Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über"

Transkript

1 Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion des s auf p Grafische Darstellung der exakten Gütefunktionen des s auf p Grafische Darstellung der approximativen Gütefunktionen des s auf p Ableitung der Gütefunktion des s auf Varianz im Einstichprobenproblem Grafische Darstellung der exakten Gütefunktionen des s auf Varianz Übungen zur Güte von s Grundlegendes zum Konzept der Güte Wir haben uns bislang bei der Durchführung von s auf den Fehler 1. Art bzw. auf die Wahrscheinlichkeit für diesen Fehler beschränkt: Die Wahrscheinlichkeit, die Hypothese abzulehnen, obwohl sie richtig ist. Neben diesem Fehler 1. Art gibt es die Wahrscheinlichkeit für den Fehler 2. Art bei der entscheidung, nämlich anzunehmen, obwohl falsch ist. Darauf haben wir bereits im Kapitel über Fehlerwahrscheinlichkeiten hingewiesen. Wir werden im Folgenden aber nicht den Fehler 2. Art bei einzelnen s untersuchen, sondern die dazu komplementäre korrekte Entscheidung, nämlich die Hypothese abzulehnen, wenn nicht zutrifft, sondern die Gegenhypothese. Die Wahrscheinlichkeit für eine solche korrekte Entscheidung wird als Güte eines s bezeichnet. Sie ist dann die komplementäre Wahrscheinlichkeit zur Wahrscheinlichkeit für den Fehler 2. Art. Und es ist unmittelbar einleuchtend, dass einem für dieselbe Hypothese und für eine festgelegte Gegenhypothese vorzuziehen ist, wenn eine größere Güte als hat oder damit gleichbedeutend, wenn für die Wahrscheinlichkeit für den Fehler 2. Art kleiner ist als für. Page 1

2 Betrachten wir ein Beispiel aus dem Kapitel zum auf p mit den zu testenden Hypothesen. Was bedeutet es, abzulehnen, wenn wächst bei konstantem und n? Wie ändert sich dann die Güte? Und wie ändert sich die Güte bei festem, aber variierendem n oder? Auf diese Fragen wird im folgenden Modul eine Antwort gegeben werden. Es wird nun die Güte verschiedener s für einige in den jeweiligen kapiteln betrachteten Beispiele untersucht. In einigen Fällen können wir die zugehörige Gütefunktion als Funktion der Parameter aus der Gegenhypothese exakt bzw. asymptotisch herleiten, in anderen Fällen sind wir auf Simulationen zur Berechnung der Güte angewiesen. Wir beginnen der Einfachheit halber mit dem Gauss-. Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Es seien normalverteilte Zufallsvariablen mit, und, kurz bekannt. Zu testen sei: A B C Hypothesen Als Entscheidungsregeln für die drei probleme ergaben sich Ablehnbereich, bzw. über die Prüfgröße : A B C oder Page 2

3 wobei gilt:. Wir wollen die Berechnung der Gütefunktion, die wir mit bezeichnen wollen, am Beispiel des A verdeutlichen; für die anderen beiden s geben wir die Gütefunktion am Ende dieses Abschnitts an. Gütefunktion für A A: Sei, ein fester Wert der Gegenhypothese. Dann ist standardnormalverteilt. Damit ergibt sich für die Wahrscheinlichkeit entscheidung zu A: abzulehnen, wenn : richtig ist, mit Hilfe der obigen = = = So ist in einem Beispiel im kapitel zum Gauss- für,,, und = =0.8037, d.h. die Wahrscheinlichkeit für die korrekte Entscheidung, abzulehnen, wenn, ist gleich Gütefunktion für B B:... Page 3

4 So ist in einem Beispiel im kapitel zum Gauss für,,, und : = =0.7227, d.h. die Wahrscheinlichkeit für die korrekte Entscheidung, abzulehnen, wenn, ist gleich Gütefunktion für C C:. Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Die Gütefunktionen für die einzelnen s A, B und C werden nun grafisch bei variablen,, und Stichprobenumfang n dargestellt. Damit sollen die unterschiedlichen Verläufe bei den einseitigen s A und B und dem zweiseitigen C veranschaulicht werden. Weiterhin soll demonstriert werden, dass mit wachsendem, und größerer Distanz von die Güte zunimmt. Zuerst werden die Auswirkungen von Veränderungen von demonstriert, wobei stets,, und angenommen wird. Es ist klar, dass ist. Wir werden sehen, dass mit zunehmender Distanz zwischen und ein Anwachsen der Güte zu beobachten ist, was natürlich verständlich ist. In den weiteren Analysen werden noch und variiert Grafische Darstellung der Gütefunktion für A bei Änderung von My Page 4

