Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Größe: px
Ab Seite anzeigen:

Download "Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über"

Transkript

1 Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion des s auf p Grafische Darstellung der exakten Gütefunktionen des s auf p Grafische Darstellung der approximativen Gütefunktionen des s auf p Ableitung der Gütefunktion des s auf Varianz im Einstichprobenproblem Grafische Darstellung der exakten Gütefunktionen des s auf Varianz Übungen zur Güte von s Grundlegendes zum Konzept der Güte Wir haben uns bislang bei der Durchführung von s auf den Fehler 1. Art bzw. auf die Wahrscheinlichkeit für diesen Fehler beschränkt: Die Wahrscheinlichkeit, die Hypothese abzulehnen, obwohl sie richtig ist. Neben diesem Fehler 1. Art gibt es die Wahrscheinlichkeit für den Fehler 2. Art bei der entscheidung, nämlich anzunehmen, obwohl falsch ist. Darauf haben wir bereits im Kapitel über Fehlerwahrscheinlichkeiten hingewiesen. Wir werden im Folgenden aber nicht den Fehler 2. Art bei einzelnen s untersuchen, sondern die dazu komplementäre korrekte Entscheidung, nämlich die Hypothese abzulehnen, wenn nicht zutrifft, sondern die Gegenhypothese. Die Wahrscheinlichkeit für eine solche korrekte Entscheidung wird als Güte eines s bezeichnet. Sie ist dann die komplementäre Wahrscheinlichkeit zur Wahrscheinlichkeit für den Fehler 2. Art. Und es ist unmittelbar einleuchtend, dass einem für dieselbe Hypothese und für eine festgelegte Gegenhypothese vorzuziehen ist, wenn eine größere Güte als hat oder damit gleichbedeutend, wenn für die Wahrscheinlichkeit für den Fehler 2. Art kleiner ist als für. Page 1

2 Betrachten wir ein Beispiel aus dem Kapitel zum auf p mit den zu testenden Hypothesen. Was bedeutet es, abzulehnen, wenn wächst bei konstantem und n? Wie ändert sich dann die Güte? Und wie ändert sich die Güte bei festem, aber variierendem n oder? Auf diese Fragen wird im folgenden Modul eine Antwort gegeben werden. Es wird nun die Güte verschiedener s für einige in den jeweiligen kapiteln betrachteten Beispiele untersucht. In einigen Fällen können wir die zugehörige Gütefunktion als Funktion der Parameter aus der Gegenhypothese exakt bzw. asymptotisch herleiten, in anderen Fällen sind wir auf Simulationen zur Berechnung der Güte angewiesen. Wir beginnen der Einfachheit halber mit dem Gauss-. Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Es seien normalverteilte Zufallsvariablen mit, und, kurz bekannt. Zu testen sei: A B C Hypothesen Als Entscheidungsregeln für die drei probleme ergaben sich Ablehnbereich, bzw. über die Prüfgröße : A B C oder Page 2

3 wobei gilt:. Wir wollen die Berechnung der Gütefunktion, die wir mit bezeichnen wollen, am Beispiel des A verdeutlichen; für die anderen beiden s geben wir die Gütefunktion am Ende dieses Abschnitts an. Gütefunktion für A A: Sei, ein fester Wert der Gegenhypothese. Dann ist standardnormalverteilt. Damit ergibt sich für die Wahrscheinlichkeit entscheidung zu A: abzulehnen, wenn : richtig ist, mit Hilfe der obigen = = = So ist in einem Beispiel im kapitel zum Gauss- für,,, und = =0.8037, d.h. die Wahrscheinlichkeit für die korrekte Entscheidung, abzulehnen, wenn, ist gleich Gütefunktion für B B:... Page 3

4 So ist in einem Beispiel im kapitel zum Gauss für,,, und : = =0.7227, d.h. die Wahrscheinlichkeit für die korrekte Entscheidung, abzulehnen, wenn, ist gleich Gütefunktion für C C:. Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Die Gütefunktionen für die einzelnen s A, B und C werden nun grafisch bei variablen,, und Stichprobenumfang n dargestellt. Damit sollen die unterschiedlichen Verläufe bei den einseitigen s A und B und dem zweiseitigen C veranschaulicht werden. Weiterhin soll demonstriert werden, dass mit wachsendem, und größerer Distanz von die Güte zunimmt. Zuerst werden die Auswirkungen von Veränderungen von demonstriert, wobei stets,, und angenommen wird. Es ist klar, dass ist. Wir werden sehen, dass mit zunehmender Distanz zwischen und ein Anwachsen der Güte zu beobachten ist, was natürlich verständlich ist. In den weiteren Analysen werden noch und variiert Grafische Darstellung der Gütefunktion für A bei Änderung von My Page 4

