs 2010 Teil 2 Eine Einführung in die via MATLAB 26.11.2010 & 03.12.2010 nhaltsverzeichnis 1 2 3 Ziele Kurze Einführung in die -Analyse Ziele Kurze Einführung in die -Analyse MATLAB Routinen für

Mehr

All Digital Transceiver

All Digital Transceiver All Digital Transceiver Prinzip Digital-Empfänger ADC, Analog Digital Converter ( Analog-Digital-Wandler ) DDC, Digital Down Converter ( Digitaler Abwärtsmischer ) DSP, Digital Signal Processor SDR-14

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 5 8 Aus ontinuierlichem Signal werden in onstanten Zeitintervallen Daten entnommen ontinuierliches Signal x(t) Einheitsimpulsfuntion Gewichtete

Mehr

Aktiver Tiefpass mit Operationsverstärker

Aktiver Tiefpass mit Operationsverstärker Aktiver Tiefpass mit Operationsverstärker Laborbericht an der Fachhochschule Zürich vorgelegt von Samuel Benz Leiter der Arbeit: B. Obrist Fachhochschule Zürich Zürich, 17.3.2003 Samuel Benz Inhaltsverzeichnis

Mehr

Information Retrieval for Music and Motion

Information Retrieval for Music and Motion Lecture Information Retrieval for Music and Motion Meinard Müller Max-Planck-Institut für Informatik Campus E1 4, 66123 Saarbrücken, Germany meinard@mpi-inf.mpg.de Informations- und Übungsblatt zu Matlab

Mehr

Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen

Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen Bei diesem Versuch sollen Sie mit den grundlegenden Eigenschaften und Anwendungen von Operationsverstärkern

Mehr

Aufgabe 1: Diskrete und kontin. Signale

Aufgabe 1: Diskrete und kontin. Signale AG Digitale Signalverarbeitung - Klausur in Signale und Systeme Frühjahr 2009 Aufgabe : Diskrete und kontin. Signale 25 Pkt. Aufgabe : Diskrete und kontin. Signale 25 Pkt.. Gegeben sei das als Summierer

Mehr

Entwicklung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse

Entwicklung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse Entwicklung einer digitalen mit Einplatinencomputern zur Signalanalyse Philipp Urban Jacobs p.1 Inhalt 1 Motivation 2 Grundlagen 3 Umsetzung 4 Verifizierung 5 Fazit p.2 Motivation Signalgenerator ADC Gertboard

Mehr

Proseminar Algorithmen, Schnittstellen und Werkzeuge zur Audiobearbeitung 'LJLWDOH)LOWHU. Kaptiel 1 Signale im Frequenzspektrum...

Proseminar Algorithmen, Schnittstellen und Werkzeuge zur Audiobearbeitung 'LJLWDOH)LOWHU. Kaptiel 1 Signale im Frequenzspektrum... Proseminar Algorithmen, Schnittstellen und Werkzeuge zur Audiobearbeitung 'LJLWDOH)LOWHU Oskar Klett Matthias Schwegler Technische Universität München Fakultät für Informatik Sommersemester 2003 Inhaltsverzeichnis

Mehr

Übung 8: Digitale Modulationen

Übung 8: Digitale Modulationen ZHW, NTM, 25/6, Rur ufgabe : Modulationsarten. Übung 8: Digitale Modulationen Die Datensequenz wird bei einer festen Bitrate von Mb/s mittels 3 verschiedener Modulationsarten übertragen. Charakterisieren

Mehr

DSO. Abtastrate und Wiedergabegenauigkeit

DSO. Abtastrate und Wiedergabegenauigkeit DSO Abtastrate und Wiedergabegenauigkeit Inhalt Inhalt...- 0 - Sind eine hohe Abtastrate sowie Bandbreite notwendig?...- 2 - Ein Blick auf die messtechnischen Grundlagen...- 7 - Von Abtastrate und Bandbreite

Mehr

Laborprotokoll SSY. Anwendung von Systemen: Filter

Laborprotokoll SSY. Anwendung von Systemen: Filter Laborprotokoll SSY Anwendung von Systemen: Filter Daniel Schrenk, Andreas Unterweger, ITS 2004 SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Seite 1 von 15 1. Einleitung Ziel der Übung Bei dieser Übung

Mehr

Prof. Dr. Stefan Weinzierl 10.02.2015

Prof. Dr. Stefan Weinzierl 10.02.2015 Einführung in die digitale Signalverarbeitung: 15. Tutorium Prof. Dr. Stefan Weinzierl 10.02.2015 Zusammenfassung Im Folgenden findet sich eine kleine Zusammenfassung der Konzepte, die wir in diesem Semester

