Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1

Größe: px
Ab Seite anzeigen:

Download "Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1"

Transkript

1 Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 FIR-Filter sind nichtrekursive LTD-Systeme werden meistens in Transversalstruktur (Direktform 1) realisiert + linearer Phasengang realisierbar + immer stabil (alle Pole im Ursprung) + toleranter gegenüber Quantisierungseffekten als IIR-Filter - höhere Filterordnung als vergleichbare IIR-Filter (mehr Realisierungsaufwand, dafür effiziente Struktur für DSP) - Zeitverzögerung bzw. Gruppenlaufzeit relativ gross IIR-Filter sind rekursive LTD-Systeme werden meistens als Biquad-Kaskade realisiert + kleine Filterordnung (Aufwand) dank Pol-Selektivität + kleine Zeitverzögerung - linearer Phasengang für kausale Filter nicht realisierbar - mehr Probleme mit Quantisierungseffekten als bei FIR-Filter

2 Frequenzgang eines LTD-Systems H(z): Übertragungsfunktion (UTF) z-transformierte der Impulsantwort h[n] H(f): Frequenzgang H(f) = H(z=e j2πfts ) Fourier-Transformierte von h[n] Polarkoordinatendarstellung => IH(f)I: Amplitudengang meistens in db, d.h. 20*log 10 (IH(f)I) gerade Funktion, d.h. IH(f)I = IH(-f)I DSV 1, 2005/01, Rur, Filterentwurf, 2 H(f) IH(f)I Im[H(f)] φ(f) Re[H(f)] H(f) = H(f) H *(-f) = H(-f) e e j ϕ (f) wenn h[n] reell: H(f) = H*(-f) -j ϕ (-f) φ(f): Phasengang ungerade Funktion, d.h. φ(f) = -φ(-f) φ(f) = arctan( Im[H(f)] / Re[H(f)] )

3 Frequenzgang eines LTD-Systems DSV 1, 2005/01, Rur, Filterentwurf, 3 Bedeutung des Amplituden- und Phasengangs cos(2πf 0 nt s ) H(f) IH(f 0 )I cos[2πf 0 nt s +φ(f 0 )] = IH(f 0 )I cos[2πf 0 (nt s -Δ 0 )] wobei Zeitverzögerung Δ 0 (f0 ) = ϕ 2π f 0 Linearer Phasengang φ(f) = -K f H(f) verzögert alle Frequenzkomponenten um Δ=K/2π

4 Frequenzgang eines LTD-Systems DSV 1, 2005/01, Rur, Filterentwurf, 4

5 Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 5 Stempel-Matrizen-Schema 1 db A max R p Durchlassbereich A min, Rippel R s Sperrbereich f DB f SB f s /2 Filterordnung (Aufwand) abhängig von Steilheit im Übergangsbereich

6 FIR-Filter mit linearer Phase DSV 1, 2005/01, Rur, Filterentwurf, 6 Linearphasige FIR-Filtern der Ordnung N Filterkoeffizienten symmetrisch sind, d.h. b n = b N-n Filterkoeffizienten antisymmetrisch sind, d.h. b n = - b N-n 4 Typen linearphasiger FIR-Filter und H(f)-Restrikitionen Typ Symmetrie Ordnung N H(0) H(f s /2) 1 sym. gerade sym. ungerade - Nullstelle 3 anti-sym. gerade Nullstelle Nullstelle 4 anti-sym. ungerade Nullstelle - Beispiel: H(z) = b 0 (1+z -1 ) FIR-Filter der Ordnung N=1 vom Typ 2 Frequenzgang: H(f) = 2b 0 cos(πft s ) e -jπfts Nullstelle H(f s /2) = 0 linearer Phasengang φ(f) = -π f T s bzw. Zeitverzögerung Δ = T s /2

7 FIR-Filterentwurf mit Fenstermethode DSV 1, 2005/01, Rur, Filterentwurf, 7 Ziel: b n = h[n] so bestimmen, dass H(f) die Spezifikationen erfüllt Fenstermethode 1. Analoge Referenzstossantwort abtasten: h d [n] = T s h(t=nt s ) sin(nπf DB/(f s/2)) idealer TP: h[n]= d - < n < nπ 2. relevanten Anteil ausschneiden: h c [n] = w[n] h d [n] für -N/2 n N/2 Fenster w[n]: Rechteck-Fenster Blackman-Fenster Hamming-Fenster Hanning-Fenster -N/2 0 N/2 3. FIR-Filter mit Zeitverschiebung kausal machen: h[n] = h c [n-n/2]

8 Beispiel zum Windowing DSV 1, 2005/01, Rur, Filterentwurf, 8 Gibbs sches Phänomen

9 Einfluss des Fensters h FIR [n] = w[n] h d [n] H FIR (f) = W(f) * H d (f) DSV 1, 2005/01, Rur, Filterentwurf, 9 H d (f) IW(f 0 -f)i f DB Gibbs sches Phänomen: Überschwingen von H FIR (f 0 f DB ) Nebenkeule von W(f) klein => Überschwingen von H FIR (f) klein Hauptkeule von W(f) schmal => Übergangsbereich von H FIR (f) steil