5 Grafische Darstellung der Gütefunktion für B bei Änderung von My Güte für B Grafische Darstellung der Gütefunktion für C bei Änderung von My Grafische Darstellung der Gütefunktion für A/B bei Änderung von n mit My1=105 /B Grafische Darstellung der Gütefunktion für C bei Änderung von n mit My1=105 bzw. My1=98 Grafische Darstellung der Gütefunktion für A/B bei Änderung von Sigma mit My1=105 /B Grafische Darstellung der Gütefunktion für C bei Änderung von Sigma mit My1=105 Grafische Darstellung der Gütefunktion für A/B bei Änderung von My und bei Veränderungen von Alpha (0.05, 0.2,0.3) /B Grafische Darstellung der Gütefunktion für C bei Änderung von My und bei Veränderungen von Alpha (0.01, 0.05, 0.1) Eine Veranschaulichung der Gütefunktionen findet sich auch im Applet Güte (c2b.jar). Ableitung der Gütefunktion des s auf p Zunächst wird die Gütefunktion der Prüfgröße T für den auf p exakt über die Binomialverteilung bestimmt. Die Hypothesen lauteten: Hypothesen A Page 5

6 . B. C. Als Entscheidungsregeln für die obigen drei probleme ergeben sich damit: A B Ablehnbereich oder C Bestimmung der exakten Gütefunktion Unter der Hypothese ist die Prüfgröße T binomialverteilt mit Parametern n und, unter der Hypothese ist T binomialverteilt mit Parametern n und p mit. Damit ergibt sich für die Gütefunktion bei den einzelnen s: A B C Ablehnbereich = mit = mit =+ mit Es ist klar, dass ist. Bestimmung der approximativen Gütefunktion Page 6

7 Nach dieser Bestimmung der exakten Gütefunktion des p-s wird nun die approximative Gütefunktion über die approximative Verteilung der Prüfgröße T bestimmt, siehe das Kapitel zum auf p: Die standardisierte Prüfgröße ist für beliebiges p approximativ N(0,1)-verteilt. Damit ergibt sich für die (approximative) Gütefunktion : A Gütefunktion, B, C, Wir wollen noch an einem Beispiel einen Vergleich der exakten mit der approximativen Güte vornehmen. Zu testen sei, d.h. ( A). Wir wählen, n=100 und als Parameter der Alternativhypothese bzw.. Exakte Güte: Zunächst ist (mit und damit Approximative Güte: Wir sehen, dass die Approximation der Güte als gut angesehen werden kann. Es ist klar, dass diese Approximation mit wachsenden n noch besser wird; und erst recht dann, wenn ist (symmetrischer Fall wie beim Münzwurf). Grafische Darstellung der exakten Gütefunktionen des s auf p Die Gütefunktionen für die einzelnen s A, B und C werden nun grafisch dargestellt Page 7

8 und, um zu demonstrieren, dass mit wachsendem, und größerer Distanz von die Güte zunimmt. Grafische Darstellung der exakten Gütefunktion für A bei Änderung von p mit p0=0.18, n=1000 und Alpha=0.05. Grafische Darstellung der exakten Gütefunktion für B bei Änderung von p mit p0=0.03, n=1000 und Alpha=0.05. Güte für B Grafische Darstellung der exakten Gütefunktion für C bei Änderung von p mit p0=0.5, n=1000 und Alpha=0.05. Grafische Darstellung der exakten Gütefunktion für A/B am Beispiel von A bei Änderung von n, mit p0=0.18, p1=0.15 und Alpha=0.05. Grafische Darstellung der exakten Gütefunktion für C bei Änderung von n mit p0=0.5, p1=0.53, p1=0.48 und Alpha=0.05 Grafische Darstellung der exakten Gütefunktion für A/B am Beispiel von A bei Veränderung von p und von Alpha (0.01,0.05,0.1) mit p0=0.18: Grafische Darstellung der exakten Gütefunktion für C bei Veränderung von p und von Alpha (0.01, 0.05, 0.1) mit p0=0.5 Grafische Darstellung der approximativen Gütefunktionen des s auf p Die Gütefunktionen für die einzelnen s A, B und C werden nun grafisch dargestellt mit variablen und, um zu demonstrieren, dass mit wachsendem, und größerer Distanz von die Güte zunimmt. Grafische Darstellung der approximativen Gütefunktion für A bei Änderung von p mit n=1000, p0=0.18 und Alpha=0.05 Um zu demonstrieren, wie die Approximation bei kleinen Stichproben arbeitet, wird die Page 8