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Smart Antenna Terminal SANTANA

Smart Antenna Terminal SANTANA Smart Antenna Terminal SANTANA Vorstellung des Projekts A.F. Jacob Institut für Hochfrequenztechnik Technische Universität Braunschweig Einleitung Ziel des Projektes SANTANA Herstellung eines Submoduls

Mehr

Labor für Informationstechnik. Lineare Verzerrung

Labor für Informationstechnik. Lineare Verzerrung Labor für Informationstechnik Prof. Dr. Ing. Lilia Lajmi Dipl. Ing. Thomas Müller Lineare Verzerrung Gruppennummer: Teilnehmer Name Vorname Matrikelnummer 1 2 3 Ostfalia Hochschule für angewandte Wissenschaften

Mehr

PRODUCTION PARTNER ARTIKEL AUS PRODUCTION PARTNER 7-8/2010. Neben dem schon seit über zehn Jahren. Hardware

PRODUCTION PARTNER ARTIKEL AUS PRODUCTION PARTNER 7-8/2010. Neben dem schon seit über zehn Jahren. Hardware Das Nachrichten portal rund um die Medienweltund Technik powered by PRODUCTION PARTNER www.production-partner.de www.promedianews.de ARTIKEL AUS PRODUCTION PARTNER 7-8/2010 Dynacord DSP600 FIR Controller

Mehr

Die Betriebsdämpfungsfunktion H(s) in Abhängigkeit der komplexen Frequenz s (s = j! für reelle Frequenzen!) ergibt sich als U 2 : (1)

Die Betriebsdämpfungsfunktion H(s) in Abhängigkeit der komplexen Frequenz s (s = j! für reelle Frequenzen!) ergibt sich als U 2 : (1) Hochfrequenztechnik II Hochfrequenzlter FI/ Einleitung Bei Filtern handelt es sich um lineare (und zeitinvariante) Netzwerke, mit denen bestimmte Frequenzbereiche eines Eingangssignals herausgeltert werden.

Mehr

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum.

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum. Messtechnik-Praktikum 10.06.08 Spektrumanalyse Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie die Schaltung für eine Einweggleichrichtung entsprechend Abbildung 1 auf. Benutzen Sie dazu

Mehr

2. Der Phasenregelkreis (PLL = Phase Locked Loop)

2. Der Phasenregelkreis (PLL = Phase Locked Loop) . Der Phasenregelkreis (PLL = Phase Locked Loop). PLL-Grundlagen. Stationäres Verhalten.3 Nachführverhalten hrverhalten.4 Rauschverhalten.5 Phasendetektoren: Realisierungsaspekte W. Koch: Synchronisationsverfahren,,

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität. Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende

Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität. Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende Schallaufzeichnung Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende Akustische Ereignisse sind vergänglich Akustische Ereignisse

Mehr

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr

FS I Filter Systeme. 1 Filterarten 1 1.1 Die Umrechnug auf den äquivalenten Tiefpaß... 2

FS I Filter Systeme. 1 Filterarten 1 1.1 Die Umrechnug auf den äquivalenten Tiefpaß... 2 FS I Filter Systeme Filter Systeme Inhaltsverzeichnis 1 Filterarten 1 1.1 Die Umrechnug auf den äquivalenten Tiefpaß............................. 2 2 Übertragungsfunktion, Pole und Nullstellen 2 2.1 Pol

Mehr

Simulink: Einführende Beispiele

Simulink: Einführende Beispiele Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play

Mehr

11.8 Digitale Filter. Vorteile digitaler Filter

11.8 Digitale Filter. Vorteile digitaler Filter Fachhochschule usbur Fachbereich Elekroechnik Pro. Dr. C. Clemen.8 Diiale Filer Nachrichenüberraunsechnik.8 Diiale Filer ls wichies Beispiel ür diiale Sinalverarbeiun sollen nun diiale Filer behandel werden.

