Mathematische und statistische Methoden II

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematische und statistische Methoden II"

Transkript

1 Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum ) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike SS 2010 Fachbereich Sozialwissenschaften Psychologisches Institut Johannes Gutenberg Universität Mainz

2 Das Problem der Verteilungsannahme Die theoretische Verteilung ordinalskalierter Daten ist nicht nur unbekannt, sie ist auch als mathematische Formalisierung nicht ermittelbar, da das Merkmal nicht metrisch (intervallskaliert) ist. Das Problem entsteht, weil bei ordinalskalierten Daten nicht nur die gesamte Skala transformiert werden darf (z.b. von C zu F), sondern jeder einzelne Punkt separat, solange die Ordnung erhalten bleibt. Damit sind die numerischen Beobachtungen als Abszissenwerte (x-werte) in einer mathematischen Funktion nicht zu gebrauchen.

3 nach Mann-Whitney für unabh. Stichpr. Ziel: Test, ob sich zwei unabhängige Stichproben in ihrer Ausprägung auf einem ordinalskalierten Merkmal unterscheiden Beispiele: Sind mündliche Bewertungen von Schülern zwischen zwei Schulklassen unterschiedlich? Sind junge Frauen anders mit einem bestimmten Produkt zufrieden als ältere Frauen (Zufriedenheitseinschätzung z.b. von 0-100%) Voraussetzungen: Die Stichproben müssen unabhängig sein. Die dem Merkmal tatsächlich zugrunde liegende Verteilungsfunktion soll stetig sein.

4 nach Mann-Whitney für unabh. Stichpr. Datenlage: Man hat an zwei unabhängigen Stichproben der Größen n 1 und n 2 ein ordinalskaliertes Merkmal erhoben. Bewertet worden sei die Leistung von Studierenden mit ländlicher Sozialisation vs. urbaner Sozialisation in einer mündlichen Prüfung (Punkteskala von 0 50) X1: 22, 47, 50, 35, 33, 2, 48, 7, 8, 34, 41, 49, 45, 39, 23, 38 X2: 13, 16, 27, 24, 11, 12, 18, 17, 40, 19, 31, 32 Frage: Erreichen die Stichproben unterschiedliche Punktzahlen?

5 Wenn zwei Stichproben aus derselben Population stammen, sollten ihre Wahrscheinlichkeitsverteil- ungen p(x=x) bzw. ihre Verteilungsfunktionen p(x x) gleich sein (wenn auch unbekannt) nach Mann-Whitney für unabh. Stichpr. Testidee: Zwar kann keine theoretische Wahrscheinlichkeitsverteilung formal abgeleitet werden, aber die empirischen Verteilungen können verglichen werden. Sei x i ein Wert, der in Stichprobe 1 beobachtet wurde, und y j ein Wert aus Stichprobe 2, dann sollte für jedes Wertepaar gelten, dass p(x i >y j ) = 0.5,, wenn die Wahrscheinlichkeitsverteilungen gleich sind.

6 nach Mann-Whitney für unabh. Stichpr. Nun kann jeder Merkmalsträger in Stichprobe 1 paarweise verglichen werden mit jedem Merkmalsträger in Stichprobe 2 und festgestellt werden ob gilt Fall 1: X > Y Fall 2 : X < Y Fall 2:X X = Y Dies ist äquivalent mit der Prüfung, ob der Rang des Merkmalsträgers in Stichprobe 1 größer, kleiner oder gleich dem Rang des Vergleichssubjektes in Stichprobe 2 ist Fall 1: rg( X) < rg( Y ) Fall 2: rg ( X ) > rg ( Y ) Fall 2 : rg( X) = rg( Y ) Niedrigere Zahl, niedrigerer Rang

7 nach Mann-Whitney für unabh. Stichpr. Methode: Das x y x1, x2 Stichprobe Verfahren der Rangbildung beim Die Daten werden zunächst in eine Tabelle geschrieben und die Zugehörigkeit festgehalten

8 nach Mann-Whitney für unabh. Stichpr. Nun werden Rangplätze für die Daten vergeben Achtung: Datei erhält die kleinste Zahl den kleinsten Rang. Bei Ties (Rang- bindungen) wird ein mittlerer Rang vergeben x1, x2 Stichprobe Rangplatz

9 nach Mann-Whitney für unabh. Stichpr. Die Anzahl dieser Vergleiche jedes Merkmalsträgers in Stichprobe 1 mit jedem in Stichprobe 2 ist N = n n paarweise 1 2 Aus dem Vergleich der Ränge erhält man nun die Summen der Rangunterschreitungen, der Rangüberschreitungen sowie der Ties. Man definiere ( ( ) ( )) ( ( ) ( )) ( ) ( ) U = h rg X < rg Y Summe d. Rangunterschreitungen U' = h rg X > rg Y Summe d. Rangüberschreitungen ( ) Summe d. Rangbindungen Tie = h rg X = rg Y Lässt man Ties außer acht, so muss gelten: U + U' = n n U = n n U '

10 nach Mann-Whitney für unabh. Stichpr. Man kann nun einen Binomialtest durchführen, um folgende Hypothesen zu prüfen: H 0 : p ( rg ( X ) < rg ( Y )) = 0.5; H 1 : p ( rg ( X ) > rg ( Y )) 0.5 H : p( rg( X) < rg( Y)) 0.5; H : p( rg( X) > rg( Y)) < H0 : p( rg( X) < rg( Y)) 0.5; H1 : p( rg( X) > rg( Y)) > Oft wird dies gleichgesetzt mit der Prüfung, ob der Median der einen Stichprobe anders ist als der Median der anderen. Dies trifft nur zu, wenn die Wahrscheinlichkeits-, verteilungen von X und Y gleich sind.

11 nach Mann-Whitney für unabh. Stichpr. Hinweis: Für den Binomialtest wäre die Rangbildung noch nicht erforderlich, man könnte auch die Rohdaten selbst vergleichen und auszählen. Problem: Die Zahl der notwendigen paarweisen Vergleiche wird bei zunehmendem Stichprobenumfang sehr schnell sehr groß (n 1 n 1 2 ). Zur vereinfachten Berechnung wird das Verfahren von Mann-Whitney verwendet.

12 nach Mann-Whitney für unabh. Stichpr. Grundidee: Unter der H0 sollten in beiden Stichproben die Ränge ähnlich (bzw. gleich) sein Damit sollten auch die Summen der Ränge ähnlich (bzw. gleich) sein Seien R1 und R2 die Rangsummen der beiden Stich- proben und R die gesamte Rangsumme, so muss gelten R = R + R = 1 2 N ( N + 1) 2 mit N = n 1 +n 2 Wir haben zudem bereits gesehen, dass gilt U = n1 n2 U'

13 nach Mann-Whitney für unabh. Stichpr. Daraus lassen sich Berechnungsformeln für Anzahl der Rangunter-/überschreitungen herleiten. Es gilt: n1 ( n1+ 1) U = n1 n2 + R1 2 n2 ( n2 + 1) U' = n n + R Der kleinere der U-Werte ist bereits die Prüfgröße. Sie ist U-verteilt mit den Parametern n 1 und n 2. Die U-Verteilung ist tabelliert für kleine n.

14 nach Mann-Whitney für unabh. Stichpr. Bei größeren Stichproben (mindestens ein n > 10) ist die Prüfgröße U approximativ normalverteilt. Der Erwartungswert ist die Hälfte aller möglichen Vergleiche (dies ist der Wert, wenn U = U ) μ U = n n Die Standardabweichung lautet σ U = ( ) n n n n

15 nach Mann-Whitney für unabh. Stichpr. Damit ergibt sich die Prüfgröße (mit Yates-Korrektur) z = U μ U σ U 0.5 Dabei ist U der kleinere oder größere beider U-Werte. Sie ist standardnormalverteilt mit μ=0 und σ=1. Bei Ties berechnet sich der korrigierte Standardfehler als k 3 3 i σ n1 n 2 i = 1 U, Korr N N t ti = N N 1 12 ( ) mit t i = Personen, die sich Rang i teilen (Länge der Rangbindung) k = Anzahl der Gruppen mit Rangbindungen

16 und Rangsummentest Hinweis: Der nach Mann-Whitney ist mathematisch äquivalent zum so genannten Rangsummentest, der von einer ähnlichen Testidee ausgeht. Der wird daher manchmal auch als MWW-Test (Mann-Whitney- Test) bezeichnet. Er ist nicht zu verwechseln mit dem für abhängige Stichproben.

17 für abhängige Stichproben Oft ist man bei einem ordinalskalierten Merkmal bei abhängigen Stichproben lediglich an einem höher/niedriger Urteil interessiert. Beispiele: Verringert sich eine Zwangsstörung nach einer Therapie? Verbessert sich Führungsverhalten infolge eines Outdoor-Selbstfindungstrainings? Hier findet der Anwendung, der aufgrund seiner Einfachheit sehr rasch zu berechnen ist.

18 für abhängige Stichproben Datenlage: Bei abhängigen Stichproben liegen zwei Messungen vor, für die eine Höher/Niedriger/Gleich Beziehung formuliert werden kann. Beispiel: Bei N = 13 Probanden urbaner Herkunft wird ein Rhetoriktraining für mündliche Prüfungsleis- tungen angewandt und die Verbesserung gemessen. Verbesserungen werden mit + kodiert, Verschlechterungen mit -, konstante Konzentrastionsleistungen mit =. Daten: -, +, +, -, =, -, +, +, +, +, +, +, +

19 für abhängige Stichproben Sei n + die Anzahl von + Beobachtungen und n - die Anzahl von - Beobachtungen, so sollte unter der H 0 gelten, dass n = n = N n + + N = N m= n + n m mit (m = Anzahl = ) + Gleiche Beobachtungen ( = ) werden beim ignoriert, da sie ohnehin die H 0 (kein Unterschied) unterstützen

20 für abhängige Stichproben Die Wahrscheinlichkeit für + (ebenso wie die für - ) sollte nun binomialverteilt sein mit p=0.5 und n = N* Man könnte nun einen 1-Stichproben Binomialtest durchführen, um folgende Hypothesen zu prüfen: H : p = p ; H : p p H : p p ; H : p > p H : p p ; H : p < p Man nimmt nun an, dass wegen der Symmetrie von p und q unter H 0 praktisch immer die Normalverteilungsapproximation verwendet werden kann.

21 für abhängige Stichproben Der Erwartungswert der Summe positiver (bzw. negativer) Vorzeichen ist En ( ) En ( ) N* + p = = = N * 2 Die Standardabweichung ist σ ( n ) N* + = p q = N * 4

22 für abhängige Stichproben Man gelangt zu der Prüfgröße (mit Yates-Korrektur): n z = 2 N 2 N 4 mit n = n + oder n z ist standardnormalverteilt mit μ=0 und σ=1. Es gelten also zur Bewertung der Prüfgröße beim g g g die üblichen kritischen Werte

23 Vorzeichenrang Test für abh. Stichpr. Ziel: Test, ob sich zwei abhängige Stichproben in ihrer Ausprägung auf einem ordinalskalierten Merkmal unterscheiden Beispiele: Verbessert sich die Leistung in mündlichen Prüfungen nach einem Rhetorik-Training? Sinkt das subjektive Laustärke-Empfinden von Bewohnern in der Einflugschneise des Frankfurter Flughafens nach einem Volkshochschulkurs Zen-Meditation? Voraussetzungen: Die Merkmalsträger in den Stichproben müssen paarweise zuordenbar sein. Die dem Merkmal tatsächlich zugrunde liegende Verteilungs- funktion soll stetig sein.

24 Vorzeichenrang Test für abh. Stichpr. Datenlage: Man hat an zwei abhängigen Stichproben der Größe N ein ordinalskaliertes Merkmal erhoben. Es werden die Leistungen von N=13 Schülern in zwei äquivalenten Mathematiktests tikt t beurteilt (von einem Prüfer). Vor der Korrektur des zweiten Tests erhält der Prüfer die Information, die Schüler stammten aus einer Hochbegabtenklasse. X1: 22, 47, 50, 35, 33, 12, 48, 17, 18, 34, 41 X2: 13, 16, 27, 24, 11, 12, 18, 17, 40, 19, 35 Frage: Werden die Leistungen im 2. Test besser beurteilt?

25 Vorzeichenrang Test für abh. Stichpr. Testidee: Für jede Beobachtungseinheit können Differenzen zwischen den beiden Stichproben berechnet werden (d i = y i x). i Zwar ist der absolute Betrag dieser Differenzen nicht interpretierbar, die Differenzen sind aber ordinalskaliert. Größere Differenzen bedeuten also größere Veränderungen zwischen den Stichproben. Unter der H 0, d.h. bei gleichen Wahrscheinlichkeitsverteilungen in beiden Stichproben, sollten nun die Verbundwahrscheinlichkeiten, dass eine gegebene Differenz ein positives bzw. negatives Vorzeichen hat, identisch sein (p(d=d d>0) = 0.5)

26 Vorzeichenrang Test für abh. Stichpr. Methode: Zur Durchführung des Vorzeichenrang ng Tests werden nun n zunächst die Differenzen d i zwischen beiden Stichproben gebildet. Nr. t1 t2 d

27 Vorzeichenrang Test für abh. Stichpr. Dann werden die Absolutwerte d dieser i Differenzen gebildet. Nr. t1 t2 d d

28 Vorzeichenrang Test für abh. Stichpr. Nun erhalten diesen Absolutwerte Rangplätze rg( d ). i Achtung: Dabei erhält die kleinste Differenz den kleinsten Rang. Nr. t1 t2 d d rg(d)

29 Vorzeichenrang Test für abh. Stichpr. Schließlich werden die Vorzeichen der Differenzen fetgetellt festgestellt. Diee Diese werden edenfür diebeehnngde Berechnung der Prüfgröße Nr. t1 t2 d d rg(d) + - = =

30 Vorzeichenrang Test für abh. Stichpr. Nulldifferenzen (Anzahl: m) werden a priori i von der Rangplatzvergabe ausgeschlossen. Damit reduziert sich die Anzahl zu berücksichtigender Differenzen auf N* = N m Sei T + die Rangsumme der Differenzen mit positivem Vorzeichen und T - die Rangsumme der d i mit negativem Vorzeichen, so gilt für die Summe aller Ränge R R = T + T = + N ( N + 1) 2 * * Der kleinere der beiden T-Werte ist bereits die Prüfgröße. Die Verteilung ist tabelliert für kleine N.

31 Vorzeichenrang Test für abh. Stichpr. Bei größeren Stichproben (N>25) ist die Prüfgröße T approximativ normalverteilt. Der Erwartungswert ist die Hälfte aller möglichen Vergleiche (dies ist der Wert, wenn T + = T - ) μ T = N ( N ) * * Die Standardabweichung lautet σ T = ( 2 1) ( 1) * * * N N + N + 24

32 Vorzeichenrang Test für abh. Stichpr. Damit ergibt sich die Prüfgröße (mit Yates-Korrektur) z = T μ T σ T 0.5 T = T + oder T -. Sie ist standardnormalverteilt mit μ=0 0 und σ=1. Bei Ties berechnet sich die korrigierte Standardabw. als = k * * * 1 3 ( 2 1 ) ( 1 ) ( i i ) N N + N + 2 t t 24 i= 1 σ TKorr, mit t i = Personen, die sich Rang i teilen (Länge der Rangbindung) k = Anzahl der Gruppen mit Rangbindungen

33 Methodenlehre e e Relevante Excel Funktionen Tests für Nominal- und Ordinaldaten ANZAHL() und ANZAHL2() WENN() ZÄHLENWENN() ABS() RANG() und dexcel-korrekturformel lk l für Rangbindungen

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Taubertsberg R. 0-0 (Persike) R. 0-1 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet0.sowi.uni-mainz.de/

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Mann-Whitney-U-Test für zwei unabhängige Stichproben

Mann-Whitney-U-Test für zwei unabhängige Stichproben Mann-Whitney-U-Test für zwei unabhängige Stichproben Wir haben bis jetzt einen einzigen Test für unabhängige Stichproben kennen gelernt, nämlich den T-Test. Wie wir bereits wissen, sind an die Berechnung

Mehr

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann

Mehr

Herzlich Willkommen zur Vorlesung Statistik

Herzlich Willkommen zur Vorlesung Statistik Herzlich Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Kovarianz und Korrelation Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Statistik für Studenten der Sportwissenschaften SS 2008

Statistik für Studenten der Sportwissenschaften SS 2008 Statistik für Studenten der Sportwissenschaften SS 008 Aufgabe 1 Man weiß von Rehabilitanden, die sich einer bestimmten Gymnastik unterziehen, dass sie im Mittel µ=54 Jahre (σ=3 Jahre) alt sind. a) Welcher

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

B 2.  Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!! Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:

Mehr

1 Verteilungen und ihre Darstellung

1 Verteilungen und ihre Darstellung GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 13. Januar 2011 1 Nichtparametrische Tests Ränge Der U-Test Bindungen Ränge Zwei Gruppen von Zufallsvariablen mit

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Wilcoxon-Rangsummen-Test

Wilcoxon-Rangsummen-Test Wilcoxon-Rangsummen-Test Theorie: Wilcoxon-Rangsummen-Test Der Wilcoxon-Rangsummen-Test prüft, ob sich die Verteilungen der Grundgesamtheiten zweier Stichproben bezüglich ihrer Lage unterscheiden. Ein

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

Ein- und Zweistichprobentests

Ein- und Zweistichprobentests (c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Nichtparametrische statistische Verfahren

Nichtparametrische statistische Verfahren Nichtparametrische statistische Verfahren (im Wesentlichen Analyse von Abhängigkeiten) Kategorien von nichtparametrischen Methoden Beispiel für Rangsummentests: Wilcoxon-Test / U-Test Varianzanalysen 1-faktorielle

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

Psychologische Methodenlehre und Statistik II

Psychologische Methodenlehre und Statistik II Psychologische Methodenlehre und Statistik II Pantelis Christodoulides & Karin Waldherr 9. Juni 2010 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik II 1/47 Allgemeines

Mehr

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests Beispiel: Sonntagsfrage Vier Wochen vor der österreichischen Nationalratswahl 1999 wurde 499 Haushalten die Sonntagsfrage gestellt: Falls nächsten Sonntag Wahlen wären, welche Partei würden Sie wählen?

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Kaplan-Meier-Schätzer

Kaplan-Meier-Schätzer Kaplan-Meier-Schätzer Ausgangssituation Zwei naive Ansätze zur Schätzung der Survivalfunktion Unverzerrte Schätzung der Survivalfunktion Der Kaplan-Meier-Schätzer Standardfehler und Konfidenzintervall

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1 1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1.1 Gegenstand der Statistik Die Statistik stellt ein Instrumentarium bereit, um Informationen über die Realität oder Wirklichkeit verfügbar zu machen. Definition

Mehr

(VU) Übungen zur Einführung in die statistische Datenanalyse II. Inhalte Statistik I. Inhalte Statistik I Deskriptive Statistik

(VU) Übungen zur Einführung in die statistische Datenanalyse II. Inhalte Statistik I. Inhalte Statistik I Deskriptive Statistik II Übungen zur II Organisatorische Hinweise Keine Anwesenheitspflicht (aber empfehlenswert) Einführung in die statistische Datenanalyse II (VU) Lehrinhalte (.ppt Folien): elearning.univie.ac.at 3 Prüfungstermine:

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 / Übungsaufgaben Prof. Dr. Achim Klenke http://www.aklenke.de 13. Vorlesung: 10.02.2012 1/51 Aufgabe 1 Aufgabenstellung Übungsaufgaben Ein Pharmakonzern möchte ein neues Schlankheitsmedikament

Mehr

Höhere Mathematik 2 (= Statistik) Vorlesung im Sommersemester 2006 im Wissenschaftszentrum Weihenstephan. Prof. Dr. Johann Hartl

Höhere Mathematik 2 (= Statistik) Vorlesung im Sommersemester 2006 im Wissenschaftszentrum Weihenstephan. Prof. Dr. Johann Hartl Höhere Mathematik 2 (= Statistik) Vorlesung im Sommersemester 2006 im Wissenschaftszentrum Weihenstephan Prof. Dr. Johann Hartl Traue keiner Statistik, die du nicht selbst gefälscht hast! Warum hat die

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling Einführung in die Versuchsplanung

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung Versuchsplanung Teil 1 Einführung und Grundlagen Dr. Tobias Kiesling Inhalt Einführung in die Versuchsplanung Hintergründe Grundlegende Prinzipien und Begriffe Vorgehensweise

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik Name, Vorname:... verteilung Teil 1: Beschreibende Statistik Aufgaben

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Vergleich zweier Stichproben, nichtparametrische Tests Prof. Dr. Achim Klenke http://www.aklenke.de 11. Vorlesung: 27.01.2012 1/86 Inhalt 1 Tests t-test 2 Vergleich zweier

Mehr

Statistische Analyse von Messergebnissen

Statistische Analyse von Messergebnissen Da virtuelle Bildungnetzwerk für Textilberufe Statitiche Analye von Meergebnien 3 Hochchule Niederrhein Stand: 17..3 Seite 1 / 8 Im Abchnitt "Grundlagen der Statitik" wurde u.a. bechrieben, wie nach der

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

AQL. 9. Statistisches Qualitätsmanagement 9.3 Statistische Methoden der Warenannahme (AQL)

AQL. 9. Statistisches Qualitätsmanagement 9.3 Statistische Methoden der Warenannahme (AQL) 9.3 Statistische Methoden der Warenannahme (AQL) AQL Vorlesung Qualitätsmanagement, Prof. Dr. Johann Neidl Seite 1 Um was geht es? Stichprobensysteme insbesondere für Eingangsprüfungen. Diese werden durch

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Kapitel 8: Verfahren für Rangdaten

Kapitel 8: Verfahren für Rangdaten Kapitel 8: Verfahren für Rangdaten Der Mann-Whitney U-Test In Kapitel 8.1 dient eine Klassenarbeit in einer Schule als Beispielanwendung für einen U-Test. Wir werden an dieser Stelle die Berechnung dieses

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike persike@uni-mainz.de

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch 1 2 - Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch Badewannenkurve. -mit der Badewannenkurve lässt

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter Leseprobe Wilhelm Kleppmann Versuchsplanung Produkte und Prozesse optimieren ISBN: -3-44-4033-5 Weitere Informationen oder Bestellungen unter http://www.hanser.de/-3-44-4033-5 sowie im Buchhandel. Carl

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen:

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Messtechnik Gedächnisprotokoll Klausur 2012 24. März 2012 Dokument erstellt von: mailto:snooozer@gmx.de Aufgaben Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Index k 1 2 3 4 5

Mehr

LOT S E. Statistik 00055-6-13-A7. Kurseinheit 13: Selbstkontrollaufgaben. Fakultät für Wirtschaftswissenschaft

LOT S E. Statistik 00055-6-13-A7. Kurseinheit 13: Selbstkontrollaufgaben. Fakultät für Wirtschaftswissenschaft LOT S Statistik Kurseinheit 3: Selbstkontrollaufgaben 2009 FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft Alle Rechte vorbehalten 00055-6-3-A7 Modul 309: Statistische Methodenlehre Kurs

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar

Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar Inhaltsverzeichnis Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung:

Mehr