9 folgenden Darstellung herangezogen. Grafische Darstellung der approximativen Gütefunktion für A bei Änderung von p mit n=50, p0=0.18 und Alpha=0.05 Grafische Darstellung der approximativen Gütefunktion für B bei Änderung von p mit n=1000, p0=0.03 und Alpha=0.05 Güte für B Um zu demonstrieren, wie die Approximation bei kleinen Stichproben arbeitet, wird die folgenden Darstellung herangezogen. Grafische Darstellung der approximativen Gütefunktion für B bei Änderung von p mit n=50, p0=0.03 und Alpha=0.05 Güte für B Grafische Darstellung der approximativen Gütefunktion für C bei Änderung von p für p0=0.5, n=1000 und Alpha=0.05. Um zu demonstrieren, wie die Approximation bei kleinen Stichproben arbeitet, wird die folgenden Darstellung herangezogen. Grafische Darstellung der approximativen Gütefunktion für C bei Änderung von p für p0=0.5, n=50 und Alpha=0.05. Grafische Darstellung der approximativen Gütefunktion für A/B am Beispiel von A bei Änderung von n für p0=0.18, p1=0.15 und Alpha=0.05 Güte für Text A Grafische Darstellung der approximativen Gütefunktion für C bei Änderung von n für p0=0.5, p1=0.6 und Alpha=0.05 Grafische Darstellung der approximativen Gütefunktion für A/B am Beispiel von A bei Änderung von p und Veränderung von Alpha (0.01, 0.05, 0.1) mit p0=0.18 und n=1000 Grafische Darstellung der approximativen Gütefunktion für C bei Änderung von p und Veränderung von Alpha (0.01, 0.05, 0.1) mit p0=0.5 und n=1000 Page 9

10 Ableitung der Gütefunktion des s auf Varianz im Einstichprobenproblem Wir betrachten folgende Annahmen, siehe das kapitel zum auf. Es seien normalverteilte Zufallsvariablen mit, und, kurz Folgende Hypothesen können dann getestet werden: A B C Hypothesen Wir betrachten hier nur den (realistischen) Fall, dass unbekannt ist und damit die Prüfgröße. Diese Prüfgröße ist unter mit Freiheitsgraden. Die kritischen Werte werden also über die mit Freiheitsgraden bestimmt. Als Entscheidungsregeln für die obigen drei probleme ergeben sich somit bei vorgegebenem niveau : A B C Hypothesen Das ist gleichbedeutend damit, dass Das ist gleichbedeutend damit, dass oder Das ist gleichbedeutend damit, dass oder Unterhat eine Verteilung mit n-1 FG. Damit ergibt sich für die Gütefunktionen Beta bei den s A, B und C: Gütefunktion A = B = C =+ Wir wollen die Berechnung der Güte des s auf an einem Beispiel demonstrieren Page 10

11 Beispiel für die Anwendung der Gütefunktion für den A : Sei und, d.h.. Für ergibt sich: == Für ergibt sich: == Grafische Darstellung der exakten Gütefunktionen des s auf Varianz Die Gütefunktionen für die einzelnen s A, B und C werden nun grafisch dargestellt mit variablen und, um zu demonstrieren, dass mit wachsendem, und größerer Distanz von die Güte zunimmt. Grafische Darstellung der Gütefunktion für A bei Änderung von Sigma, wobei gilt Sigma-quadrat0=0.025 quadrat, n=16 und Alpha=0.05 Grafische Darstellung der Gütefunktion für B bei Änderung von Sigma mit Sigma-quadrat0=0.25, n=16 und Alpha=0.05 Güte für B Grafische Darstellung der Gütefunktion für C bei Änderung von mit Sigma-quadrat0=100, n=16 und Alpha=0.05 Grafische Darstellung der Gütefunktion für A/B am Beispiel von A bei Änderung von n mit Sigma-quadrat0=0.025 quadrat, Sigma-quadrat1= und Alpha=0.05 Grafische Darstellung der Gütefunktion für C bei Änderung von n mit Sigma-quadrat0=100 quadrat, Sigma-quadrat1=144 und Alpha=0.05 Grafische Darstellung der Gütefunktion für A/B am Beispiel von A bei Veränderung von Sigma mit Sigma-quadrat0= , n=16 und Änderungen von Alpha (0.01, 0.05, 0.1) Grafische Darstellung der Gütefunktion für C mit Sigma-quadrat0=100, n=9, bei Änderungen von Sigma und Veränderungen von Alpha (0.01, 0.05, 0.1) Page 11