Mehr

Regelungs- und Systemtechnik 1 - Übung 5 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 5 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 - Übung 5 Sommer 216 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Skizzieren

Mehr

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung:

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung: Teil C: Wechselstromkreis Beschreibungsgrößen Ohmscher, kapazitiver, induktiver Widerstand Knoten- und Maschenregeln Passiver / Bandpass Dezibel Bode-Diagramm 6.2.3 Beschreibungsgrößen Wechselspannung:

Mehr

Analog-Filter. Glossar Analog-Filter

Analog-Filter. Glossar Analog-Filter Glossar Analog-Filter 1 Index Analog-Filter Absenzfilter Aktiver Filter Antialiasing-Filter Bandbreite Bandpass, BP Bandstoppfilter BAW, bulk acoustic wave Bessel-Filter Butterworth-Filter Digitalfilter

Mehr

III Verarbeitung und Analyse akustischer Signale

III Verarbeitung und Analyse akustischer Signale Verarbeitung und Analyse akustischer Signale 73 III Verarbeitung und Analyse akustischer Signale III.1 Aufnahme- und Wiedergabetechnik: Bestandteile der Übertragungskette Die Aufnahme, Analyse, Verarbeitung

Mehr

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn )

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn ) Vorlesung : Dozent: Professor Ferdinand Svaricek Ort: 33/040 Zeit: Do 5.00 6.30Uhr Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/20 Zeit: Mo 5.00 6.30 Uhr (Beginn 8.0.206 Vorlesungsskript: https://www.unibw.de/lrt5/institut/lehre/vorlesung/rt_skript.pdf

Mehr

Lab3 - Fourieranalyse von Signalen

Lab3 - Fourieranalyse von Signalen 1 Einleitung Lab3 - Fourieranalyse von Signalen M. Brandner, C. Wallinger Die spektrale Analyse deterministischer und zufälliger Signale ist von zentraler Bedeutung in der Messtechnik, da sehr viele interessante

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop

Mehr

1 Analoge und digitale Signale

1 Analoge und digitale Signale Hochfrequenztechnik II Modulationsverfahren MOD/1 1 Analoge und digitale Signale Modulationsverfahren werden benötigt, um ein vorhandenes Basisbandsignal s(t) über ein hochfrequentes Trägersignal zu übertragen.

Mehr

4.2 Abtastung und Rekonstruktion zeitkontinuierlicher

4.2 Abtastung und Rekonstruktion zeitkontinuierlicher 7 4 Fouriertransformation für zeitdiskrete Signale und Systeme nicht auf [, ] zeitbegrenzt ist. Es kommt daher zu einer Überlappung der periodischen Fortsetzungen. Für die Herleitung der Poissonschen Summenformel

Mehr

-Oktavanalyse Wavelet. FFT 1 / n. -Oktavanalyse Wavelet. Fast Fourier Transformation

-Oktavanalyse Wavelet. FFT 1 / n. -Oktavanalyse Wavelet. Fast Fourier Transformation 11/13 FFT 1 / n -Oktavanalyse Wavelet FFT 1 / n -Oktavanalyse Wavelet Für die meisten akustischen Untersuchungen ist eine reine Pegelanalyse unzureichend, denn nicht nur der Pegel, sondern auch die frequenzabhängige

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Die rechnerisch aufwendige Operation der Faltung geht über in die Multiplikation.

Die rechnerisch aufwendige Operation der Faltung geht über in die Multiplikation. Kapitel Die z-transformation In den Abschnitten über die Impulsantwort und den Frequenzgang haben wir die Antwort eines Systems auf den Einheitspuls und die komplexe Exponentialfunktion ermittelt. Das

Mehr

Nachrichtenübertragung

Nachrichtenübertragung Klausur im Lehrgebiet Nachrichtenübertragung Vorlesung II und Rechenübung II - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:..............................

Mehr

UNIVERSITÄT HANNOVER DIGITALE FILTER VERSUCHSLEITER VERSUCHSTAG ENDTESTAT

UNIVERSITÄT HANNOVER DIGITALE FILTER VERSUCHSLEITER VERSUCHSTAG ENDTESTAT INSTITUT FÜR INFORMATIONSVERARBEITUNG (TNT) UNIVERSITÄT HANNOVER LABORATORIUM FÜR NACHRICHTENVERARBEITUNG DIGITALE FILTER NAME MATR.-NR. GRUPPE VERSUCHSLEITER VERSUCHSTAG ENDTESTAT 1 Inhaltsverzeichnis

Mehr

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Wie kommen die Bits überhaupt vom Sender zum Empfänger? (und welche Mathematik steckt dahinter) Vergleichende Einblicke in digitale Übertragungsverfahren

Mehr

Elektrotechnik II: Kolloquium 4

Elektrotechnik II: Kolloquium 4 Elektrotechnik II: Kolloquium 4 Digitalschaltungen Hubert Abgottspon: abgottspon@eeh.ee.ethz.ch Markus Imhof: imhof@eeh.ee.ethz.ch Inhalt des Kolloquium: Digitale Messkette Sensor 1) Filter S&H- Versträker

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

Kombinierten Messverfahrens für Lithium-Ionen Batterien im Zeit- und Frequenzbereich

Kombinierten Messverfahrens für Lithium-Ionen Batterien im Zeit- und Frequenzbereich Kombinierten Messverfahrens für Lithium-Ionen Batterien im Zeit- und Frequenzbereich Dino Klotz, Michael Schönleber KIT- die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Mehr

SDR - Software Defined Radio für den Funkamateur

SDR - Software Defined Radio für den Funkamateur SDR - Software Defined Radio für den Funkamateur So funktioniert die neue Technik Dipl.-Kaufm. Bodo J. Krink (DL7BJK) Ш Verlag für Technik und Handwerk Baden-Baden Inhaltsverzeichnis Vorwort 11 Einführung

Mehr

Technische Universität Berlin. Ein Real Time Analyzer für Audiosignale im Tonstudio

Technische Universität Berlin. Ein Real Time Analyzer für Audiosignale im Tonstudio Technische Universität Berlin Institut für Sprache und Kommunikation Fachgebiet Audiokommunikation Prof. Dr. Stefan Weinzierl Bachelorarbeit Ein Real Time Analyzer für Audiosignale im Tonstudio eingereicht

Mehr

Analoge CMOS-Schaltungen

Analoge CMOS-Schaltungen Analoge CMOS-Schaltungen PSPICE und Systemtheorie 24. Vorlesung Einführung 1. Vorlesung 8. Vorlesung: Inverter-Verstärker, einige Differenzverstärker, Miller-Verstärker 9. Vorlesung: Miller-Verstärker

Mehr

Linienstrahler Prototyp

Linienstrahler Prototyp Linienstrahler Prototyp Inhalt Motivation... 2 Konzept... 2 Prototyp... 2 Messungen... Abstrahlverhalten horizontal... Abstrahlverhalten vertikal... 4 Stege... 5 Shading... 6 Nichtlineare Verzerrungen...

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Inhaltsverzeichnis 1 Einführung 2 FFT 3 Anwendungen 4 Beschränkungen 5 Zusammenfassung Definition Fouriertransformation

Mehr

DSO. Kriterien für die Auswahl

DSO. Kriterien für die Auswahl DSO Kriterien für die Auswahl Inhalt Inhalt...- 1 - Die passende Bandbreite eines Oszilloskops auswählen...- 2 - Welche Bandbreite passt zu meiner Messaufgabe?...- 3 - Der Frequenzgangunterschied...- 3

Mehr

Tontechnik 2. DA-Wandlung. DA-Wandlung (Übersicht) Hold-Schaltung. Prof. Oliver Curdt Audiovisuelle Medien HdM Stuttgart

Tontechnik 2. DA-Wandlung. DA-Wandlung (Übersicht) Hold-Schaltung. Prof. Oliver Curdt Audiovisuelle Medien HdM Stuttgart Tontechnik 2 DA-Wandlung Audiovisuelle Medien HdM Stuttgart Quelle: Michael Dickreiter, Handbuch der Tonstudiotechnik DA-Wandlung (Übersicht) Hold-Schaltung 1 DA-Wandlung Rückgewinnung analoger Spannungswerte

Mehr

Die Aufgabe: Untersuchung der Wirkungsweise von passiven und aktiven Filterschaltungen durch den Einsatz von Operationsverstärkern

Die Aufgabe: Untersuchung der Wirkungsweise von passiven und aktiven Filterschaltungen durch den Einsatz von Operationsverstärkern Aktive Analogfilter "Bei den analogen Abtastfiltern lassen sich die Signale amplitudenkontinuierlich und zeitdiskret in Verbindung mit einem PC-System verarbeiten." - Dipl.-Ing. Herbert Bernstein, Herbert

Mehr

5.5 Theorie und Praxis der Signalabtastung

5.5 Theorie und Praxis der Signalabtastung ELEKTRONIK FÜR EMBEDDED SYSTEMS TEIL 5, ABSCHNITT 5 EES05_03 SEITE 1 5.5 Theorie und Praxis der Signalabtastung Wie gut ist eigentlich "digital"? Von der digitalen Speicherung und Verarbeitung eigentlich

Mehr

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich André Grüneberg Janko Lötzsch Mario Apitz Friedemar Blohm Versuch: 19. Dezember 2001 Protokoll: 6. Januar

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Wiederholung vom letzten Mal Einführung Regelungstechnik: Lehre von der gezielten Beeinflussung dynamischer

Mehr

Modulationsverfahren

Modulationsverfahren Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:

Mehr

Phase-Locked Loops (PLLs)

Phase-Locked Loops (PLLs) Phase-Locked Loops (PLLs) Vorlesung Integrierte Analogelektronik II Teil : Grundlagen Seite von 5 Infineon Technologies AG Agenda Was ist eine PLL? Anwendungsgebiete von PLLs Lineares PLL Modell Typ I

Mehr

Klausur zur Vorlesung Signale und Systeme

Klausur zur Vorlesung Signale und Systeme Name: 10. Juli 2008, 11.00-13.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Mitschrift Übungen, Skript, handgeschriebene 2-seitige

Mehr

Elektrische Messtechnik

Elektrische Messtechnik Elektrische Messtechnik Versuch: OSZI Versuchsvorbereitung. Zur praktischen Bestimmung von Systemkennfunktionen und Kenngrößen werden spezielle Testsignale verwendet. Welche sind ihnen bekannt, wie werden

Mehr

Grundlagen der Videotechnik Bau von Systemen Zweiter Ordnung, Prädiktion

Grundlagen der Videotechnik Bau von Systemen Zweiter Ordnung, Prädiktion Grundlagen der Videotechnik Bau von Systemen Zweiter Ordnung, Prädiktion Bisher: Analyse von Systemen 1. und 2. Ordnung Heute: Synthese, Bau von passenden Prädiktoren. Angenommen, wir wollen einen Sinus-Generator

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

Seminar Digitale Signalverarbeitung

Seminar Digitale Signalverarbeitung Universität Koblenz-Landau Institut für integrierte aturwissenschaften Abteilung Physik Dr. Merten Joost Seminar Digitale Signalverarbeitung Thema: Fast Fourier Transformation Praktische Durchführung einer

Mehr

Signalübertragung und -verarbeitung

Signalübertragung und -verarbeitung ILehrstuhl für Informationsübertragung Schriftliche Prüfung im Fach Signalübertragung und -verarbeitung 6. Oktober 008 5Aufgaben 90 Punkte Hinweise: Beachten Sie die Hinweise zu den einzelnen Teilaufgaben.

Mehr

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt Praktikum Elektronische Messtechnik WS 27/28 Versuch OSZI Tobias Doerffel Andreas Friedrich Heiner Reinhardt Chemnitz, 9. November 27 Versuchsvorbereitung.. harmonisches Signal: Abbildung 4, f(x) { = a

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Entwurf von IIR-Filtern

Entwurf von IIR-Filtern Kapitel Entwurf von IIR-Filtern. Einleitung.. Darstellung von IIR-Filtern im Zeitbereich y[n] = b 0 x[n] + b x[n ] + b 2 x[n 2] +... + b M x[n M].) a y[n ] a 2 y[n 2]... a N y[n N] = M N b k x[n k] a m

Mehr

Praktikum Versuch Bauelemente. Versuch Bauelemente

Praktikum Versuch Bauelemente. Versuch Bauelemente 1 Allgemeines Seite 1 1.1 Grundlagen 1.1.1 db-echnung Da in der Elektrotechnik häufig mit sehr großen oder sehr kleinen Werten gerechnet wird, benutzt man für diese vorzugsweise die logarithmische Darstellung.

Mehr

Entwicklung eines Verfahrens in MATLAB und C zur Schätzung des Spektrums der Hintergrundstörung bei Sprachsignalen

Entwicklung eines Verfahrens in MATLAB und C zur Schätzung des Spektrums der Hintergrundstörung bei Sprachsignalen Entwicklung eines Verfahrens in MATLAB und C zur Schätzung des Spektrums der Hintergrundstörung bei Sprachsignalen Diplomarbeit an der Hochschule Niederrhein Fachbereich Elektrotechnik Zur Erlangung des

Mehr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Seminarübungen: Dozent: Alexander Weber Ort: 33/1101 Zeit: Mo 9.45 11.15 Uhr (Beginn: 20.04.2015) Vorlesungsskript:

Mehr

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Formelzeichen und Abkürzungen

Formelzeichen und Abkürzungen 310 Formelzeichen und Abkürzungen Konstanten und Variablen f m S, D S, D 2 DFT-Frequenzauflösung /-raster (spectral resolution) Hauptzipfelbreite (Hauptkeulenbreite) (mainlobe width) normierte Kreisfrequenz

Mehr