10 Spektren verschiedener Fenster DSV 1, 2005/01, Rur, Filterentwurf, 10 L=N+1=51 A = - 13 db A = - 41 db Δf (1/L) fs Δf (2/L) fs A = - 31 db A = - 57 db Δf (2/L) fs Δf (3/L) fs

11 TP BP/BS/HP-Transformationen DSV 1, 2005/01, Rur, Filterentwurf, 11 Ziel: Erhalt der linearen Phase TP-BP-Frequenztranslation Typ 1,2: b BP [n] = 2 cos(ω 0 nt s ) b TP [n] Typ 3,4: b BP [n] = 2 sin(ω 0 nt s ) b TP [n] BP-BS-Transformation BS und BP sind komplementär: H BP (z) + H BS (z) = z -N/2 b BS [n] = δ[n-n/2] - b BP [n] TP-HP-Frequenztranslation TP-BP-Trafo mit f 0 =f s /2: b HP [n] = (-1) n b TP [n] Beispiel linearphasiges Typ 2 FIR-Filter 1. Ordnung mit f DB =f s /4 TP: H TP (z) = 0.5 (1+z -1 ) => HP: H HP (z) = 0.5 (1-z -1 )

12 FIR-Differentiator-Filter DSV 1, 2005/01, Rur, Filterentwurf, 12 Referenzfilter: H a (f) = j2πf => h d [n] = cos(nπ)/n - sin(nπ)/(n 2 π) Beispiel: FIR-Differentiator 10. Ordnung (Hamming-Fenster) FIR-Differentiatoren, die höhere Frequenzen (Rauschen) unterdrücken H Diff (z) H TP (z) siehe auch Matlab fdatool zwei FIR-Filter

13 FIR-Hilbert-Filter DSV 1, 2005/01, Rur, Filterentwurf, 13 Referenzfilter: H a (f) = -j sgn(f) Anwendung: Beispiel: => h d [n] = [1 - cos(nπ)] / (nπ) breitbandige Phasenschieber (z.b. Einseitenband-Signale in Telekommunikation) FIR-Hilbert-Filter 10. Ordnung (Rechteck-Fenster) Allpass Phasensprung von Linearer Abfall (Zeitverschiebung beim Windowing)

14 Raised-cosine-FIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 14 Anwendung: Beispiel: Pulsformung bei der Signalübertragung Raised-Cosine-FIR-Filter, N=20, Rechteck-Fenster Datenrate R = 2 kb/s, f s = 8 khz, Rolloff r=0.5 Pulsform T=1/R Übergangsbereich (r=0.5)

15 FIR-Filterentwurf: Frequenzabtastung DSV 1, 2005/01, Rur, Filterentwurf, Vorgabe N+1 äquidistante Abtastwerte von H(f) im Bereich [0,f s ] H[m] N+1=80 periodisch! f s = 2. IFFT h[n] b FIR [n] 3. Zeitverschiebung (oder Vorgabe Phase) H FIR (f) Verbesserungen: Vorgabe weniger steil (siehe ) oder Windowing Vorgabe wird eingehalten dazwischen aber Überschwingen

16 FIR-Filterentwurf im z-bereich DSV 1, 2005/01, Rur, Filterentwurf, 16 Iterative Optimierungsverfahren (CAD) am bekanntesten ist der Remez-Algorithmus (Parks-McClellan) Vorgabe Stempel-Matrize (auch Multiband) => Minimax-Optimierung Equiripple im Durchlass- und Sperrbereich => kleinste Ordnung für A min A min Least-Square Optimierungsverfahren

17 IIR-Filterentwurf: Analoge Prototypen DSV 1, 2005/01, Rur, Filterentwurf, 17 Approximation von Brickwall -Filtern ist im Analogen gelöst Beispiel: Butterworth-TP N. Ordnung N=1 IH(f)I = 1+ 1 ( ) 2N f/f DB N=3 N=2 IIR-Filterentwurf sz-trafo (bilinear) H TP (s) [ => H BP (s) ] => H(z) => b-,a-filterkoeffizienten TP-HP/BP/BS-Trafo (Achtung: BP und BS haben doppelte Ordnung)

18 IIR-Filterentwurf: Analoge Prototypen DSV 1, 2005/01, Rur, Filterentwurf, 18 Vergleich mit Filter 4. Ordnung => A max =1dB, f DB =1 khz, A min =30 db, f SB =2 khz A min =3 db Butterworth-Filter Steilheit: klein IH(f)I: monoton φ(f): Nichtlinearität klein Chebyscheff-Filter Steilheit: mittel IH(f)I: Rippel im DB oder SB φ(f): Nichtlinearität mittel Elliptisches Filter (Cauer) Steilheit: gross IH(f)I: Rippel im DB und SB φ(f): Nichtlinearität gross Besselfilter Steilheit: sehr klein IH(f)I: monoton φ(f): Nichtlinearität sehr klein