12 Übungen zur Güte von s Multiple-Choice-Aufgaben (Genau eine der vier Alternativen ist richtig.) Aufgabe 1: Die Güte eines s ist definiert als die Wahrscheinlichkeit dafür, (a) anzunehmen, wenn richtig ist, (b) anzunehmen, wenn falsch ist, (c) abzulehnen, wenn richtig ist, (d) abzulehnen, wenn falsch ist. Aufgabe 2: Für den exakten auf mit Hilfe der binomialverteilten statistik T gilt: (a) Die Güte wächst mit abnehmendem, (b) die Güte fällt mit wachsendem Stichprobenumfang, (c) die Güte fällt mit abnehmendem, (d) die Güte strebt 1, falls p strebt. Aufgabe 3: Für den Gauss- auf bei bekanntem gilt: (a) Die Güte ist für größer als für, (b) die Güte ist für größer als für, (c) die Güte ist für größer als für, (d) die Güte ist für größer als für falls ist. Aufgabe 4: Für den auf gilt: (a) Die Güte ist für kleiner als für (b) die Güte fällt mit abnehmendem, falls (c) die Güte ist für gleich der Güte für falls ist, (d) die Güte strebt, falls strebt. Aufgabe 5: Zu testen sei. (a) Berechnen Sie die exakte Güte des s für n=20, und p=0.25, p=0.15. (b) Berechnen Sie die exakte Güte des s für n=75, und p=0.25, p=0.15. (c) Berechnen Sie die approximative Güte des s für n=20, und p=0.25, p=0.15. (d) Berechnen Sie die approximative Güte des s für n=75, und p=0.25, p=0.15. Aufgabe 6: Page 12

13 Zu testen sei: bei bekanntem. (a) Berechnen Sie die Güte des s für n=10, und,. (b) Berechnen Sie die Güte des s für n=20, und,. (c) Berechnen Sie die Güte des s für n=10, und,. (d) Berechnen Sie die Güte des s für n=20, und,. Aufgabe 7: Zu testen sei: bei unbekanntem (a) Berechnen Sie die Güte des s für n=20, und,, (b) Berechnen Sie die Güte des s für n=50, und,, (c) Berechnen Sie die Güte des s für n=20, und,, (d) Berechnen Sie die Güte des s für n=50, und,. Aufgabe 8: Zu testen sei: unbekannt. Simulieren Sie kritische Werte der t-statistik für, n=20 und die Güte des t-s für und und für Daten aus einer (a) Standardnormalverteilung, (b) Standardisierten Doppelexponentialverteilung (c) Gleichverteilung über. (d) Wiederholen Sie die Simulation für n=50. Aufgabe 9: Zu testen sei:, unbekannt. Simulieren Sie kritische Werte der Statistik für, n=20 und die Güte des s für und und für Daten aus einer (a) Standardnormalverteilung, (b) Standardisierten Doppelexponentialverteilung (c) Gleichverteilung über. (d) Wiederholen Sie die Simulation für n=50. approximative Gütefunktion Erklärungexakten Gütefunktion ErklärungFehler 1. Art ErklärungFehler 2. Art ErklärungGegenhypothese ErklärungGüte ErklärungGütefunktion (c) Projekt Neue Statistik 2003, Freie Universität Berlin, Center für Digitale Systeme Kontakt: Page 13

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

Wilcoxon-Rangsummen-Test

Wilcoxon-Rangsummen-Test Wilcoxon-Rangsummen-Test Theorie: Wilcoxon-Rangsummen-Test Der Wilcoxon-Rangsummen-Test prüft, ob sich die Verteilungen der Grundgesamtheiten zweier Stichproben bezüglich ihrer Lage unterscheiden. Ein

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Kapitel 13. Grundbegriffe statistischer Tests

Kapitel 13. Grundbegriffe statistischer Tests Kapitel 13 Grundbegriffe statistischer Tests Oft hat man eine Vermutung über die Verteilung einer Zufallsvariablen X. Diese Vermutung formuliert man als Hypothese H 0.Sokönnte man daran interessiert sein

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

B 2.  Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!! Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl FAKTORIELLE VERSUCHSPLÄNE Andreas Handl 1 Inhaltsverzeichnis 1 Versuchsplanung 4 2 Einfaktorielle Varianzanalyse 6 2.1 DieAnnahmen... 6 2.2 Die ANOVA-Tabelle und der F -Test... 6 2.3 Versuche mit zwei

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Kaplan-Meier-Schätzer

Kaplan-Meier-Schätzer Kaplan-Meier-Schätzer Ausgangssituation Zwei naive Ansätze zur Schätzung der Survivalfunktion Unverzerrte Schätzung der Survivalfunktion Der Kaplan-Meier-Schätzer Standardfehler und Konfidenzintervall

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Klausur in Statistik VWA Essen

Klausur in Statistik VWA Essen Prof. Dr. Peter von der Lippe Klausur in Statistik VWA Essen neue Regelung (verkürzter Stoff) Bitte schreiben Sie hier Ihren Namen auf das Deckblatt. Bitte neben dieser Aufgabenstellung keine weitere Blätter

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Ein- und Zweistichprobentests

Ein- und Zweistichprobentests (c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Weiterbildungskurs Stochastik

Weiterbildungskurs Stochastik Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

FF Düsseldorf WS 2007/08 Prof. Dr. Horst Peters. Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6

FF Düsseldorf WS 2007/08 Prof. Dr. Horst Peters. Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6 Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6 (Konfidenzintervalle, Gauß scher Mittelwerttest) 1. Bei einem bestimmten Großraumflugzeug sei die Auslastung

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

DWT 334/460 csusanne Albers

DWT 334/460 csusanne Albers Die Wahrscheinlichkeit fur den Fehler 1. Art wird mit bezeichnet, und man spricht deshalb gelegentlich vom -Fehler. heit auch Signikanzniveau des Tests. In der Praxis ist es ublich, sich ein Signikanzniveau

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Gesamtcholesterin Region A Region B <170 (optimal) 80 >=170 (Risiko)

Gesamtcholesterin Region A Region B <170 (optimal) 80 >=170 (Risiko) AUFGABEN 1. In einer Studie wurde ein Blutparameter am Beginn und am Ende einer Therapie bestimmt. Es ergab sich, dass bei 35 Probanden eine Veränderung des Parameters eintrat, und zwar lag der Wert bei

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Hypothesentesten, Fehlerarten und Güte 2 Literatur Kreyszig: Statistische Methoden und ihre Anwendungen, 7.

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Vorzeichentest. Motivation: Vorzeichentests in der Erfolgskontrolle von Medikamenten

Vorzeichentest. Motivation: Vorzeichentests in der Erfolgskontrolle von Medikamenten Vorzeichentest Motivation: Vorzeichentests in der Erfolgskontrolle von Medikamenten Theorie zum Vorzeichentest Test A: Test eines neuen Kraftstoffs Test B: Test von Lebenszeiten bei Rauchern und Nichtrauchern

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Marktforschung I. Marktforschung I 2

Marktforschung I. Marktforschung I 2 Marktforschung I Marktforschung I Einführung in die Testtheorie (Toporowski) Mathematische Grundlagen (Toporowski) Varianzanalyse (Toporowski) Regressionsanalyse (Boztuğ) Diskriminanzanalyse (Hammerschmidt)

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

Grundprinzipien der Bayes-Statistik

Grundprinzipien der Bayes-Statistik Grundprinzipien der Bayes-Statistik Karl-Rudolf Koch Zusammenfassung: In drei wesentlichen Punkten unterscheidet sich die Bayes-Statistik von der traditionellen Statistik. Zunächst beruht die Bayes-Statistik

Mehr

P-Test Motivation: Einsatz des Tests auf p im Krankenhausmanagement Theorie zum Test auf p

P-Test Motivation: Einsatz des Tests auf p im Krankenhausmanagement Theorie zum Test auf p P-Test Motivation: Einsatz des Tests auf p im Krankenhausmanagement Theorie zum Test auf p Test A: Beispiel zur Erfolgsmessung von Therapien Test B: Beispiel zur Überwachung des Patientenanteils mit zu

Mehr

Ablaufschema beim Testen

Ablaufschema beim Testen Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version

Mehr

27. Statistische Tests für Parameter. Was ist ein statistischer Test?

27. Statistische Tests für Parameter. Was ist ein statistischer Test? 27. Statistische Tests für Parameter Wenn du eine weise Antwort verlangst, musst du vernünftig fragen Was ist ein statistischer Test? Ein statistischen Test ist ein Verfahren, welches ausgehend von Stichproben

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Arbeitsblätter zum Fach. Sicherheitstechnik. Abschnitt: Zuverlässigkeit technischer Systeme

Arbeitsblätter zum Fach. Sicherheitstechnik. Abschnitt: Zuverlässigkeit technischer Systeme TU DRESDEN Institut für Verfahrenstechnik & Umwelttechnik Professur für Verfahrensautomatisierung Prof. Dr.-Ing. habil. Klöden Arbeitsblätter zum Fach Sicherheitstechnik Abschnitt: Zuverlässigkeit technischer

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

Stochastik: Hypothesentest Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J1/J2

Stochastik: Hypothesentest Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J1/J2 Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J/J2 Alexander Schwarz www.mathe-aufgaben.com Oktober 25 Hinweis: Für die Aufgaben darf der GTR benutzt werden. Aufgabe

Mehr

Einführung in statistische Testmethoden

Einführung in statistische Testmethoden Einführung in statistische Testmethoden und die Bearbeitung von Messdaten mit Excel 1. Beispielhafte Einführung in den Gebrauch von Testmethoden 2. Typen von Messwerten, Verteilungen 3. Mittelwert, Varianz,

Mehr

Welch-Test. Welch-Test

Welch-Test. Welch-Test Welch-Test Welch-Test Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit unbekannten Varianzen durch Vergleich der Mittelwerte zweier unabhängiger Zufallsstichproben. Beispiel Im Labor

Mehr

Jetzt lerne ich Stochastik für die Oberstufe

Jetzt lerne ich Stochastik für die Oberstufe Jetzt lerne ich Stochastik für die Oberstufe von Dr. rer. nat. Marco Schuchmann, Dipl.-Math. - 2 - - 3 - Vorwort In diesem Buch werden Anwendungen der Stochastik in der Oberstufe mit vielen Beispielen

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Die Binomialverteilung

Die Binomialverteilung Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test)

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test) Spezielle Tests Test auf einen Anteilswert (Binomialtest) Vergleich zweier Anteilswerte Test auf einen Mittelwert (Ein-Stichproben Gauss bzw. t-test) Vergleich zweier Mittelwerte (t-test) Test auf einen

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft 3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling Einführung in die Versuchsplanung

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung Versuchsplanung Teil 1 Einführung und Grundlagen Dr. Tobias Kiesling Inhalt Einführung in die Versuchsplanung Hintergründe Grundlegende Prinzipien und Begriffe Vorgehensweise

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen

Mehr

Abitur 2012 Mathematik GK Stochastik Aufgabe C1

Abitur 2012 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2012 Mathematik GK Stochastik Aufgabe C1 nter einem Regentag verstehen Meteorologen einen Tag, an dem mehr als ein Liter Niederschlag pro Quadratmeter gefallen

Mehr

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Inauguraldissertation zur Erlangung des Doktorgrades der Mathematisch Naturwissenschaftlichen

Mehr

Auswahl von Schätzfunktionen

Auswahl von Schätzfunktionen Auswahl von Schätzfunktionen Worum geht es in diesem Modul? Überblick zur Punktschätzung Vorüberlegung zur Effizienz Vergleich unserer Schätzer für My unter Normalverteilung Relative Effizienz Einführung

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Die Optimalität von Randomisationstests

Die Optimalität von Randomisationstests Die Optimalität von Randomisationstests Diplomarbeit Elena Regourd Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Düsseldorf im Dezember 2001 Betreuung: Prof. Dr. A. Janssen Inhaltsverzeichnis

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr