Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion"

Transkript

1 Samstag, 17. Januar 2015 Praktikum "Physik für Biologen und Zweifach-Bachelor Chemie" Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion von Olaf Olafson Tutor: ---

2 Einführung: Der fünfte Versuchstag war eine Einführung in die Optik, in der diverse Teilbereiche dieser behandelt wurden. 1.0 Theorie: Mithilfe von Linsen kann ein Objektpunkt G abgebildet werden. Es wird zwischen zwei Abbildungen (Bildpunkten, Kürzel B)unterschieden. Ein reeller Bildpunkt liegt dann vor, wenn die von G ausgehenden Lichtstrahlen sich nach Durchtritt durch die Linse in B vereinigen. Ein virtueller Bildpunkt von G entsteht, wenn bei der rückwärtigen Verlängerung der Lichtstrahlen ein Bildpunkt B vorhanden ist. Dieser lässt sich jedoch nur mit zusätzlichem optischen Vorrichtungen erkennen (Z.B. Auch das Auge, man denke etwa an optische Täuschungen). Um ein Bild geometrisch zu konstruieren, geht man von Lichtstrahlen aus. Es werden drei Grundsätzliche Strahlentypen unterschieden: Achsenparallele Strahlen: Verlaufen nach Brechung durch Brennpunkt der Linse Brennpunktstrahlen: Werden gebrochen und verlaufen nach Linsendurchtrittachsenparallel Strahlen, die den Mittelpunkt der Linse passieren erfahren keine Brechung Reellen Abbildung: Diese ergibt sich, wenn G sich außerhalb der Brennweite F befindet. Die Entfernung von G zur Linse (g) ist kleiner als die Entfernung des Brennpunktes zu derselben (f). Es gilt als g>f. Der Abbildungsmaßstab A ist das Verhältnis von Bildpunkt-Größe und Ojektpunkt-Größe. Es ergibt sich (b=entfernung Bildpunkt/Linse)

3 Daraus folgt: Dies ist die so genannte Linsenformel (auch Abbildungsgleichung genannt). Im Folgenden werden die zu Beantwortenden Aufgaben behandelt:

4 Virtuelle Abbildung: Steht der Gegenstand innerhalb der Brennweite (g<f), so fungiert eine Linse als Lupe. Hierbei gilt: Hieraus folgt b>g, sodass es sich immer um einer Vergrößerung handelt. Ein Linearer Zusammenhang zwischen A und b ist gegeben. Die Angabe des Abbildungsmaßstabs ist jedoch nicht sinnvoll, da es sich lediglich um eine virtuelle Abbildung handelt. Zur Beschreibung des Vergrößerungseffektes einer virtuellen Abbildung nutzt man: V ist die Sehwinkelvergrößerung, α der Sehwinkel der Lupe, β der Sehwinkel ohne Lupe. Befindet sich das Auge direkt hinter der Lupe, so gilt: Ohne Lupe sieht man das Objekt unter dem Sehwinkel P 1 AP2 Dabei ist: Es ergibt sich: Mit zunehmender Bildentfernung nimmt demnach die Sehwinkelvergrößerung ab (im Gegensatz zum Abbildungsmaßstab).

5 Linsenmachergleichung und Brechkraft: Es wird von einer dünnen Linse ausgegangen, die den Brechungsindex n hat, aus zwei konvexen Oberflächen besteht mit den Krümmungsradien r 1 und r 2. Hierbei gilt für die Brennweite die Linsenmachergleichung: Bei Symmetrischen Linsen gilt: Je kugelförmiger die Linse (kleiner Krümmungsradius), desto geringer ist die Brennweite. Je flacher die Linse (großer Brechungsradius), desto höher wird die Brennweite. Die Einheit der Brennweiter ist der Meter. Die Brechkraft ist der Kehrwert der Brennweite. Die Einheit für die Brechkraft ist die Dioptrie (dpt) 1dpt=1/m. Bei f=2cm bedeutet dies: 1/0,02=50dpt Beim Hintereinanderschalten von Linsen addieren sich die Brechkräfte. Die Gesamtbrechkraft D ist die Summe der einzelnen Brechkräfte. Aufbau des Mikroskops Da für starke Vergrößerungen Lupen mit sehr kleiner Brennweite verwendet werden müssten, dies aber kaum realisierbar ist, nutzt man optische Systeme mit zwei Linsen, also Mikroskope. Ein reelles Bild wird abgebildet von einer Lupe mit kurzer Brennweite. Eine zweite Lupe dient als Okular, mit welchem man dieses reelle Bild beobachten kann. Hierbei ist die Gesamtvergrößerung das Produkt aus Objektivvergrößerung V obj und der Lupenvergrößerung V ok. Es gilt beim Beobachten mit entspanntem Auge: t=optische Tubuslänge (Abstand der zueinander stehenden Brennpunkte von Objektiv und Okular)

6 t=/= mechanische Tubuslänge. Diese ist der Abstand der Mittelebenen des Objektivs und des Okulars. Für die Lupenvergrößerung bei b= gilt(nach der Gleichung für die Sehwinkelvergrößerung): Ist s die deutliche Sehweite (d.h. 25cm), so gilt: Die Gesamtvergrößerung des Mikroskop ist also proportional zur Tubuslänge t und umgekehrt proportional zu den Brennweiten des Okulars und des Objektives. Brechnungsindex und Dispersion: So genanntes weißes Licht besteht aus einer Vielfalt von diversen unterschiedlichen Lichtfarben, die auch als Spektralfarben bezeichnet werden. Sie stellen die Grundeinheiten des Lichtes dar und sind nicht weiter zerlegbar. Die Lichtwellen dieser haben unterschiedliche Eigenschaften wie, Frequenz f und Energie E. Dieser Zusammenhang ist über die Plancksche Konstante (h) definiert: E h f Es ist durchaus möglich die Parameter wie Frequenz f, Wellenlänge λ und Ausbreitungsgeschwindigkeit c in folgender Formel genauer zu beschreiben: c f Beim so genannten "brechen" des Lichtes (Übergang von durchsichtigen Stoff in anderen) erfährt dieses eine Richtungsänderung, es wird also gebrochen. Es gilt das Gesetzt von Snellius:

7 sin sin c c1 2 n n 2 1 α ist hier der Einfallswinkel und β der Ausfallswinkel, wobei c 1 und c 2 die Ausbreitungsgeschwindigkeiten des Lichtes in beiden Materialien darstellen. Weiterhin ist zu erwähnen, dass bei der Brechung des Lichtes die Energie und auch die Frequenz gleich bleiben ( E h f ). Es ändert sich nur die Wellenlänge und somit die Lichtgeschwindigkeit ( c f ), die wiederum von der Frequenz abhängig ist. Dies bezeichnet man auch als Dispersion, welche auf zwei Weisen definiert ist: Normale Dispersion: Brechzahl n steigt mit Frequenz. Anormale Dispersion: Brechzahl n sinkt mit Frequenz. Ein Lichtstrahl wird im Prisma um den Winkel (Ablenkwinkel) abgelenkt, dieser wird wiederum von dem Brechungsindex des Prismenmaterials, vom brechenden Winkel des Primas und von seiner Lage im Bezug zum einfallendem Licht, beeinflusst ( ist am kleinsten wenn der Lichtstrahl symmetrisch zum Prisma verläuft). Nach folgenden Formeln werden die Ablenkwinkel (symmetrisch) definiert: 2y 180 und y 90 Somit folgt: und 2 2 Zusammen mit dem Allgemeinen Brechungsgesetz ergibt sich:

8 sin n 2 sin 2 Das Auge: Abbildung 1: Aufbau des menschlichen Auges (Quelle: mages/03_-_menschliches_auge_querschnitt.png) Kurzsichtigkeit: Brechkraft des Auges zu groß. Weit entfernte Objekte: Können nicht scharf wahrgenommen werden, da der Brennpunkt zu nahe der Netzhaut liegt. Nahe Objekte: Werden scharf wahrgenommen. Weitsichtigkeit: Brechkraft des Auges zu klein. Weit entfernte Objekte: Werden scharf wahrgenommen. Nahe Objekte: Können nicht scharf wahrgenommen werden, da der Brennpunkt hinter der Netzhaut liegt.

9 2.0 Versuchsdurchführungen: Lupe Aufbau des Mikroskops Brechungsindex und Dispersion Messungen mit dem "Augenmodell"

10 2.1 Lupe Geräte: Sammellinse in Fassung, Objekt (Lineal mit mm-teilung), Schirm mit mm - Raster, opt. Bank, Maßstab Durchführung: Eine "halbierte" Sammellinse soll als Lupe verwendet werden, also ein vergrößertes Bild werfen. Im folgendem wird ein Schirm im Abstand von b=20 cm vor der Lupe aufgestellt. Nun wird der Gegenstandsabstand g so eingestellt, das dass mm-raster und das vergrößerte Bild des Objekts maximal scharf sind. Diese Messung (auch g jedes mal neu messen) wird für die Bildabstände 25, 30, 40 und 60 cm wiederholt. Aufgabe: Berechnen Sie den Abbildungsmaßstab für die Bildabstände 20, 30, 40 und 60 cm, sowie die Brennweite f und die Sehwinkelvergrößerung (inklusive Mittelwert und Standartfehler). Ergebnisse und Berechnungen: G (in cm ± 0,1cm) b (in cm ±0,1cm) B (in cm, ± 0,1cm) A ΔA f (in cm) 2,0 20 6,0 3,0 0,158 10,0 3,75 0,28 1,0 25 3,5 3,5 0,364 10,0 3,50 0,36 1,0 30 4,2 4,2 0,432 9,4 3,50 0,66 1,0 40 5,0 5,0 0,510 10,0 3,13 0,33 1,0 50 6,0 6,0 0,608 10,0 3,00 0,34 1,0 60 7,0 7,0 0,707 10,0 2,92 0,39 =9,9cm σ f =0,2cm ΔA wird berechnet durch: V ΔV Bestimmung des Abbildungsmaßstabs A geschieht durch

11 Die Formel für den Abbildungsmaßstab wird nach f umgestellt: Und Somit: Für die Sehwinkelvergrößerung V wird angewandt: wobei die deutliche Sehweite (25 cm) für s eingesetzt wird. Zur Berechnung des Standardfehlers der Sehwinkelvergrößerung wird zunächst partiell abgeleitet: Dann wird mit der Gaußschen Fehlerfortpflanzung gearbeitet. Es ergibt sich folgende Formel: Die Brennweite der Lupe beträgt (9,9±0,2)cm, die Sehwinkelvergrößerung nimmt dabei mit der Entfernung des Objektes G immer weiter ab.

12 2.2 Aufbau des Mikroskops Geräte: Mikroskop aus Aufbauteilen der mikroskopischen Bank, Lampe, Netzgerät Abbildung 2: Versuchsaufbau "Mikroskop". Durchführung: Am Anfang des Versuchs befindet sich die Mattscheibe im Strahlengang des Modellmikroskops, im folgendem soll der Objektabstand so variiert werden, dass auf der Mattscheibe ein vierfach vergrößertes Bild des Objektes dargestellt wird. Aus den erhaltenen Werten der Mikrometerskala soll nun die Tubuslänge bestimmt werden. Im zweiten Teil wird anstelle der Lupe ein Okular eingebaut, um die Funktionsweise zu verdeutlichen. Aufgabe: Bestimmen Sie mithilfe der Mikrometerskala des Objektes die mechanische Tubuslänge. Berechnen Sie aus der Objektivvergrößerung und der Okularvergrößerung die Gesamtvergrößerung des Mikroskops. Ergebnisse und Berechnungen: Mechanische Tubuslänge:

13 t mech = (17,40 ± 0,1)cm f obj = 2,75cm f ok = 5,00cm Berechnung der optischen Tubuslänge: t= t mech - f obj - f ok t= 9,65 Berechnung der Objektivvergrößerung: Berechnung der Okularvergrößerung: x Berechnung der Gesamtvergrößerung:

14 Das Mikroskop hat also eine Vergrößerung von 17,55x. Beim Wechsel des Okulars von Lupe zu Mikroskopokular wird die Vergrößerung stärker (da sich die Brennweite verkleinert) und das Gesichtsfeld kleiner. 2.3 Brechungsindex und Dispersion Geräte: Spektrometer-Goniometer, Hg-Spektrallampe mit Netzdrossel, Prisma Abbildung 3: Versuchsaufbau "Brechungsindex und Dispersion". Durchführung: Mithilfe eines so genannten Spektrometer-Goniometer soll der Brechungsindex eines Prismenmaterials im Einfluss der Wellenlänge bestimmt werden. Aufgabe: Der Ablenkwinkel δ soll für alle Spektrallinien des Hg-Lichtes gemessen werden. Im Anschluss soll für mind. fünf dieser der Brechungsindex n der verwendeten Substanz errechnet werden. Dieser soll gegen die Wellenlängen der betreffenden Spektrallinien aufgetragen werden ( n und n ablesen). F C

15 Ergebnisse und Berechnungen: AB-Winkel AC-Winkel Messung 1 342,2 222,2 Tabelle 2: Messergebnisse "Brechungsindex und Dispersion". Berechnet man die Differenz beider Winkel, so ergibt sich der Drehwinkel: AB AC 120 Dieser Wert wird nun in die Gleichung für ϕ eingesetzt: Spektralfarben Ablenkwinkel Brechungsindex n Wellenlänge in nm δ ± 0,1 Grün 43,5 1, ,07 Violett 49,2 1,63 407,78 Blau 48,8 1, ,83 Gelb 37,9 1, ,96 Rot 36,8 1, ,44 Tabelle 3: Berechneter Brechungsindex und Wellenlänge. Um den Brechungsindex n zu bestimmen, wird folgende Formel angewandt: sin n 2 sin 2

16 Berechnung der mittleren Dispersion Diagramm 1: anhand korrigierte der Dispersionskurve. C- und der F-Linie: Wir setzen zunächst für den x-wert in der Gleichung der Geraden die Werte für n c (656,28nm) und n F (486,13) ein. n c = -0,000661*656,28+1, n c = 1, n F =-0,000661*486,13+1, n F =1, Nun können wir hiermit die mittlere Dispersion berechnen: dn= n F -n c dn = 1, , dn = 0, Messungen mit dem "Augenmodell" Geräte: Augenmodell, Linsen 8-0,5 dpt und dpt)

17 Abbildung 4: Versuchsaufbau "Augenmodell". Durchführung: Im letzten Versuch soll beobachtet werden wie sich das Auge bei Ausdehnung der Linse (Wassereinstrom) und bei Zusammenzug (Wasserausstrom) verhält. Ein Objetkt in 1m Entfernung zum Augenmodell soll dies verdeutlichen. Im nächsten Teil soll die Auswirkung von Kurzsichtigkeit und Weitsichtigkeit dargestellt werden, dazu werden zwei Linsen benutzt (-0,5 dpt und +1,5 dpt). Aufgabe: Diskutieren und Interpretieren Sie Ihre Versuchsbeobachtungen am "Augenmodell". Ergebnisse und Berechnungen: Wird Wasser in die Linse gepumpt so dehnt diese sich aus und wird breiter. Wir Wasser herausgezogen zieht diese sich zusammen. Trifft ein Bild auf das Auge und somit auf die Linse, so wird dieses Mehr oder weniger scharf, in Abhängigkeit der Linsenbreite, auf der Netzhaut dargestellt. Je näher sich dieses vor dem Auge befindet, desto breiter muss die Linse sein, um das Bild scharf zu halten. Befindet es sich aber in großer Entfernung, so muss die Linse um so schmaler sein. Der so genannte Nahpunkt ist der kürzeste Abstand vor dem Auge, beim dem ein Objekt noch scharf dargestellt wird. Dieser Punkt lag bei unserem Augenmodell bei ca. 20 cm. Beim menschlichem Auge liegt dieser bei ca. 7 cm.

18 Quellen: Praktikumsskript Abbildung-Augenquerschnitt: bielefeld.de/~tpfeiffe/lehre/virtualreality/slides/images/03_- _Menschliches_Auge_Querschnitt.png Versuchsaufbauten: Uni-Oldenburg "Mikroskop": ikroskop2.jpg "Brechungsindex und Dispersion": spersion2.jpg "Augenmodell": ugenmodell1.jpg

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen 4. Strahlengang Zur Erklärung des physikalischen Lichtverhaltens wird das Licht als Lichtstrahl betrachtet. Als

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Thema:

Mehr

Physikalisches Praktikum I. Optische Abbildung mit Linsen

Physikalisches Praktikum I. Optische Abbildung mit Linsen Fachbereich Physik Physikalisches Praktikum I Name: Optische Abbildung mit Linsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: ruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 5.06.04). Name Matr.

Mehr

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Physikalische Grundlagen Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Linsen sind durchsichtige Körper, die von zwei im

Mehr

O2 PhysikalischesGrundpraktikum

O2 PhysikalischesGrundpraktikum O2 PhysikalischesGrundpraktikum Abteilung Optik Mikroskop 1 Lernziele Bauteile und Funktionsweise eines Mikroskops, Linsenfunktion und Abbildungsgesetze, Bestimmung des Brechungsindex, Limitierungen in

Mehr

Versuch 22 Mikroskop

Versuch 22 Mikroskop Physikalisches Praktikum Versuch 22 Mikroskop Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 28.09.2006 Katharina Rabe Assistent: Sebastian Geburt kathinka1984@yahoo.de

Mehr

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G. Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

Versuch 50. Brennweite von Linsen

Versuch 50. Brennweite von Linsen Physikalisches Praktikum für Anfänger Versuch 50 Brennweite von Linsen Aufgabe Bestimmung der Brennweite durch die Bessel-Methode, durch Messung von Gegenstandsweite und Bildweite, durch Messung des Vergrößerungsmaßstabs

Mehr

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der "normalen Sehweite" s 0 = 25 cm.

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der normalen Sehweite s 0 = 25 cm. Mikroskop 1. ZIEL In diesem Versuch sollen Sie sich mit dem Strahlengang in einem Mikroskop vertraut machen und verstehen, wie es zu einer Vergrößerung kommt. Sie werden ein Messokular kalibrieren, um

Mehr

O1 Linsen. Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009

O1 Linsen. Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009 Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009 Email: Markus@prieske-goch.de; Uschakow@gmx.de Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Linsentypen.......................................

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 26/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Brechkraft Brechkraft D ist das Charakteristikum einer Linse D = 1 f! Einheit: Beispiel:! [ D]

Mehr

Geometrische Optik. Lichtbrechung

Geometrische Optik. Lichtbrechung Geometrische Optik Bei der Beschreibung des optischen Systems des Mikroskops bedient man sich der Gaußschen Abbildungstheorie. Begriffe wie Strahlengang im Mikroskop, Vergrößerung oder auch das Verständnis

Mehr

Brennweite und Abbildungsfehler von Linsen

Brennweite und Abbildungsfehler von Linsen c Doris Samm 2015 1 Brennweite und Abbildungsfehler von Linsen 1 Der Versuch im Überblick Wir sehen mit unseren Augen. Manchmal funktioniert das gut: Wir sehen alles gestochen scharf. Manchmal erscheinen

Mehr

Auflösungsvermögen bei leuchtenden Objekten

Auflösungsvermögen bei leuchtenden Objekten Version: 27. Juli 2004 Auflösungsvermögen bei leuchtenden Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

Versuch 17: Geometrische Optik/ Mikroskop

Versuch 17: Geometrische Optik/ Mikroskop Versuch 17: Geometrische Optik/ Mikroskop Mit diesem Versuch soll die Funktionsweise von Linsen und Linsensystemen und deren Eigenschaften untersucht werden. Dabei werden das Mikroskop und Abbildungsfehler

Mehr

Abriss der Geometrischen Optik

Abriss der Geometrischen Optik Abriss der Geometrischen Optik Rudolf Lehn Peter Breitfeld * Störck-Gymnasium Bad Saulgau 4. August 20 Inhaltsverzeichnis I Reflexionsprobleme 3 Reflexion des Lichts 3 2 Bilder am ebenen Spiegel 3 3 Gekrümmte

Mehr

Astronomie: gängige Einheit sind Lichtjahre, 1 Lj = 9,46 10 15 m (c t = 3 10 8 m/s 3,156 10 7 s)

Astronomie: gängige Einheit sind Lichtjahre, 1 Lj = 9,46 10 15 m (c t = 3 10 8 m/s 3,156 10 7 s) Optik: Allgemeine Eigenschaften des Lichts Licht: elektromagnetische Welle Wellenlänge: λ= 400 nm bis 700 nm Frequenz: f = 4,10 14 Hz bis 8,10 14 Hz c = f λ c: Lichtgeschwindigkeit = 2,99792458, 10 8 m/s

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073)

Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073) Aufgaben 13 Optische Instrumente Mikroskop, Teleskop Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Physik - Optik. Physik. Graz, 2012. Sonja Draxler

Physik - Optik. Physik. Graz, 2012. Sonja Draxler Wir unterscheiden: Geometrische Optik: Licht folgt dem geometrischen Strahlengang! Brechung, Spiegel, Brechung, Regenbogen, Dispersion, Linsen, Brillen, optische Geräte Wellenoptik: Beugung, Interferenz,

Mehr

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum Protokoll Mikroskopie zum Modul: Physikalisches Grundpraktikum 2 bei Prof. Dr. Heyne Sebastian Baum am Fachbereich Physik Freien Universität Berlin Ludwig Schuster (ludwig.schuster@fu-berlin.de) Florian

Mehr

Praktikum I BL Brennweite von Linsen

Praktikum I BL Brennweite von Linsen Praktikum I BL Brennweite von Linsen Hanno Rein, Florian Jessen Betreuer: Gunnar Ritt 5. Januar 2004 Motivation Linsen spielen in unserem alltäglichen Leben eine große Rolle. Ohne sie wäre es uns nicht

Mehr

Versuch 18 Das Mikroskop

Versuch 18 Das Mikroskop Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 18 Das Mikroskop Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@zimmer209.eu Durchgeführt am: 08.03.2013 Abgabe:

Mehr

Frage 55: Erklären Sie das Grundprinzip der Bilderzeugung der Ultraschall-Sonographie?

Frage 55: Erklären Sie das Grundprinzip der Bilderzeugung der Ultraschall-Sonographie? Frage 55: Erklären Sie das Grundprinzip der Bilderzeugung der Ultraschall-Sonographie? Wie andere Verfahren (CT, PET, MRT usw.) findet Ultraschall als bildgebendes Verfahren eine breite Anwendung. Diese

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen )

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) Geometrische Optik Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) k - Vektoren zeigen zu Wellenfronten für Ausdehnung D von Strukturen, die zu geometrischer Eingrenzung führen

Mehr

21.4 Linsen. Entscheidend für die Funktion einer Linse ist daher, dass die beiden Oberflächen zueinander gekrümmt sind. α 1. α 2. n 1.

21.4 Linsen. Entscheidend für die Funktion einer Linse ist daher, dass die beiden Oberflächen zueinander gekrümmt sind. α 1. α 2. n 1. 21.4 Linsen Eine Linse ist ein optisches erät, dessen unktion au dem Brechungsgesetz beruht. Dadurch erährt der Lichtstrahl eine Richtungsänderung beim Ein- und Austritt. Die Oberlächen von Linsen sind

Mehr

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente 2.Vorlesung IV Optik 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente Versuche Lochkamera Brechung, Reflexion, Totalreflexion Lichtleiter Dispersion (Prisma)

Mehr

Praktikum MI Mikroskop

Praktikum MI Mikroskop Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6 Physikalisches Grundpraktikum Versuch 18 Das Mikroskop Praktikant: Tobias Wegener Christian Gass Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de

Mehr

Protokoll. zum Physikpraktikum. Versuch Nr.: 8 Mikroskop. Gruppe Nr.: 1

Protokoll. zum Physikpraktikum. Versuch Nr.: 8 Mikroskop. Gruppe Nr.: 1 Protokoll zum Physikpraktikum Versuch Nr.: 8 Mikroskop Gruppe Nr.: 1 Andreas Bott (Protokollant) Marco Schäfer Theoretische Grundlagen Das menschliche Auge: Durch ein Linsensystem wird im menschlichen

Mehr

Geometrische Optik. Ausserdem gilt sin ϕ = y R. Einsetzen in die Gleichung für die Brennweite ergibt unmittelbar: 1 2 1 sin 2 ϕ

Geometrische Optik. Ausserdem gilt sin ϕ = y R. Einsetzen in die Gleichung für die Brennweite ergibt unmittelbar: 1 2 1 sin 2 ϕ Geometrische Optik GO: 2 Leiten Sie für einen Hohlspiegel die Abhängigkeit der Brennweite vom Achsabstand des einfallenden Strahls her (f = f(y))! Musterlösung: Für die Brennweite des Hohlspiegels gilt:

Mehr

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN...

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN... E-Mail: Homepage: info@schroeder-doms.de schroeder-doms.de München den 19. Mai 2009 O2 - Mikroskop GRUNDLAGEN (O1 UND O3)... 2 Bildkonstruktion und Abbildungsgleichung einer Linse:... 2 Brennweite eines

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

Geometrische Optik / Auge (Versuch AUG)

Geometrische Optik / Auge (Versuch AUG) Kapitel 1 Geometrische Optik / Auge (Versuch AUG) Name: Gruppe: Datum: Betreuer(in): Testat/Versuchsdurchführung: 1.1 Medizinischer Bezug und Ziel des Versuchs Grundkenntnisse in geometrischer Optik werden

Mehr

zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr

zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr 426 Das Auge n = 1.3 adaptive Linse: Brennweite der Linse durch Muskeln veränderbar hoher dynamischer Nachweisbereich

Mehr

Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.

Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11. Versuche P1-31,40,41 Vorbereitung Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.2010 1 1 Vorwort Für den Versuch der geometrischen Optik gibt es eine Fülle

Mehr

Vorlesung 7: Geometrische Optik

Vorlesung 7: Geometrische Optik Vorlesung 7: Geometrische Optik, Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed 1 Geometrische Optik Beschäftigt sich mit dem Verhalten von Lichtstrahlen (= ideal schmales Lichtbündel)

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 20/2 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 9.0.2,

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache

Mehr

OW_01_02 Optik und Wellen GK/LK Beugung und Dispersion. Grundbegriffe der Strahlenoptik

OW_01_02 Optik und Wellen GK/LK Beugung und Dispersion. Grundbegriffe der Strahlenoptik OW_0_0 Optik und Wellen GK/LK Beugung und Dispersion Unterrichtliche Voraussetzungen: Grundbegriffe der Strahlenoptik Literaturangaben: Optik: Versuchsanleitung der Fa. Leybold; Hürth 986 Verfasser: Peter

Mehr

Seminarunterlagen Optik. Versuchsanleitungen von Mag. Otto Dolinsek BG/BRG Lerchenfeld Klagenfurt

Seminarunterlagen Optik. Versuchsanleitungen von Mag. Otto Dolinsek BG/BRG Lerchenfeld Klagenfurt Seminarunterlagen Optik Versuchsanleitungen von BG/BRG Lerchenfeld Klagenfurt Kernschatten, Halbschatten Die Begriffe Kernschatten und Halbschatten sollen erarbeitet werden und die Unterschiede zwischen

Mehr

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv Versuch O02: Fernrohr, Mikroskop und Teleobjektiv 5. März 2014 I Lernziele Strahlengang beim Refraktor ( Linsenfernrohr ) Strahlengang beim Mikroskop Strahlengang beim Teleobjektiv sowie Einblick in dessen

Mehr

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung 1 Drehung der Polarisationsebene Durch einige Kristalle, z.b. Quarz wird

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung)

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung) Theoretische Grundlagen hysikalisches raktikum Versuch 5: Linsen (Brennweitenbestimmung) Allgemeine Eigenschaften von Linsen sie bestehen aus einem lichtdurchlässigem Material sie weisen eine oder zwei

Mehr

Brennweite von Linsen

Brennweite von Linsen Brennweite von Linsen Einführung Brennweite von Linsen In diesem Laborversuch soll die Brennweite einer Sammellinse vermessen werden. Linsen sind optische Bauelemente, die ein Bild eines Gegenstandes an

Mehr

Mikroskopie: Einen Blick ins Mikrokosmos

Mikroskopie: Einen Blick ins Mikrokosmos Mikroskopie Stand: WS09/10 (MIK) Seite 1 Mikroskopie: Einen Blick ins Mikrokosmos Stichworte: Geometrische Optik, Dünne Linse, konvex, konkav, Brechung, Brennebene, Fokus, Brennweite, optische Achse, Zwischenbild,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Musterprüfung Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet?

Musterprüfung Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet? 1 Musterprüfung Module: Linsen Optische Geräte 1. Teil: Linsen 1.1. Was besagt das Reflexionsgesetz? 1.2. Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet? 1.3. Eine Fläche bei einer

Mehr

Protokoll O 4 - Brennweite von Linsen

Protokoll O 4 - Brennweite von Linsen Protokoll O 4 - Brennweite von Linsen Martin Braunschweig 27.05.2004 Andreas Bück 1 Aufgabenstellung Die Brennweite dünner Linsen ist nach unterschiedlichen Verfahren zu bestimmen, Abbildungsfehler sind

Mehr

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler Spektrum elektromagnetischer Wellen Licht Ausbreitung von Licht Verschiedene Beschreibungen je nach Größe des leuchtenden (oder beleuchteten) Objekts relativ zur Wellenlänge a) Geometrische Optik: Querdimension

Mehr

Die Ergebnisse der Kapiteltests werden nicht in die Berechnung der Semesternoten mit einbezogen!

Die Ergebnisse der Kapiteltests werden nicht in die Berechnung der Semesternoten mit einbezogen! Kapiteltest Optik 2 Lösungen Der Kapiteltest Optik 2 überprüft Ihr Wissen über die Kapitel... 2.3a Brechungsgesetz und Totalreflexion 2.3b Brechung des Lichtes durch verschiedene Körper 2.3c Bildentstehung

Mehr

Examensaufgaben - STRAHLENOPTIK

Examensaufgaben - STRAHLENOPTIK Examensaufgaben - STRAHLENOPTIK Aufgabe 1 Ein Prisma mit einem brechenden Winkel von 60 hat eine Brechzahl n=1,5. Berechne den kleinsten Einfallswinkel, für welchen noch ein Strahl auf der anderen Seite

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Demonstrations-Laseroptik-Satz U17300 und Ergänzungssatz U17301 Bedienungsanleitung 1/05 ALF Inhaltsverzeichnung Seite Exp - Nr. Experiment Gerätesatz 1 Einleitung 2 Leiferumfang

Mehr

Linsen und Linsensysteme

Linsen und Linsensysteme 1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden

Mehr

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen ) . Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik

Mehr

Geometrische Optik mit ausführlicher Fehlerrechnung

Geometrische Optik mit ausführlicher Fehlerrechnung Protokoll zum Versuch Geometrische Optik mit ausführlicher Fehlerrechnung Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Brennweitenbestimmung 1.1 Kontrollieren der Brennweite Wir haben die

Mehr

Auswertung P2-10 Auflösungsvermögen

Auswertung P2-10 Auflösungsvermögen Auswertung P2-10 Auflösungsvermögen Michael Prim & Tobias Volkenandt 22 Mai 2006 Aufgabe 11 Bestimmung des Auflösungsvermögens des Auges In diesem Versuch sollten wir experimentell das Auflösungsvermögen

Mehr

Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2)

Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2) Staatsinstitut für Schulqualität und ildungsforschung Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2) Lehrplanbezug Ein Teil der Schüler hat möglicherweise bereits in der 3. Jahrgangsstufe der Grundschule

Mehr

Weißes Licht wird farbig

Weißes Licht wird farbig B1 Experiment Weißes Licht wird farbig Das Licht, dass die Sonne oder eine Glühlampe aussendet, bezeichnet man als weißes Licht. Lässt man es auf ein Glasprisma fallen, so entstehen auf einem Schirm hinter

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Versuch P2: Optische Abbildungen und Mikroskop

Versuch P2: Optische Abbildungen und Mikroskop Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden

Mehr

Abbildung 1: Abbildung der Aperturblende in den Objektraum liefert die Eintrittspupille EP

Abbildung 1: Abbildung der Aperturblende in den Objektraum liefert die Eintrittspupille EP Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 04.12.2008 Eintrittspupille

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner O2 Beugung des Lichtes Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Lösung zum Parabolspiegel

Lösung zum Parabolspiegel Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1 Beugung an palt und Gitter, Auflösungsvermögen des Mikroskops 1 Einleitung Das Mikroskop ist in Medizin, Technik und Naturwissenschaft ein wichtiges Werkzeug um Informationen über Objekte auf Mikrometerskala

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

MODELOPTIC Best.- Nr. MD02973

MODELOPTIC Best.- Nr. MD02973 MODELOPTIC Best.- Nr. MD02973 1. Beschreibung Bei MODELOPTIC handelt es sich um eine optische Bank mit deren Hilfe Sie die Funktionsweise der folgenden 3 Geräte demonstrieren können: Mikroskop, Fernrohr,

Mehr

Tutorium Physik 2. Optik

Tutorium Physik 2. Optik 1 Tutorium Physik 2. Optik SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 11. OPTIK - REFLEXION 11.1 Einführung Optik:

Mehr

Physik-Vorlesung. Optik.

Physik-Vorlesung. Optik. Physik Optik 3 Physik-Vorlesung. Optik. SS 15 2. Sem. B.Sc. Oec. und B.Sc. CH Physik Optik 5 Themen Reflexion Brechung Polarisation Spektroskopie Physik Optik 6 Lehre vom Sehen (1/2) Was ist Sehen physikalisch?

Mehr

Kontrollaufgaben zur Optik

Kontrollaufgaben zur Optik Kontrollaufgaben zur Optik 1. Wie schnell bewegt sich Licht im Vakuum? 2. Warum hat die Lichtgeschwindigkeit gemäss moderner Physik eine spezielle Bedeutung? 3. Wie nennt man die elektromagnetische Strahlung,

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner O Lichtbrechung und Linsengesetze Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter

Mehr

Tutorium Physik 2. Optik

Tutorium Physik 2. Optik 1 Tutorium Physik 2. Optik SS 15 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 11. OPTIK - REFLEXION 11.1 Einführung Optik:

Mehr

Lösungen zur Geometrischen Optik Martina Stadlmeier f =

Lösungen zur Geometrischen Optik Martina Stadlmeier f = Lösungen zur Geometrischen Optik Martina Stadlmeier 24.03.200. Dicke Linse a) nach Vorlesung gilt für die Brechung an einer gekrümmten Grenzfläche f = n2 n 2 n r Somit erhält man für die Brennweiten an

Mehr

Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Auswertung Von Ingo Medebach und Jan Oertlin 9. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung

Mehr

Staatsexamen im Unterrichtsfach Physik / Fachdidaktik. Prüfungstermin Herbst 1996, Thema Nr. 3. Linsen

Staatsexamen im Unterrichtsfach Physik / Fachdidaktik. Prüfungstermin Herbst 1996, Thema Nr. 3. Linsen Referentin: Carola Thoiss Dozent: Dr. Thomas Wilhelm Datum: 30.11.06 Staatsexamen im Unterrichtsfach Physik / Fachdidaktik Prüfungstermin Herbst 1996, Thema Nr. 3 Linsen Aufgaben: 1. Als Motivation für

Mehr

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt -II.1- Geometrische Optik Optik: Teilgebiet der, das sich mit der Untersuchung des Lichtes beschäftigt 1 Ausbreitung des Lichtes Das sich ausbreitende Licht stellt einen Transport von Energie dar. Man

Mehr

Versuch 7: Brechungsgesetz, Dispersion des Lichts

Versuch 7: Brechungsgesetz, Dispersion des Lichts Physik-Praktikum für Studierende des Studiengangs Bachelor-Chemie SS 2015 Namen: Tutor: Versuch 7: Brechungsgesetz, Dispersion des Lichts Grundlagen Abbildung durch Linsen Werden durch ein optisches System

Mehr

V, Optik. V.I Geometrische Optik. Physik für Mediziner 1

V, Optik. V.I Geometrische Optik. Physik für Mediziner 1 V, Optik V.I Geometrische Optik Physik für Mediziner 1 Optik Physik für Mediziner 2 Beschreibungen des Lichts Geometrische Optik charakteristische Längen >> Wellenlänge (μm) Licht als Strahl Licht Quantenoptik

Mehr

DOWNLOAD. Optik: Linsen. Grundwissen Optik und Akustik. Nabil Gad. Downloadauszug. Ethikunterricht anschaulich und handlungsorientiert!

DOWNLOAD. Optik: Linsen. Grundwissen Optik und Akustik. Nabil Gad. Downloadauszug. Ethikunterricht anschaulich und handlungsorientiert! DOWNLOAD Nabil Gad Optik:.2011 12:08 Uhr Seite 1 Die Bergedorfer Produktpalette: Kopiervorlagen Unterrichtsideen Klammerkarten COLORCLIPS Lehrer- und Schülerkarteien Fachbücher Lernsoftware Bücherservice

Mehr

www.leipzig-medizin.de

www.leipzig-medizin.de In welcher Entfernung s befindet sich ein Objekt bezüglich der gegenstandseitigen Brennweite f des Objektivs bei Arbeit mit einem Mikroskop? s < f s = f 2f > s > f s = 2f s > 2f In welcher Entfernung s

Mehr

Brechung des Lichtes Refraktion. Prof. Dr. Taoufik Nouri Nouri@acm.org

Brechung des Lichtes Refraktion. Prof. Dr. Taoufik Nouri Nouri@acm.org Brechung des Lichtes Refraktion Prof. Dr. Taoufik Nouri Nouri@acm.org Inhalt Brechungsgesetz Huygenssches Prinzip planen Grenzfläche Planparallele-Parallelverschiebung Senkrechter Strahlablenkung Totalreflexion

Mehr

4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht.

4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht. 4 Optische Linsen 4.1 Linsenarten Eine Linse ist ein rotationssymmetrischer Körper der meist aus Glas oder transparentem Kunststoff hergestellt ist. Die Linse ist von zwei Kugelflächen begrenzt (Kugelflächen

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe 1.9.08 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: O 2 - Linsensysteme Literatur Eichler, Krohnfeld, Sahm: Das neue physikalische Grundpraktikum, Kap. Linsen, aus dem Netz der Universität http://dx.doi.org/10.1007/3-540-29968-8_33

Mehr

Optik. Optik. Optik. Optik. Optik

Optik. Optik. Optik. Optik. Optik Nenne das Brechungsgesetz! Beim Übergang von Luft in Glas (Wasser, Kunststoff) wird der Lichtstrahl zum Lot hin gebrochen. Beim Übergang von Glas (Wasser...) in Luft wird der Lichtstrahl vom Lot weg gebrochen.

Mehr

Versuch 22. Das Mikroskop. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 22. Das Mikroskop. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 22 Das Mikroskop Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent: André

Mehr

Entstehung des Regenbogens durch Brechung-Reflexion-Brechung

Entstehung des Regenbogens durch Brechung-Reflexion-Brechung Vorlesung Physik III WS 0/03 Entstehung des Regenbogens durch Brechung-Relexion-Brechung Vorlesung Physik III WS 0/03 Entstehung des Regenbogens durch Brechung-Relexion-Brechung Vorlesung Physik III WS

Mehr

Aufgabensammlung mit Lösungen zum Applet optische Bank

Aufgabensammlung mit Lösungen zum Applet optische Bank Aufgabensammlung mit Lösungen zum Applet optische Bank (LMZ, Bereich Medienbildung, OStR Gröber) http://webphysics.davidson.edu/applets/optics4/default.html I. Aufgaben für Mittelstufe 1. Abbilden mit

Mehr

Dieter Suter - 316 - Physik B3

Dieter Suter - 316 - Physik B3 Dieter Suter - 316 - Physik B3 6.4 Abbildende Optik 6.4.1 Bildentstehung Zu den wichtigsten Anwendungen der Optik gehört die Möglichkeit, mit Hilfe optischer Instrumente Gegenstände abzubilden. Dazu werden

Mehr

Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Versuchsprotokoll

Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Versuchsprotokoll Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Tobias Krähling email: Homepage: 0.04.007 Version:. Inhaltsverzeichnis. Aufgabenstellung.....................................................

Mehr

FK Ex 4 - Musterlösung Dienstag

FK Ex 4 - Musterlösung Dienstag FK Ex 4 - Musterlösung Dienstag Snellius Tarzan wird in einem ruhigen See am Punkt J von einem Krokodil angegriffen. Jane, die sich an Land mit gezücktem Buschmesser am Punkt T befindet, möchte ihm zu

Mehr

PROJEKTMAPPE. Name: Klasse:

PROJEKTMAPPE. Name: Klasse: PROJEKTMAPPE Name: Klasse: REFLEXION AM EBENEN SPIEGEL Information Bei einer Reflexion unterscheidet man: Diffuse Reflexion: raue Oberflächen reflektieren das Licht in jede Richtung Regelmäßige Reflexion:

Mehr

Versuch GO2 Optische Instrumente

Versuch GO2 Optische Instrumente BERGISCHE UNIVERSITÄT WUPPERTAL Versuch GO2 Optische Instrumente I. Vorkenntnisse 2.07/10.06 Versuch GO 1, Funktionsprinzip des menschlichen Auges, Sehwinkel, Vergrößerung des Sehwinkels durch optische

Mehr