19 Bilineare Transformation DSV 1, 2005/01, Rur, Filterentwurf, 19 sz-trafo s 2 z 1 = T z+ 1 s f-trafo: j2πf analog = j(2/t s ) tan(πf digital T s ) kein Aliasing! aber Frequenzstauchung! f analog IH a (f)i f analog -f s /2 f DB f s /2 f digital IH(f)I prewarping f DB f s /2 f digital

20 IIR-Filterentwurf im z-bereich DSV 1, 2005/01, Rur, Filterentwurf, 20 Ziel H(f) soll möglichst gut mit Vorgabe übereinstimmen (least-square) Filterkoeffizienten von H(z) variieren bzw. optimieren (CAD) Beispiel Yule-Walker-Filter 10. Ordnung mit 2 Durchlassbereichen

Kapitel 5: FIR- und IIR-Filterentwurf

Kapitel 5: FIR- und IIR-Filterentwurf ZHW, DSV 1, 2005/01, Rur 5-1 Kapitel 5: FIR- und IIR-Filterentwurf Inhaltsverzeichnis 5.1. EINLEITUNG...2 5.2. FREQUENZGANG...3 5.3. FILTERSPEZIFIKATION...5 5.4. FIR-FILTER...6 5.4.1. TYPISIERUNG...6 5.4.2.

Mehr

Kapitel 5: FIR- und IIR-Filterentwurf

Kapitel 5: FIR- und IIR-Filterentwurf ZHW, DSV 1, 2007/03, Rur&Hrt 5-1 ZHW, DSV 1, 2007/03, Rur&Hrt 5-2 5.1. Einleitung In diesem Kapitel betrachten wir den klassischen Digitalfilterentwurf, in dem primär ideale Tiefpass- (TP), Hochpass- (HP),

Mehr

Verzerrungsfreies System

Verzerrungsfreies System Verzerrungsfreies System x(n) y(n) n n x(n) h(n) y(n) y(n) A 0 x(n a) A 0 x(n) (n a) h(n) A 0 (n a) H(z) A 0 z a Digitale Signalverarbeitung Liedtke 8.1.1 Erzeugung einer linearen Phase bei beliebigem

Mehr

Seminar Digitale Signalverarbeitung Thema: Digitale Filter

Seminar Digitale Signalverarbeitung Thema: Digitale Filter Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl Musterlösung 11. Aufgabenblatt 1. IIR-Filter 1.1 Laden Sie in Matlab eine Audiodatei mit Sampling-Frequenz von fs = 44100

Mehr

Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 6 Analoge Filter 3 6. Motivation..................................

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

Der Tiefpass Betreuer: Daniel Triebs

Der Tiefpass Betreuer: Daniel Triebs Der Tiefpass Betreuer: Daniel Triebs 1 Gliederung Definiton: Filter Ideale Tiefpass Tiefpass 1.Ordnung Frequenzgänge Grundarten des Filters Filterentwurf Tiefpass 2.Ordnung 2 Definition: Filter 3 Filter

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d d z c d z c uk d yk z d c d z c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Musterlösungen - Entwurf zeitdiskreter Filter... 3. iefpass mit

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

SV1: Aktive RC-Filter

SV1: Aktive RC-Filter Signal and Information Processing Laboratory Institut für Signal- und Informationsverarbeitung. September 6 Fachpraktikum Signalverarbeitung SV: Aktive RC-Filter Einführung In diesem Versuch wird ein aktives

Mehr

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt 3. November 2009 Mateusz Grzeszkowski / 24 Mateusz Grzeszkowski 3. November 2009 typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt Motivation

Mehr

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13 FB ET/IT Filterentwurf WS 2/3 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung ein mathematisches Formelwerk Wichtige Hinweise: Ausführungen,

Mehr

Analoge und digitale Filter

Analoge und digitale Filter Technische Universität Ilmenau Fakultät Elektrotechnik und Informationstechnik FG Nachrichtentechnik Übungsaufgaben zur Lehrveranstaltung Analoge und digitale Filter Filter. Ordnung. Betrachtet wird ein

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 6 146 2. Teil Ziele der Filteranwendung Signal-Trennung (z.b. EKG eines Kindes im Mutterleib, Spektralanalyse) Signal-Restauration (z.b. unscharfes

Mehr

7. Filter. Aufgabe von Filtern

7. Filter. Aufgabe von Filtern . Filter Aufgabe von Filtern Amplitude Sperren einer Frequenz oder eines Frequenzbereichs Durchlassen einer Frequenz oder eines Frequenzbereichs möglichst kleine Phasenänderung Phase Phasenverschiebung

Mehr

Elektronik Prof. Dr.-Ing. Heinz Schmidt-Walter

Elektronik Prof. Dr.-Ing. Heinz Schmidt-Walter 6. Aktive Filter Filterschaltungen sind Schaltungen mit einer frequenzabhängigen Übertragungsfunktion. Man unterscheidet zwischen Tief, Hoch und Bandpässen sowie Sperrfiltern. Diesen Filtern ist gemeinsam,

Mehr

Versuch: Digitale Filter

Versuch: Digitale Filter Versuch: Digitale Filter Diese Unterlagen dienen zum einen als Versuchsunterlagen für den Versuch: Digitale Filter". Sie enthalten aber auch in komprimierter Form alles Wissenswerte zu diesem Thema und

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes System (LTD-System)

Mehr

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 3 Senden Sie die Hausübung bis spätestens 15.06.2015 per Email an hw1.spsc@tugraz.at. Verwenden Sie MatrikelNummer1

Mehr

Realisierung digitaler Filter in C

Realisierung digitaler Filter in C Realisierung digitaler Filter in C Begleitmaterial zum Buch Grundlagen der digitalen Kommunikationstechnik Übertragungstechnik Signalverarbeitung Netze Carsten Roppel E-Mail: c.roppel@fh-sm.de Fachbuchverlag

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A- Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling (Sigma-Delta

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

MATLAB Signal Processing Toolbox Inhaltsverzeichnis

MATLAB Signal Processing Toolbox Inhaltsverzeichnis Inhaltsverzeichnis Signal Processing Toolbox 1 Was ist Digitale Signalverarbeitung? 2 Inhalt 3 Aufbereitung der Messdaten 4 Interpolation 6 Approximation 7 Interpolation und Approximation 8 Anpassung der

Mehr

Versuch 5: Filterentwurf

Versuch 5: Filterentwurf Ziele In diesem Versuch lernen Sie den Entwurf digitaler Filter, ausgehend von der Festlegung eines Toleranzschemas für den Verlauf der spektralen Charakteristik des Filters, kennen. Es können Filtercharakteristiken

Mehr

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches: Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung

Mehr

Kapitel 3: DFT und FFT

Kapitel 3: DFT und FFT ZHAW, DSV1, FS2009, Rumc, 3-1 Inhaltsverzeichnis Kapitel 3 DFT und FFT 3.1. EINLEITUNG... 1 3.2. DISKRETE FOURIERTRANSFORMATION (DFT)... 2 3.3. EIGENSCHAFTEN DER DFT... 2 3.4. VERWANDTSCHAFT DER DFT MIT

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A-Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling DACs Dr.

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

Kapitel 4: Digitale Systeme

Kapitel 4: Digitale Systeme ZHAW, DSV, FS2009, Rumc, 4- Kapitel 4: Digitale Systeme Inhaltsverzeichnis 4.. EINLEITUNG...2 4.2. LTD-SYSTEME...3 4.3. DIFFERENZENGLEICHUNG...3 4.4. IMPULSANTWORT UND FALTUNGSSUMME...5 4.5. Z-TRANSFORMATION...7

Mehr

Antialiasing-Filter. Die erforderliche Dämpfung des Antialiasingfilters bei der halben Abtastfrequenz errechnet sich nach (bei N-Bit ADU): f f.

Antialiasing-Filter. Die erforderliche Dämpfung des Antialiasingfilters bei der halben Abtastfrequenz errechnet sich nach (bei N-Bit ADU): f f. ntialiasing-filter Bei der btastung eines auf f < fb bandbeenzten Messsignal ergibt sich, wie später gezeigt wird, für das abgetastete ignal eine periodische Wiederholung des Basisspektrums. m Überlappungen

Mehr

Hinweis: Dies ist eine gekürzte Version des C-Projektes für unser ATMEL-Board ATM1

Hinweis: Dies ist eine gekürzte Version des C-Projektes für unser ATMEL-Board ATM1 Hinweis: Dies ist eine gekürzte Version des C-Projektes für unser ATMEL-Board ATM Einführung in die Digitale Verarbeitung von Analogen Signalen ( DSP- Grundlage mit dem Microcontroller. Das vollständige

Mehr

Kapitel 3: Verzerrungen bei der Signalübertragung

Kapitel 3: Verzerrungen bei der Signalübertragung ZHW, NTM, 2006/10, Rur 3-1 Kapitel 3: Verzerrungen bei der Signalübertragung Inhaltsverzeichnis 3.1. EINLEITUNG...2 3.2. LINEARE VERZERRUNGEN...3 3.3. GRUPPENLAUFZEIT...4 3.4. AUSSTEUERUNGSKENNLINIE, ENTSTEHUNG

Mehr

Seminar-Praktikum Nachrichtentechnik. Nachrichtentechnische Systeme. Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden.

Seminar-Praktikum Nachrichtentechnik. Nachrichtentechnische Systeme. Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden. Seminar-Praktikum Nachrichtentechnik Seminarversuch 4 Digitale Filter Fachgebiet: Nachrichtentechnische Systeme Name: Matr-Nr: Betreuer: Datum: N T S Die Vorbereitungsaufgaben müssen vor dem Seminartermin

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Alan V. Oppenheim, Ronald W. Schafer, John R. Buck Zeitdiskrete Signalverarbeitung 2., überarbeitete Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

Signale und Systeme 2

Signale und Systeme 2 Signale und Systeme Beispielsammlung c G. Doblinger, C. Novak, J. Gonter, May 03 gerhard.doblinger@tuwien.ac.at johannes.gonter@tuwien.ac.at www.nt.tuwien.ac.at/teaching/courses/summer-term/389055/ Vorwort

Mehr

Digital Signal Processing

Digital Signal Processing - for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese

Mehr

Die sogenannten FIR-Filter wurden im dritten Teil dieser. Digitale Signalverarbeitung. ist keine Hexerei. Grundlagen. Dr.

Die sogenannten FIR-Filter wurden im dritten Teil dieser. Digitale Signalverarbeitung. ist keine Hexerei. Grundlagen. Dr. Dr. Lothar Wenzel ist keine Hexerei Teil 4: Digitale Filter mit Rückkopplung Bei digitalen Filtern mit Rückkopplung dürfen im Gegensatz zu rückkopplungsfreien Filtern auch die ermittelten Signale wieder

Mehr

Kapitel 3: DFT und FFT

Kapitel 3: DFT und FFT ZHW, DSV, 27/4, Rur&Hrt 3- ZHW, DSV, 27/4, Rur&Hrt 3-2 3.. Einleitung Das Fourierspektrum X(f) eines abgetasteten Signals x[n] = x(nt s ) ist periodisch und kann auch in Funktion der Abtastwerte x[n] ausgedrückt

Mehr

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters?

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters? Aufgabensammlung Analoge Grundschaltungen 1. Aufgabe AG: Gegeben sei der Amplitudengang H(p) = a e eines Filters: a) m welchen Filtertyp handelt es sich? b) Bestimmen Sie die Mittenkreisfrequenz des Filters

Mehr

Entzerrung Anhebung bzw. Absenkung ausgewählter Frequenzbereiche zur Klangfarbenänderung

Entzerrung Anhebung bzw. Absenkung ausgewählter Frequenzbereiche zur Klangfarbenänderung Tontechnik 2 Entzerrung Audiovisuelle Medien HdM Stuttgart Entzerrung Entzerrung Anhebung bzw. Absenkung ausgewählter Frequenzbereiche zur Klangfarbenänderung Einstellung grundsätzlich nach Gehör, nicht

Mehr

1. Differentialgleichung der Filter zweiter Ordnung

1. Differentialgleichung der Filter zweiter Ordnung Prof. Dr.-Ing. F. Keller abor Elektronik 3 Filter zweiter Ordnung Info v.doc Hochschule Karlsruhe Info-Blatt: Filter zweiter Ordnung Seite /6. Differentialgleichung der Filter zweiter Ordnung Ein- und

Mehr

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch R. Brigola, TH Nürnberg Georg Simon Ohm, 2014 Mathematica - Notebooks als Bonusmaterial zum Lehrbuch [1] Rolf Brigola Fourier-Analysis und Distributionen, Eine Einführung mit Anwendungen, edition swk,

Mehr

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB MATLAB Kurs 2010 Teil 2 Eine Einführung in die via MATLAB 26.11.2010 & 03.12.2010 nhaltsverzeichnis 1 2 3 Ziele Kurze Einführung in die -Analyse Ziele Kurze Einführung in die -Analyse MATLAB Routinen für

Mehr

TEIL I: Analoge Filter

TEIL I: Analoge Filter TEIL I: Analoge Filter Version vom. April 24 Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Analoge und digitale Filter Literatur: L. D. Paarmann, Design And Analysis of Analog Filters: A Signal Processing

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 5 8 Aus ontinuierlichem Signal werden in onstanten Zeitintervallen Daten entnommen ontinuierliches Signal x(t) Einheitsimpulsfuntion Gewichtete

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Klausur zur Vorlesung: Signale und Systeme Aufgabe : Kontinuierliche und diskrete Signale. Zwei Systeme sollen auf ihre Eigenschaften untersucht werden: v(t) S { } y (t) v(t) S { } y (t) Abbildung : zeitkontinuierliche

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1 Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe System zur digitalen Signalverarbeitung: Signal- Quelle AAF ADC DAC RCF DSP Po rt Po rt Signal- Ziel Das Bild zeigt ein allgemeines System zur

Mehr

Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Filter

Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Filter Filter Filter! Hochpassfilter! Tiefpassfilter! Bandpassfilter (Bandsperrfilter)! FIRFilter! Oktav/Terz... nteloktavfilter wird Titel 2 Hochpassfilter LowCutFilter HighPassFilter Trittschallfilter BassCutFilter

Mehr

= {} +{} = {} Widerstand Kondensator Induktivität

= {} +{} = {} Widerstand Kondensator Induktivität Bode-Diagramme Selten misst man ein vorhandenes Zweipolnetzwerk aus, um mit den Daten Amplituden- und Phasengang zu zeichnen. Das kommt meistens nur vor wenn Filter abgeglichen werden müssen oder man die

Mehr

All Digital Transceiver

All Digital Transceiver All Digital Transceiver Prinzip Digital-Empfänger ADC, Analog Digital Converter ( Analog-Digital-Wandler ) DDC, Digital Down Converter ( Digitaler Abwärtsmischer ) DSP, Digital Signal Processor SDR-14

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 1 Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 2 Beschreibung Übertragungsfunktion H(z), H(ω) Differenzengleichung y[n] Impulsantwort h[n]: Finite Infinite Impulse Response (FIR) Impulse Response

Mehr

Praktikum für Nachrichtentechnik Versuch 7: Digitale Filter

Praktikum für Nachrichtentechnik Versuch 7: Digitale Filter Praktikum für Nachrichtentechnik Versuch 7: Digitale Filter Betreuer: M.Sc. Marc-André Jung Stand: 3. November 2015 Skript erarbeitet von: Jung, Weiß, Franzen Inhaltsverzeichnis 1 Einleitung 4 2 Signale

Mehr

Aktiver Tiefpass mit Operationsverstärker

Aktiver Tiefpass mit Operationsverstärker Aktiver Tiefpass mit Operationsverstärker Laborbericht an der Fachhochschule Zürich vorgelegt von Samuel Benz Leiter der Arbeit: B. Obrist Fachhochschule Zürich Zürich, 17.3.2003 Samuel Benz Inhaltsverzeichnis

Mehr

Information Retrieval for Music and Motion

Information Retrieval for Music and Motion Lecture Information Retrieval for Music and Motion Meinard Müller Max-Planck-Institut für Informatik Campus E1 4, 66123 Saarbrücken, Germany meinard@mpi-inf.mpg.de Informations- und Übungsblatt zu Matlab

Mehr

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan Lösung zur Übung 4.5.1/1: 5 Mesut Civan x e t= x e [t t t 1 ] x a t=ht für x e t=t x a t= x e [ht ht t 1 ] x a t= x e [ht ht t 1 ] a) t 1 T e Da die Impulsdauer t 1 des Eingangsimpulses größer ist als

Mehr

Laborprotokoll SSY. Anwendung von Systemen: Filter

Laborprotokoll SSY. Anwendung von Systemen: Filter Laborprotokoll SSY Anwendung von Systemen: Filter Daniel Schrenk, Andreas Unterweger, ITS 2004 SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Seite 1 von 15 1. Einleitung Ziel der Übung Bei dieser Übung

Mehr

Übungseinheit 3. FIR und IIR Filter

Übungseinheit 3. FIR und IIR Filter Übungseinheit 3 FIR und IIR Filter In dieser Übungseinheit sollen verschiedene Effekte mittels FIR (finite impulse response) und IIR (infinite impulse response) Filter implementiert werden. FIR Filter

Mehr

Übung 8: Digitale Modulationen

Übung 8: Digitale Modulationen ZHW, NTM, 25/6, Rur ufgabe : Modulationsarten. Übung 8: Digitale Modulationen Die Datensequenz wird bei einer festen Bitrate von Mb/s mittels 3 verschiedener Modulationsarten übertragen. Charakterisieren

Mehr

Die Betriebsdämpfungsfunktion H(s) in Abhängigkeit der komplexen Frequenz s (s = j! für reelle Frequenzen!) ergibt sich als U 2 : (1)

Die Betriebsdämpfungsfunktion H(s) in Abhängigkeit der komplexen Frequenz s (s = j! für reelle Frequenzen!) ergibt sich als U 2 : (1) Hochfrequenztechnik II Hochfrequenzlter FI/ Einleitung Bei Filtern handelt es sich um lineare (und zeitinvariante) Netzwerke, mit denen bestimmte Frequenzbereiche eines Eingangssignals herausgeltert werden.

Mehr

Proseminar Algorithmen, Schnittstellen und Werkzeuge zur Audiobearbeitung 'LJLWDOH)LOWHU. Kaptiel 1 Signale im Frequenzspektrum...

Proseminar Algorithmen, Schnittstellen und Werkzeuge zur Audiobearbeitung 'LJLWDOH)LOWHU. Kaptiel 1 Signale im Frequenzspektrum... Proseminar Algorithmen, Schnittstellen und Werkzeuge zur Audiobearbeitung 'LJLWDOH)LOWHU Oskar Klett Matthias Schwegler Technische Universität München Fakultät für Informatik Sommersemester 2003 Inhaltsverzeichnis

Mehr

Aufgabe 1: Diskrete und kontin. Signale

Aufgabe 1: Diskrete und kontin. Signale AG Digitale Signalverarbeitung - Klausur in Signale und Systeme Frühjahr 2009 Aufgabe : Diskrete und kontin. Signale 25 Pkt. Aufgabe : Diskrete und kontin. Signale 25 Pkt.. Gegeben sei das als Summierer

Mehr

Prof. Dr. Stefan Weinzierl 10.02.2015

Prof. Dr. Stefan Weinzierl 10.02.2015 Einführung in die digitale Signalverarbeitung: 15. Tutorium Prof. Dr. Stefan Weinzierl 10.02.2015 Zusammenfassung Im Folgenden findet sich eine kleine Zusammenfassung der Konzepte, die wir in diesem Semester

Mehr

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung:

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung: Teil C: Wechselstromkreis Beschreibungsgrößen Ohmscher, kapazitiver, induktiver Widerstand Knoten- und Maschenregeln Passiver / Bandpass Dezibel Bode-Diagramm 6.2.3 Beschreibungsgrößen Wechselspannung:

Mehr

Smart Antenna Terminal SANTANA

Smart Antenna Terminal SANTANA Smart Antenna Terminal SANTANA Vorstellung des Projekts A.F. Jacob Institut für Hochfrequenztechnik Technische Universität Braunschweig Einleitung Ziel des Projektes SANTANA Herstellung eines Submoduls

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Labor für Informationstechnik. Lineare Verzerrung

Labor für Informationstechnik. Lineare Verzerrung Labor für Informationstechnik Prof. Dr. Ing. Lilia Lajmi Dipl. Ing. Thomas Müller Lineare Verzerrung Gruppennummer: Teilnehmer Name Vorname Matrikelnummer 1 2 3 Ostfalia Hochschule für angewandte Wissenschaften

Mehr

2. Der Phasenregelkreis (PLL = Phase Locked Loop)

2. Der Phasenregelkreis (PLL = Phase Locked Loop) . Der Phasenregelkreis (PLL = Phase Locked Loop). PLL-Grundlagen. Stationäres Verhalten.3 Nachführverhalten hrverhalten.4 Rauschverhalten.5 Phasendetektoren: Realisierungsaspekte W. Koch: Synchronisationsverfahren,,

Mehr

Entwicklung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse

Entwicklung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse Entwicklung einer digitalen mit Einplatinencomputern zur Signalanalyse Philipp Urban Jacobs p.1 Inhalt 1 Motivation 2 Grundlagen 3 Umsetzung 4 Verifizierung 5 Fazit p.2 Motivation Signalgenerator ADC Gertboard

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität. Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende

Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität. Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende Schallaufzeichnung Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende Akustische Ereignisse sind vergänglich Akustische Ereignisse

Mehr

III Verarbeitung und Analyse akustischer Signale

III Verarbeitung und Analyse akustischer Signale Verarbeitung und Analyse akustischer Signale 73 III Verarbeitung und Analyse akustischer Signale III.1 Aufnahme- und Wiedergabetechnik: Bestandteile der Übertragungskette Die Aufnahme, Analyse, Verarbeitung

Mehr

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum.

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum. Messtechnik-Praktikum 10.06.08 Spektrumanalyse Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie die Schaltung für eine Einweggleichrichtung entsprechend Abbildung 1 auf. Benutzen Sie dazu

Mehr

Regelungs- und Systemtechnik 1 - Übung 5 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 5 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 - Übung 5 Sommer 216 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Skizzieren

Mehr

INSTITUT FÜR TECHNISCHE ELEKTRONIK

INSTITUT FÜR TECHNISCHE ELEKTRONIK INSTITUT FÜR TECHNISCHE ELEKTRONIK der Rheinisch-Westfälischen Technischen Hochschule Aachen Prof. Dr.-Ing. Bernhard Hill Korrespondenzen zur Laplacetransformation F(s) f(t) s s + α s + β ε(t) α e - α

Mehr

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

FS I Filter Systeme. 1 Filterarten 1 1.1 Die Umrechnug auf den äquivalenten Tiefpaß... 2

FS I Filter Systeme. 1 Filterarten 1 1.1 Die Umrechnug auf den äquivalenten Tiefpaß... 2 FS I Filter Systeme Filter Systeme Inhaltsverzeichnis 1 Filterarten 1 1.1 Die Umrechnug auf den äquivalenten Tiefpaß............................. 2 2 Übertragungsfunktion, Pole und Nullstellen 2 2.1 Pol

Mehr

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Wie kommen die Bits überhaupt vom Sender zum Empfänger? (und welche Mathematik steckt dahinter) Vergleichende Einblicke in digitale Übertragungsverfahren

Mehr

Simulink: Einführende Beispiele

Simulink: Einführende Beispiele Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play

Mehr

11.8 Digitale Filter. Vorteile digitaler Filter

11.8 Digitale Filter. Vorteile digitaler Filter Fachhochschule usbur Fachbereich Elekroechnik Pro. Dr. C. Clemen.8 Diiale Filer Nachrichenüberraunsechnik.8 Diiale Filer ls wichies Beispiel ür diiale Sinalverarbeiun sollen nun diiale Filer behandel werden.

Mehr

Tiefpaß Systeme. Inhaltsverzeichnis. Abbildungsverzeichnis. TP I Tiefpaß Systeme

Tiefpaß Systeme. Inhaltsverzeichnis. Abbildungsverzeichnis. TP I Tiefpaß Systeme TP I Tiefpaß Systeme Tiefpaß Systeme Inhaltsverzeichnis 1 Das ideale Tiefpaß System (Küpfmüller Tiefpaß) 1 1.1 Die Übertragungsfunktion des Küpfmüller TP............................. 1 1.2 Die Impulsantwort

Mehr

Methoden der Biosignalverarbeitung

Methoden der Biosignalverarbeitung Vorlesung SS 2012 Methoden der Biosignalverarbeitung Filterdesign Dipl. Math. Michael Wand Prof. Dr. Tanja Schultz 1 / 103 Unser Vorlesungsplan Thema dieser Vorlesung: Theorie der digitalen Filterung,

Mehr

Die Aufgabe: Untersuchung der Wirkungsweise von passiven und aktiven Filterschaltungen durch den Einsatz von Operationsverstärkern

Die Aufgabe: Untersuchung der Wirkungsweise von passiven und aktiven Filterschaltungen durch den Einsatz von Operationsverstärkern Aktive Analogfilter "Bei den analogen Abtastfiltern lassen sich die Signale amplitudenkontinuierlich und zeitdiskret in Verbindung mit einem PC-System verarbeiten." - Dipl.-Ing. Herbert Bernstein, Herbert

Mehr

UNIVERSITÄT HANNOVER DIGITALE FILTER VERSUCHSLEITER VERSUCHSTAG ENDTESTAT

UNIVERSITÄT HANNOVER DIGITALE FILTER VERSUCHSLEITER VERSUCHSTAG ENDTESTAT INSTITUT FÜR INFORMATIONSVERARBEITUNG (TNT) UNIVERSITÄT HANNOVER LABORATORIUM FÜR NACHRICHTENVERARBEITUNG DIGITALE FILTER NAME MATR.-NR. GRUPPE VERSUCHSLEITER VERSUCHSTAG ENDTESTAT 1 Inhaltsverzeichnis

Mehr

Lösungen zur 3. Übung

Lösungen zur 3. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn )

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn ) Vorlesung : Dozent: Professor Ferdinand Svaricek Ort: 33/040 Zeit: Do 5.00 6.30Uhr Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/20 Zeit: Mo 5.00 6.30 Uhr (Beginn 8.0.206 Vorlesungsskript: https://www.unibw.de/lrt5/institut/lehre/vorlesung/rt_skript.pdf

Mehr

Analog-Filter. Glossar Analog-Filter

Analog-Filter. Glossar Analog-Filter Glossar Analog-Filter 1 Index Analog-Filter Absenzfilter Aktiver Filter Antialiasing-Filter Bandbreite Bandpass, BP Bandstoppfilter BAW, bulk acoustic wave Bessel-Filter Butterworth-Filter Digitalfilter

Mehr

Taschenbuch der Elektrotechnik

Taschenbuch der Elektrotechnik Taschenbuch der Elektrotechnik Grundlagen und Elektronik von Ralf Kories, Heinz Schmidt-Walter überarbeitet Taschenbuch der Elektrotechnik Kories / Schmidt-Walter schnell und portofrei erhältlich bei beck-shop.de

Mehr

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang Vorlesung 3 Die Frequenzkennlinien / Frequenzgang Frequenzkennlinien geben das Antwortverhalten eines linearen Systems auf eine harmonische (sinusförmige) Anregung in Verstärkung (Amplitude) und Phasenverschiebung

Mehr

PRODUCTION PARTNER ARTIKEL AUS PRODUCTION PARTNER 7-8/2010. Neben dem schon seit über zehn Jahren. Hardware

PRODUCTION PARTNER ARTIKEL AUS PRODUCTION PARTNER 7-8/2010. Neben dem schon seit über zehn Jahren. Hardware Das Nachrichten portal rund um die Medienweltund Technik powered by PRODUCTION PARTNER www.production-partner.de www.promedianews.de ARTIKEL AUS PRODUCTION PARTNER 7-8/2010 Dynacord DSP600 FIR Controller

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,

Mehr