5 Grafische Darstellung der Gütefunktion für B bei Änderung von My Güte für B Grafische Darstellung der Gütefunktion für C bei Änderung von My Grafische Darstellung der Gütefunktion für A/B bei Änderung von n mit My1=105 /B Grafische Darstellung der Gütefunktion für C bei Änderung von n mit My1=105 bzw. My1=98 Grafische Darstellung der Gütefunktion für A/B bei Änderung von Sigma mit My1=105 /B Grafische Darstellung der Gütefunktion für C bei Änderung von Sigma mit My1=105 Grafische Darstellung der Gütefunktion für A/B bei Änderung von My und bei Veränderungen von Alpha (0.05, 0.2,0.3) /B Grafische Darstellung der Gütefunktion für C bei Änderung von My und bei Veränderungen von Alpha (0.01, 0.05, 0.1) Eine Veranschaulichung der Gütefunktionen findet sich auch im Applet Güte (c2b.jar). Ableitung der Gütefunktion des s auf p Zunächst wird die Gütefunktion der Prüfgröße T für den auf p exakt über die Binomialverteilung bestimmt. Die Hypothesen lauteten: Hypothesen A Page 5

6 . B. C. Als Entscheidungsregeln für die obigen drei probleme ergeben sich damit: A B Ablehnbereich oder C Bestimmung der exakten Gütefunktion Unter der Hypothese ist die Prüfgröße T binomialverteilt mit Parametern n und, unter der Hypothese ist T binomialverteilt mit Parametern n und p mit. Damit ergibt sich für die Gütefunktion bei den einzelnen s: A B C Ablehnbereich = mit = mit =+ mit Es ist klar, dass ist. Bestimmung der approximativen Gütefunktion Page 6

7 Nach dieser Bestimmung der exakten Gütefunktion des p-s wird nun die approximative Gütefunktion über die approximative Verteilung der Prüfgröße T bestimmt, siehe das Kapitel zum auf p: Die standardisierte Prüfgröße ist für beliebiges p approximativ N(0,1)-verteilt. Damit ergibt sich für die (approximative) Gütefunktion : A Gütefunktion, B, C, Wir wollen noch an einem Beispiel einen Vergleich der exakten mit der approximativen Güte vornehmen. Zu testen sei, d.h. ( A). Wir wählen, n=100 und als Parameter der Alternativhypothese bzw.. Exakte Güte: Zunächst ist (mit und damit Approximative Güte: Wir sehen, dass die Approximation der Güte als gut angesehen werden kann. Es ist klar, dass diese Approximation mit wachsenden n noch besser wird; und erst recht dann, wenn ist (symmetrischer Fall wie beim Münzwurf). Grafische Darstellung der exakten Gütefunktionen des s auf p Die Gütefunktionen für die einzelnen s A, B und C werden nun grafisch dargestellt Page 7

8 und, um zu demonstrieren, dass mit wachsendem, und größerer Distanz von die Güte zunimmt. Grafische Darstellung der exakten Gütefunktion für A bei Änderung von p mit p0=0.18, n=1000 und Alpha=0.05. Grafische Darstellung der exakten Gütefunktion für B bei Änderung von p mit p0=0.03, n=1000 und Alpha=0.05. Güte für B Grafische Darstellung der exakten Gütefunktion für C bei Änderung von p mit p0=0.5, n=1000 und Alpha=0.05. Grafische Darstellung der exakten Gütefunktion für A/B am Beispiel von A bei Änderung von n, mit p0=0.18, p1=0.15 und Alpha=0.05. Grafische Darstellung der exakten Gütefunktion für C bei Änderung von n mit p0=0.5, p1=0.53, p1=0.48 und Alpha=0.05 Grafische Darstellung der exakten Gütefunktion für A/B am Beispiel von A bei Veränderung von p und von Alpha (0.01,0.05,0.1) mit p0=0.18: Grafische Darstellung der exakten Gütefunktion für C bei Veränderung von p und von Alpha (0.01, 0.05, 0.1) mit p0=0.5 Grafische Darstellung der approximativen Gütefunktionen des s auf p Die Gütefunktionen für die einzelnen s A, B und C werden nun grafisch dargestellt mit variablen und, um zu demonstrieren, dass mit wachsendem, und größerer Distanz von die Güte zunimmt. Grafische Darstellung der approximativen Gütefunktion für A bei Änderung von p mit n=1000, p0=0.18 und Alpha=0.05 Um zu demonstrieren, wie die Approximation bei kleinen Stichproben arbeitet, wird die Page 8

9 folgenden Darstellung herangezogen. Grafische Darstellung der approximativen Gütefunktion für A bei Änderung von p mit n=50, p0=0.18 und Alpha=0.05 Grafische Darstellung der approximativen Gütefunktion für B bei Änderung von p mit n=1000, p0=0.03 und Alpha=0.05 Güte für B Um zu demonstrieren, wie die Approximation bei kleinen Stichproben arbeitet, wird die folgenden Darstellung herangezogen. Grafische Darstellung der approximativen Gütefunktion für B bei Änderung von p mit n=50, p0=0.03 und Alpha=0.05 Güte für B Grafische Darstellung der approximativen Gütefunktion für C bei Änderung von p für p0=0.5, n=1000 und Alpha=0.05. Um zu demonstrieren, wie die Approximation bei kleinen Stichproben arbeitet, wird die folgenden Darstellung herangezogen. Grafische Darstellung der approximativen Gütefunktion für C bei Änderung von p für p0=0.5, n=50 und Alpha=0.05. Grafische Darstellung der approximativen Gütefunktion für A/B am Beispiel von A bei Änderung von n für p0=0.18, p1=0.15 und Alpha=0.05 Güte für Text A Grafische Darstellung der approximativen Gütefunktion für C bei Änderung von n für p0=0.5, p1=0.6 und Alpha=0.05 Grafische Darstellung der approximativen Gütefunktion für A/B am Beispiel von A bei Änderung von p und Veränderung von Alpha (0.01, 0.05, 0.1) mit p0=0.18 und n=1000 Grafische Darstellung der approximativen Gütefunktion für C bei Änderung von p und Veränderung von Alpha (0.01, 0.05, 0.1) mit p0=0.5 und n=1000 Page 9

10 Ableitung der Gütefunktion des s auf Varianz im Einstichprobenproblem Wir betrachten folgende Annahmen, siehe das kapitel zum auf. Es seien normalverteilte Zufallsvariablen mit, und, kurz Folgende Hypothesen können dann getestet werden: A B C Hypothesen Wir betrachten hier nur den (realistischen) Fall, dass unbekannt ist und damit die Prüfgröße. Diese Prüfgröße ist unter mit Freiheitsgraden. Die kritischen Werte werden also über die mit Freiheitsgraden bestimmt. Als Entscheidungsregeln für die obigen drei probleme ergeben sich somit bei vorgegebenem niveau : A B C Hypothesen Das ist gleichbedeutend damit, dass Das ist gleichbedeutend damit, dass oder Das ist gleichbedeutend damit, dass oder Unterhat eine Verteilung mit n-1 FG. Damit ergibt sich für die Gütefunktionen Beta bei den s A, B und C: Gütefunktion A = B = C =+ Wir wollen die Berechnung der Güte des s auf an einem Beispiel demonstrieren Page 10

11 Beispiel für die Anwendung der Gütefunktion für den A : Sei und, d.h.. Für ergibt sich: == Für ergibt sich: == Grafische Darstellung der exakten Gütefunktionen des s auf Varianz Die Gütefunktionen für die einzelnen s A, B und C werden nun grafisch dargestellt mit variablen und, um zu demonstrieren, dass mit wachsendem, und größerer Distanz von die Güte zunimmt. Grafische Darstellung der Gütefunktion für A bei Änderung von Sigma, wobei gilt Sigma-quadrat0=0.025 quadrat, n=16 und Alpha=0.05 Grafische Darstellung der Gütefunktion für B bei Änderung von Sigma mit Sigma-quadrat0=0.25, n=16 und Alpha=0.05 Güte für B Grafische Darstellung der Gütefunktion für C bei Änderung von mit Sigma-quadrat0=100, n=16 und Alpha=0.05 Grafische Darstellung der Gütefunktion für A/B am Beispiel von A bei Änderung von n mit Sigma-quadrat0=0.025 quadrat, Sigma-quadrat1= und Alpha=0.05 Grafische Darstellung der Gütefunktion für C bei Änderung von n mit Sigma-quadrat0=100 quadrat, Sigma-quadrat1=144 und Alpha=0.05 Grafische Darstellung der Gütefunktion für A/B am Beispiel von A bei Veränderung von Sigma mit Sigma-quadrat0= , n=16 und Änderungen von Alpha (0.01, 0.05, 0.1) Grafische Darstellung der Gütefunktion für C mit Sigma-quadrat0=100, n=9, bei Änderungen von Sigma und Veränderungen von Alpha (0.01, 0.05, 0.1) Page 11

12 Übungen zur Güte von s Multiple-Choice-Aufgaben (Genau eine der vier Alternativen ist richtig.) Aufgabe 1: Die Güte eines s ist definiert als die Wahrscheinlichkeit dafür, (a) anzunehmen, wenn richtig ist, (b) anzunehmen, wenn falsch ist, (c) abzulehnen, wenn richtig ist, (d) abzulehnen, wenn falsch ist. Aufgabe 2: Für den exakten auf mit Hilfe der binomialverteilten statistik T gilt: (a) Die Güte wächst mit abnehmendem, (b) die Güte fällt mit wachsendem Stichprobenumfang, (c) die Güte fällt mit abnehmendem, (d) die Güte strebt 1, falls p strebt. Aufgabe 3: Für den Gauss- auf bei bekanntem gilt: (a) Die Güte ist für größer als für, (b) die Güte ist für größer als für, (c) die Güte ist für größer als für, (d) die Güte ist für größer als für falls ist. Aufgabe 4: Für den auf gilt: (a) Die Güte ist für kleiner als für (b) die Güte fällt mit abnehmendem, falls (c) die Güte ist für gleich der Güte für falls ist, (d) die Güte strebt, falls strebt. Aufgabe 5: Zu testen sei. (a) Berechnen Sie die exakte Güte des s für n=20, und p=0.25, p=0.15. (b) Berechnen Sie die exakte Güte des s für n=75, und p=0.25, p=0.15. (c) Berechnen Sie die approximative Güte des s für n=20, und p=0.25, p=0.15. (d) Berechnen Sie die approximative Güte des s für n=75, und p=0.25, p=0.15. Aufgabe 6: Page 12

13 Zu testen sei: bei bekanntem. (a) Berechnen Sie die Güte des s für n=10, und,. (b) Berechnen Sie die Güte des s für n=20, und,. (c) Berechnen Sie die Güte des s für n=10, und,. (d) Berechnen Sie die Güte des s für n=20, und,. Aufgabe 7: Zu testen sei: bei unbekanntem (a) Berechnen Sie die Güte des s für n=20, und,, (b) Berechnen Sie die Güte des s für n=50, und,, (c) Berechnen Sie die Güte des s für n=20, und,, (d) Berechnen Sie die Güte des s für n=50, und,. Aufgabe 8: Zu testen sei: unbekannt. Simulieren Sie kritische Werte der t-statistik für, n=20 und die Güte des t-s für und und für Daten aus einer (a) Standardnormalverteilung, (b) Standardisierten Doppelexponentialverteilung (c) Gleichverteilung über. (d) Wiederholen Sie die Simulation für n=50. Aufgabe 9: Zu testen sei:, unbekannt. Simulieren Sie kritische Werte der Statistik für, n=20 und die Güte des s für und und für Daten aus einer (a) Standardnormalverteilung, (b) Standardisierten Doppelexponentialverteilung (c) Gleichverteilung über. (d) Wiederholen Sie die Simulation für n=50. approximative Gütefunktion Erklärungexakten Gütefunktion ErklärungFehler 1. Art ErklärungFehler 2. Art ErklärungGegenhypothese ErklärungGüte ErklärungGütefunktion (c) Projekt Neue Statistik 2003, Freie Universität Berlin, Center für Digitale Systeme Kontakt: Page 13

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

B 2.  Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!! Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Wilcoxon-Rangsummen-Test

Wilcoxon-Rangsummen-Test Wilcoxon-Rangsummen-Test Theorie: Wilcoxon-Rangsummen-Test Der Wilcoxon-Rangsummen-Test prüft, ob sich die Verteilungen der Grundgesamtheiten zweier Stichproben bezüglich ihrer Lage unterscheiden. Ein

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Kaplan-Meier-Schätzer

Kaplan-Meier-Schätzer Kaplan-Meier-Schätzer Ausgangssituation Zwei naive Ansätze zur Schätzung der Survivalfunktion Unverzerrte Schätzung der Survivalfunktion Der Kaplan-Meier-Schätzer Standardfehler und Konfidenzintervall

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 6

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Klausur in Statistik VWA Essen

Klausur in Statistik VWA Essen Prof. Dr. Peter von der Lippe Klausur in Statistik VWA Essen neue Regelung (verkürzter Stoff) Bitte schreiben Sie hier Ihren Namen auf das Deckblatt. Bitte neben dieser Aufgabenstellung keine weitere Blätter

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl FAKTORIELLE VERSUCHSPLÄNE Andreas Handl 1 Inhaltsverzeichnis 1 Versuchsplanung 4 2 Einfaktorielle Varianzanalyse 6 2.1 DieAnnahmen... 6 2.2 Die ANOVA-Tabelle und der F -Test... 6 2.3 Versuche mit zwei

Mehr

Die Optimalität von Randomisationstests

Die Optimalität von Randomisationstests Die Optimalität von Randomisationstests Diplomarbeit Elena Regourd Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Düsseldorf im Dezember 2001 Betreuung: Prof. Dr. A. Janssen Inhaltsverzeichnis

Mehr

Kapitel 13. Grundbegriffe statistischer Tests

Kapitel 13. Grundbegriffe statistischer Tests Kapitel 13 Grundbegriffe statistischer Tests Oft hat man eine Vermutung über die Verteilung einer Zufallsvariablen X. Diese Vermutung formuliert man als Hypothese H 0.Sokönnte man daran interessiert sein

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHISCHE UIVERSITÄT MÜCHE Zentrum Mathematik PRF. R.R. JÜRGE RICHTER-GEBERT, VAESSA KRUMMECK, MICHAEL PRÄHFER Höhere Mathematik für Informatiker I (Wintersemester 003/004) Aufgabenblatt 1 (4. ktober 003)

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Modellbildungssysteme: Pädagogische und didaktische Ziele

Modellbildungssysteme: Pädagogische und didaktische Ziele Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Statistische Untersuchungen zu endlichen Funktionsgraphen

Statistische Untersuchungen zu endlichen Funktionsgraphen C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz"

4.4 AnonymeMärkteunddasGleichgewichtdervollständigen Konkurrenz 4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz" Wir haben bisher nachvollziehen können, wie zwei Personen für sich den Anreiz zum TauschentdeckenundwiemitwachsenderBevölkerungdieMengederAllokationensinkt,

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Der Provider möchte möglichst vermeiden, dass die Werbekampagne auf Grund des Testergebnisses irrtümlich unterlassen wird.

Der Provider möchte möglichst vermeiden, dass die Werbekampagne auf Grund des Testergebnisses irrtümlich unterlassen wird. Hypothesentest ================================================================== 1. Ein Internetprovider möchte im Fichtelgebirge eine Werbekampagne durchführen, da er vermutet, dass dort höchstens 40%

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Korrigenda Handbuch der Bewertung

Korrigenda Handbuch der Bewertung Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:

Mehr

Arbeitsblätter zum Fach. Sicherheitstechnik. Abschnitt: Zuverlässigkeit technischer Systeme

Arbeitsblätter zum Fach. Sicherheitstechnik. Abschnitt: Zuverlässigkeit technischer Systeme TU DRESDEN Institut für Verfahrenstechnik & Umwelttechnik Professur für Verfahrensautomatisierung Prof. Dr.-Ing. habil. Klöden Arbeitsblätter zum Fach Sicherheitstechnik Abschnitt: Zuverlässigkeit technischer

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Schleswig-Holstein 2011. Kernfach Mathematik

Schleswig-Holstein 2011. Kernfach Mathematik Aufgabe 6: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. Eine repräsentative

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

Weiterbildungskurs Stochastik

Weiterbildungskurs Stochastik Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen

Mehr

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter Leseprobe Wilhelm Kleppmann Versuchsplanung Produkte und Prozesse optimieren ISBN: -3-44-4033-5 Weitere Informationen oder Bestellungen unter http://www.hanser.de/-3-44-4033-5 sowie im Buchhandel. Carl

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

24. Algorithmus der Woche Bin Packing Wie bekomme ich die Klamotten in die Kisten?

24. Algorithmus der Woche Bin Packing Wie bekomme ich die Klamotten in die Kisten? 24. Algorithmus der Woche Wie bekomme ich die Klamotten in die Kisten? Autor Prof. Dr. Friedhelm Meyer auf der Heide, Universität Paderborn Joachim Gehweiler, Universität Paderborn Ich habe diesen Sommer

Mehr

Statistik I für Betriebswirte Vorlesung 11

Statistik I für Betriebswirte Vorlesung 11 Statistik I für Betriebswirte Vorlesung 11 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 22. Juni 2012 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Ein- und Zweistichprobentests

Ein- und Zweistichprobentests (c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen

Mehr

Die Binomialverteilung

Die Binomialverteilung Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

T-Test für den Zweistichprobenfall

T-Test für den Zweistichprobenfall T-Test für den Zweistichprobenfall t-test (unbekannte, gleiche Varianzen) Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit unbekannten, aber gleichen Varianzen durch Vergleich der

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr