Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Größe: px
Ab Seite anzeigen:

Download "Big Data Hype und Wirklichkeit Bringtmehrauchmehr?"

Transkript

1 Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights

2 Überschrift 2 Copyright 2011, Oracle and/or its affiliates. All rights

3 Big Data als Gigantisches Sparbuch Frischzellenkur 3 Copyright 2011, Oracle and/or its affiliates. All rights

4 Big Data? Begriff ist (nicht) ganz neu Begriff gibt es schon seit einigen Jahren Bisher nur geringe Relevanz bei der Masse der Kunden Data Warehouse/BI Kunden verfolgen die Tendenzen sehr genau Kaum einer der Kunden mit signifikantem Einsatz aber: In den letzten 12 Monaten hat sich dies verändert 4 Copyright 2011, Oracle and/or its affiliates. All rights

5 Was ist Big Data? Bei Big Data sprechen wir eine Klasse von Daten an, die in der Vergangenheit NICHT oder nur sehr selten Ziel ausgiebiger Analysen und Auswertungen war. 5 Copyright 2011, Oracle and/or its affiliates. All rights

6 Was ist Big Data? Bei Big Data sprechen wir eine Klasse von Daten an, die in der Vergangenheit NICHT oder nur sehr selten Ziel ausgiebiger Analysen und Auswertungen war. z.b. Sensor Daten Maschinengenerierte Daten Daten aus dem Web Daten mit sehr hohem Detaillierungsgrad 6 Copyright 2011, Oracle and/or its affiliates. All rights

7 OLTP, DWH/BI und Big Data Unstrukturiert Lockeres Schema Striktes Schema OLTP DWH/BI Komplexität Fokus der IT Hohe Informations-Dichte Großer kommerzieller Markt Gutes KnowHow am Markt 7 Copyright 2011, Oracle and/or its affiliates. All rights

8 OLTP, DWH/BI und Big Data Unstrukturiert Lockeres Schema Striktes Schema OLTP DWH/BI Komplexität Fokus der IT Hohe Informations-Dichte Großer kommerzieller Markt Gutes KnowHow am Markt 8 Copyright 2011, Oracle and/or its affiliates. All rights

9 OLTP, DWH/BI und Big Data Unstrukturiert Lockeres Schema Big Data Neues Datenmaterial Neues Informationspotenzial Geringe Informationsdichte Noch kaum im Fokus Striktes Schema OLTP DWH/BI Komplexität Fokus der IT Hohe Informations-Dichte Großer kommerzieller Markt Gutes KnowHow am Markt 9 Copyright 2011, Oracle and/or its affiliates. All rights

10 OLTP, DWH/BI, Big Data und die 3. Dimension Unstrukturiert Lockeres Schema Big Data Neues Datenmaterial Neues Informationspotenzial Geringe Informationsdichte Noch kaum im Fokus Striktes Schema OLTP Real-time OLTP Real-time DWH/BI DWH/BI Komplexität Fokus der IT Hohe Informations-Dichte Großer kommerzieller Markt Gutes KnowHow am Markt In-Memory DBs 10 Copyright 2011, Oracle and/or its affiliates. All rights

11 Was ist Big Data? Bei Big Data sprechen wir eine Klasse von Daten an, die in der Vergangenheit NICHT oder nur sehr selten Ziel ausgiebiger Analysen und Auswertungen war. 1. Elektronische Daten, die in der Regel unstrukturiert oder wenig strukturiert sind und gleichzeitig meist eine sehr geringe Informationsdichte aufweisen. Die Menge der Daten ist dabei oft so groß, dass sich eine wirtschaftliche Begründung, diese Daten in relationalen DBs zu speichern, kaum geben lässt. 2. Entwicklungs-Framework, um Programme zu entwicklen, die diese Daten analysieren, auswerten, destillieren. 12 Copyright 2011, Oracle and/or its affiliates. All rights

12 Was ist Big Data? Bei Big Data sprechen wir eine Klasse von Daten an, die in der Vergangenheit NICHT oder nur sehr selten Ziel ausgiebiger Analysen und Auswertungen war. 1. Elektronische Daten, die in der Regel unstrukturiert oder wenig strukturiert sind und gleichzeitig meist eine sehr geringe Informationsdichte aufweisen. Die Menge der Daten ist dabei oft so groß, dass sich eine wirtschaftliche Begründung, diese Daten in relationalen DBs zu speichern, kaum geben lässt. Eigene Speicherungsplattform ausserhalb eines RDBMS 2. Entwicklungs-Framework, um Programme zu entwicklen, die diese Daten analysieren, auswerten, destillieren. Eigene Entwicklungsplattform 13 Copyright 2011, Oracle and/or its affiliates. All rights

13 Wie lässt sich diese neue Datenklasse bearbeiten? 14 Copyright 2011, Oracle and/or its affiliates. All rights

14 Grundidee: Parallelisierung 1. Nutzung vieler HW-Systeme (Rechner & Storage) 2. Nutzung günstiger HW 3. Bereitstellung eines verteilten Filessystems 4. Entwicklungsframework für parallele Programme Batch 5. Bereitstellung neuer DBMSn für schemalose Systeme OLTP NoSQL-Datenbanken 16 Copyright 2011, Oracle and/or its affiliates. All rights

15 Hadoop (1) Doug Cutting, gilt als Erfinder von Hadoop Ursprünglich ein Web Search Projekt (Apache Nutch Project 2002) Beeinflusst durch Entwicklungen bei Google und Yahoo Besteht im wesentlichen aus zwei Teilen: 1. HDFS (Hadoop Distributed File System) 2. MapReduce (Entwicklungsframework) Hadoop Cluster == (mehrere Maschinen inkl. Storage mit HDFS& MapReduce) 17 Copyright 2011, Oracle and/or its affiliates. All rights

16 Big Data - Die Suche nach den Trüffeln! Der Programmierer MapReduce (der Sucher, Das Programm) Datenquelle 18 Copyright 2011, Oracle and/or its affiliates. All rights

17 Hadoop (2) Laden und Suchen (Prinzipien) Verteile alle Daten auf verfügbare Rechner/Plattenspeicher Zur Ladezeit werden Dateien in Blöcke von 64MB/128MB aufgeteilt Jeder Block wird repliziert (Original, Kopie auf gleichem System, Kopie auf zweitem Rechner) Individuelle Rechnerknoten arbeiten mit lokalen Daten Entwickle für eine bestimmte Anfrage ein MapReduce Programm Stelle die Ergebnisse dar oder Nutze die Ergebnisse in einem Data Warehouse -> BI 19 Copyright 2011, Oracle and/or its affiliates. All rights

18 NoSQL: Was ist das? Not-only-SQL (2009) Sammelbegriff für nichtrelationale Datenbanken, die massiv parallelisierbar sind weitgehend ohne Datenmodell arbeiten die Datenkonsistenz nicht zwingend durchsetzen sehr entwicklerspezifisch sind Derzeit noch keine Standardisierung vorhanden Keine Abfragesprache (eben "NoSQL") Massive Produktvielfalt (über 122 auf nosql-database.org) Produkte nur schwer vergleichbar 20 Copyright 2011, Oracle and/or its affiliates. All rights

19 Hadoop & NoSQL für Big Data 1. Eigenständige/Isolierte Lösung 2. Integration in bestehende Auswertesysteme (DWH / BI) 21 Copyright 2011, Oracle and/or its affiliates. All rights

20 Hadoop & NoSQL für Big Data 1. Eigenständige/Isolierte Lösung 2. Integration in bestehende Auswertesysteme (DWH / BI) 22 Copyright 2011, Oracle and/or its affiliates. All rights

21 Data Warehouse und BI ETL Oracle Data Warehouse Oracle BI Oracle 11g EE SQL-Analytics Data Mining OLAP Compression Partitioning Parallel Processing Adv.Security Database Vault Oracle BI EE / Foundation Suite BI Publisher Essbase Real Time Decision Endeca Information Discovery Scorecard & Strategy Management 23 Copyright 2011, Oracle and/or its affiliates. All rights

22 Data Warehouse und BI + BIG Data Oracle Big Data ETL Oracle Data Warehouse Oracle BI Oracle NoSQL Hadoop Oracle Loader for Hadoop Oracle R Oracle 11g EE SQL-Analytics Data Mining OLAP Compression Partitioning Parallel Processing Adv.Security Database Vault Oracle BI EE / Foundation Suite BI Publisher Essbase Real Time Decision Endeca Information Discovery Scorecard & Strategy Management 24 Copyright 2011, Oracle and/or its affiliates. All rights

23 Oracle und BIG Data OOW 2011 Ankündigung von Oracle Software für BIG Data Oracle NoSQL DB Enterprise Edition (Community Edition) Oracle Loader for Hadoop Oracle Direct Connector for HDFS Oracle R Enterprise Oracle Hardware für Big Data (Big Data Appliance) inkl. SW Oracle Linux Oracle Java VM Cloudera CDH3 (Cloudera Distribution incl. Hadoop) Cloudera Manager Open-Source R distribution NoSQL Database Community Edition 18 Sun X4270 M2 Server pro Rack 864 GB memory 216 cores 648 TB Stora ge-rohkapazität 40 Gb/s InfiniBandFabric Inter-rack Connectivity Inter-node Connectivity 10 Gb/s Ethernet Connectivity Da ta center connectivity 25 Copyright 2011, Oracle and/or its affiliates. All rights

24 1. Daten Laden von Hadoop nach Oracle DB Big Data Oracle Data Warehouse a. Online - MapReduce Job starten Ergebnisse via JDBC oder OCI in Oracle Tabellen übertragen Oracle Loader for Hadoop b. Offline - MapReduce Job starten - Ergebnisse in Datei speichern - Via Data Pump oder SQL*Loader in Oracle Tabellen übertragen 26 Copyright 2011, Oracle and/or its affiliates. All rights

25 2. Zugriff auf Hadoop Daten von Oracle DB via SQL Big Data Oracle Data Warehouse Select * from tab_in_hdfs External Table Funktion Oracle Loader for Hadoop Simuliert Tabelle ausserhalb von Oracle 27 Copyright 2011, Oracle and/or its affiliates. All rights

26 Data Warehouse und BI + BIG Data Oracle Big Data Oracle Data Warehouse Oracle BI Beliebige Oracle SW Plattform Beliebige Oracle SW Plattform Beliebige Oracle SW Plattform 29 Copyright 2011, Oracle and/or its affiliates. All rights

27 Data Warehouse und BI + BIG Data (Appliance) Oracle Big Data Appliance Oracle Exadata Oracle Exalytics InfiniBand InfiniBand Stream High speed connectivity Infiniband Oracle Loader for Hadoop Oracle Direct Connector for HDFS Acquire Organize Analyze & Visualize 30 Copyright 2011, Oracle and/or its affiliates. All rights

28 Hadoop Bestellungen: Online PDF : 31 Copyright 2011, Oracle and/or its affiliates. All rights

29 VielenDank fürihreaufmerksamheit! Ihr Günther Stürner 32 Copyright 2011, Oracle and/or its affiliates. All rights

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden Neue Beziehungen finden...

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Step 0: Bestehende Analyse-Plattform

Step 0: Bestehende Analyse-Plattform Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Jürgen Vester Oracle Deutschland B.V. & Co KG Um was geht es bei Big Data? Bei Big Data sprechen wir eine Klasse von Daten an, die in der

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Integrierte Systeme für SIs und VARs Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Engineered Systems Oracle s Strategie Engineered Systems Big Data einmal

Mehr

Neue Technologien für die Polizei 17. Europäischer Polizeikongress 2014, Berlin, 19. Februar 2014

Neue Technologien für die Polizei 17. Europäischer Polizeikongress 2014, Berlin, 19. Februar 2014 Neue Technologien für die Polizei 17. Europäischer Polizeikongress 2014, Berlin, 19. Februar 2014 Oliver Röniger Account Manager Safe Harbour Statement The following is intended to outline our general

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Integrierte Systeme für ISVs Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Engineered Systems Lösungsansatz aus der Praxis Engineered Systems Oracle s Strategie

Mehr

Oracle EngineeredSystems

Oracle EngineeredSystems Oracle EngineeredSystems Überblick was es alles gibt Themenübersicht Überblick über die Engineered Systems von Oracle Was gibt es und was ist der Einsatzzweck? Wann machen diese Systeme Sinn? Limitationen

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Red Stack Einfach gut für jedes Projekt und jeden Kunden & Partner Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Oracle Red Stack - Idee und Vorteile Software

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Oracle Fusion Middleware Ordnung im Ganzen Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Begriffe & Ordnung Fusion Middleware Wann, was, warum Beispiel für

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

Seminare im Kontext des Data Warehouse für die Oracle Data Warehouse Kunden-Community. Organisatorisches. Gesamtübersicht

Seminare im Kontext des Data Warehouse für die Oracle Data Warehouse Kunden-Community. Organisatorisches. Gesamtübersicht Seminare im Kontext des Data Warehouse für die Oracle Data Warehouse Kunden-Community Bei den Seminaren der Oracle Data Warehouse Gruppe steht die Wissenvermittlung im Vordergrund. Die Themen werden anhand

Mehr

Übersicht Streams nach Liste Produkte/Themen

Übersicht Streams nach Liste Produkte/Themen Stream Datenbank: DB Oracle 9i bis 12c In-Memory Datenbanken (TimesTen, Berkeley DB, ORACLE In_Memory Database Cache) Enterprise Manager mit Schwerpunkt Datenbank RAC DataGuard Datenbankoptionen klassische

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar!

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar! Clouds Wolkig bis Heiter Erwartungen der Nutzer Er ist verwöhnt! Verfügbarkeit Viele Anwendungen Intuitive Interfaces Hohe Leistung Er ist nicht dankbar! Mehr! Mehr! Mehr! Moore 1 Erwartungen der Entwickler

Mehr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI peter.dikant@mgm-tp.com Java Entwickler seit

Mehr

InspireIT. SAP HANA Sesam öffne dich. Stefan Kühnlein Solution Architekt OPITZ CONSULTING Deutschland GmbH. Frankfurt am Main, 11.05.

InspireIT. SAP HANA Sesam öffne dich. Stefan Kühnlein Solution Architekt OPITZ CONSULTING Deutschland GmbH. Frankfurt am Main, 11.05. InspireIT SAP HANA Sesam öffne dich Stefan Kühnlein Solution Architekt OPITZ CONSULTING Deutschland GmbH Frankfurt am Main, 11.05.2015 OPITZ CONSULTING GmbH 2015 Seite 1 Checker Fragen Ist SAP HANA eine

Mehr

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache Lucene Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org 1 Apache Apache Software Foundation Software free of charge Apache Software

Mehr

Big Data in Marketing und IT

Big Data in Marketing und IT Big Data in Marketing und IT Chancen erkennen, Strategien entwickeln und Projekte erfolgreich umsetzen T-Systems Hacker Day 30. September 2015 Prof. Dr. Alexander Rossmann Reutlingen University Big Data

Mehr

Grid Computing in. komplexen Systemen. mit Blick auf RFID. Günther Stürner Vice President Business Unit Database & STCCs ORACLE Deutschland GmbH

Grid Computing in. komplexen Systemen. mit Blick auf RFID. Günther Stürner Vice President Business Unit Database & STCCs ORACLE Deutschland GmbH Grid Computing in komplexen Systemen mit Blick auf RFID Günther Stürner Vice President Business Unit Database & STCCs ORCLE Deutschland GmbH 2 Datenbanken sind die Basis für jede denkbare IT Lösung Infrastruktur

Mehr

Was ist Windows Azure? (Stand Juni 2012)

Was ist Windows Azure? (Stand Juni 2012) Was ist Windows Azure? (Stand Juni 2012) Windows Azure Microsofts Cloud Plattform zu Erstellung, Betrieb und Skalierung eigener Cloud-basierter Anwendungen Cloud Services Laufzeitumgebung, Speicher, Datenbank,

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Herbert Rossgoderer Geschäftsführer Matthias Fuchs DWH Architekt ISE Information Systems Engineering GmbH ISE

Mehr

PRODATIS CONSULTING AG. Folie 1

PRODATIS CONSULTING AG. Folie 1 Folie 1 Führend im Gartner Magic Quadranten für verteilte, interagierende SOA Projekte Oracle ist weltweit auf Rang 1 auf dem Markt der Enterprise Service Bus Suiten (ESB) für SOA Software 2010 26,3 %

Mehr

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015 Symbiose hybrider Architekturen im Zeitalter digitaler Transformation Hannover, 18.03.2015 Business Application Research Center (BARC) B (Analystengruppe Europas führendes IT-Analysten- und -Beratungshaus

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Living Lab Big Data Konzeption einer Experimentierplattform

Living Lab Big Data Konzeption einer Experimentierplattform Living Lab Big Data Konzeption einer Experimentierplattform Dr. Michael May Berlin, 10.12.2012 Fraunhofer-Institut für Intelligente Analyseund Informationssysteme IAIS www.iais.fraunhofer.de Agenda n Ziele

Mehr

Präsentation der Bachelorarbeit

Präsentation der Bachelorarbeit Präsentation der Bachelorarbeit Einrichtung einer BI-Referenzumgebung mit Oracle 11gR1 Jörg Bellan Hochschule Ulm Fakultät Informatik Institut für Betriebliche Informationssysteme 15. Oktober 2009 Agenda

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern

Mehr

1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. ileana.somesan@oracle.com

1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. ileana.somesan@oracle.com 1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle Datenbanken in der Oracle Public Cloud nutzen Ileana Someşan Systemberaterin ORACLE Deutschland The following is intended to

Mehr

Big Data und Oracle bringen die Logistik in Bewegung

Big Data und Oracle bringen die Logistik in Bewegung OPITZ CONSULTING Deutschland GmbH Dortmund, 07.05.2014 Bild-Quelle: Web-Seite von Pasta ZARA, Big Artikel Data So und entstehen Oracle bringen unsere die Nudeln Logistik in Bewegung http://de.pastazara.com/so-entstehen-unsere-nudeln

Mehr

Oracle 10g revolutioniert Business Intelligence & Warehouse

Oracle 10g revolutioniert Business Intelligence & Warehouse 10g revolutioniert Business Intelligence & Warehouse Marcus Bender Strategisch Technische Unterstützung (STU) Hamburg 1-1 BI&W Market Trends DWH werden zu VLDW Weniger Systeme, mehr Daten DWH werden konsolidiert

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

Business Intelligence Center of Excellence

Business Intelligence Center of Excellence Center of Excellence Eine Businessinitiative von Systematika und Kybeidos Werner Bundschuh Was ist das? In der Praxis versteht man in den meisten Fällen unter die Automatisierung des Berichtswesens (Reporting).

Mehr

HANA Solution Manager als Einstieg

HANA Solution Manager als Einstieg Markus Stockhausen HANA Solution Manager als Einstieg Collogia Solution Day Hamburg 28.04.2016 Agenda HANA Solution Manager als Einstieg 1 Überblick 2 Techniken 3 Sizing Collogia Unternehmensberatung AG,

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

Operationalisierung des. Data Warehouse und Real Time Decision sind längst Alltag. Architekturbeispiele und Einsatzszenarien.

Operationalisierung des. Data Warehouse und Real Time Decision sind längst Alltag. Architekturbeispiele und Einsatzszenarien. <Insert Picture Here> Operationalisierung des Data Warehouse und Real Time Decision sind längst Alltag Architekturbeispiele und Einsatzszenarien Frank Püchl, PAYBACK GmbH Bjoern Staender,

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Ist nur Appliance ODA schon Rechenzentrum in der Kiste?

Ist nur Appliance ODA schon Rechenzentrum in der Kiste? Best Systeme GmbH Datacenter Solutions Ist nur Appliance ODA schon Rechenzentrum in der Kiste? best Systeme GmbH BOSD 2016 Datenbank Virtualisierung Wieso virtualisieren? Ressourcen optimieren! CPU Auslastung

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

Veeam und Microsoft. Marco Horstmann System Engineer, Veeam

Veeam und Microsoft. Marco Horstmann System Engineer, Veeam Veeam und Microsoft Marco Horstmann System Engineer, Veeam Software marco.horstmann@veeam.com @marcohorstmann Windows Server 2016 Support Die vollständige und fortschrittliche Unterstützung von Veeam erschliesst

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

Hadoop Eine Erweiterung für die Oracle DB?

Hadoop Eine Erweiterung für die Oracle DB? Hadoop Eine Erweiterung für die Oracle DB? Nürnberg, 18.11.2015, Matthias Fuchs Sensitive Über mich 10+ Jahre Erfahrung mit Oracle Oracle Certified Professional Exadata Certified Oracle Engineered Systems

Mehr

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis

Mehr

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)

Mehr

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Adam Stambulski Project Manager Viessmann R&D Center Wroclaw Dr. Moritz Gomm Business Development Manager Zühlke Engineering

Mehr

Copyright 2015, Oracle and/or its affiliates. All rights reserved.

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle Database Cloud Services Eine Cloud für alle Fälle! Frank Schneede Leitender Systemberater Oracle Deutschland B. V. & Co. KG Copyright

Mehr

!"#$"%&'()*$+()',!-+.'/',

!#$%&'()*$+()',!-+.'/', Soziotechnische Informationssysteme 5. Facebook, Google+ u.ä. Inhalte Historisches Relevanz Relevante Technologien Anwendungsarchitekturen 4(5,12316,7'.'0,!.80/6,9*$:'0+$.;.,&0$'0, 3, Historisches Facebook

Mehr

Big Data Analytics: Herausforderungen und Systemansätze. Prof. Dr. Erhard Rahm. http://dbs.uni-leipzig.de

Big Data Analytics: Herausforderungen und Systemansätze. Prof. Dr. Erhard Rahm. http://dbs.uni-leipzig.de Big Data Analytics: Herausforderungen und Systemansätze Prof. Dr. Erhard Rahm http://dbs.uni-leipzig.de 2 Massives Wachstum an Daten Gartner: pro Tag werden 2.5 Exabytes an Daten generiert 90% aller Daten

Mehr

Big Data Neue Erkenntnisse aus Daten gewinnen

Big Data Neue Erkenntnisse aus Daten gewinnen Big Data Neue Erkenntnisse aus Daten gewinnen Thomas Klughardt Senior Systems Consultant 0 Software Dell Software Lösungsbereiche Transform Inform Connect Data center and cloud management Foglight APM,

Mehr

Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr.

Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr. Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr. Florian Johannsen AGENDA 1. Big Data Projekt der freenet Group Dr. Florian Johannsen

Mehr

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel Carsten Herbe metafinanz Informationssysteme GmbH In unserer Business Line Business Intelligence & Risk gibt es fünf Bereiche: Risk,

Mehr

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 Trends im Markt für Business Intelligence Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 18.03.2016 BARC 2016 2 IT Meta-Trends 2016 Digitalisierung Consumerization Agilität Sicherheit und Datenschutz

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

einfach. gut. beraten. Oracle Big Data Konnektoren: Hadoop und die Oracle DB DOAG Konferenz + Ausstellung 2016 Nürnberg Philipp Loer

einfach. gut. beraten. Oracle Big Data Konnektoren: Hadoop und die Oracle DB DOAG Konferenz + Ausstellung 2016 Nürnberg Philipp Loer einfach. gut. beraten. Oracle Big Data Konnektoren: Hadoop und die Oracle DB DOAG Konferenz + Ausstellung 2016 Nürnberg Philipp Loer info@ordix.de www.ordix.de Agenda Hadoop Hive OLH: Oracle Loader for

Mehr

Dominik Wagenknecht Accenture. Der No Frills Big Data Workshop -Teil3

Dominik Wagenknecht Accenture. Der No Frills Big Data Workshop -Teil3 Dominik Wagenknecht Accenture Der No Frills Big Data Workshop -Teil3 Der no frills BigData Workshop JAX 2012, 16.4.2012, Mainz Teil 3 Google ist ein Pionier von BigData und hat mit MapReduce und BigTable

Mehr

Datenbankkonsolidierung Multitenant oder nicht? Dierk Lenz DOAG 2014 Konferenz

Datenbankkonsolidierung Multitenant oder nicht? Dierk Lenz DOAG 2014 Konferenz Datenbankkonsolidierung Multitenant oder nicht? Dierk Lenz DOAG 2014 Konferenz Herrmann & Lenz Services GmbH Herrmann & Lenz Solutions GmbH Erfolgreich seit 1996 am Markt Firmensitz: Burscheid (bei Leverkusen)

Mehr

Public Cloud im eigenen Rechenzentrum

Public Cloud im eigenen Rechenzentrum Public Cloud im eigenen Rechenzentrum Matthias Weiss Direktor Mittelstand Technologie Oracle Deutschland B.V. & Co.KG Copyright 2016 Oracle and/or its affiliates. All rights reserved. Agenda Oracle Cloud

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

Datenaustausch Hadoop & Oracle DB. DOAG Konferenz 2013 Nürnberg, 19.-21. November 2013 Carsten Herbe metafinanz Informationssysteme GmbH

Datenaustausch Hadoop & Oracle DB. DOAG Konferenz 2013 Nürnberg, 19.-21. November 2013 Carsten Herbe metafinanz Informationssysteme GmbH DOAG Konferenz 2013 Nürnberg, 19.-21. November 2013 Carsten Herbe metafinanz Informationssysteme GmbH Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT.

Mehr

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" HANS-JOACHIM EDERT

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN? HANS-JOACHIM EDERT WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. HANS-JOACHIM EDERT EBINAR@LUNCHTIME

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

Hadoop. Simon Prewo. Simon Prewo

Hadoop. Simon Prewo. Simon Prewo Hadoop Simon Prewo Simon Prewo 1 Warum Hadoop? SQL: DB2, Oracle Hadoop? Innerhalb der letzten zwei Jahre hat sich die Datenmenge ca. verzehnfacht Die Klassiker wie DB2, Oracle usw. sind anders konzeptioniert

Mehr

DWH Szenarien. www.syntegris.de

DWH Szenarien. www.syntegris.de DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen

Mehr

Werkzeuge für Datenbank Handwerker: IBM Data Studio und IBM Optim QWT

Werkzeuge für Datenbank Handwerker: IBM Data Studio und IBM Optim QWT Werkzeuge für Datenbank Handwerker: IBM Data Studio und IBM Optim QWT Neue Technologien effizient nutzen Ehningen, 3. Juli 2014 Rodney Krick rk@aformatik.de aformatik Training & Consulting GmbH & Co. KG

Mehr

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014 Mit In-Memory Technologie zu neuen Business Innovationen Stephan Brand, VP HANA P&D, SAP AG May, 2014 SAP Medical Research Insights : Forschung und Analyse in der Onkologie SAP Sentinel : Entscheidungsunterstützung

Mehr

Copyright 2012, Oracle and/or its affiliates. All rights reserved.

Copyright 2012, Oracle and/or its affiliates. All rights reserved. 1 Safe Harbor Statement The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment

Mehr

BARC-Studie Data Warehousing und Datenintegration

BARC-Studie Data Warehousing und Datenintegration Ergebnisse der BARC-Studie Data Warehouse Plattformen Dr. Carsten Bange BARC-Studie Data Warehousing und Datenintegration Data-Warehouse -Plattformen und Datenintegrationswerkzeuge im direkten Vergleich

Mehr

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA AUFSTELLUNG OPTIMIEREN. ENTWICKELN SIE IHRE SYSTEMLANDSCHAFT WEITER UND VERKAUFEN SIE DIE CHANCEN IHREN ANWENDERN Yu Chen, Thorsten Stossmeister

Mehr

Milliarden in Sekunden: Demo zu PureData for Analytics. Marc Bastien Senior Technical Professional Big Data, IBM

Milliarden in Sekunden: Demo zu PureData for Analytics. Marc Bastien Senior Technical Professional Big Data, IBM Milliarden in Sekunden: Demo zu PureData for Analytics Marc Bastien Senior Technical Professional Big Data, IBM IBM PureData System Für die Herausforderungen von Big Data Schnell und Einfach! System for

Mehr

Und was wird aus meinem Berichtswesen? Oracle Deutschland B.V. & Co. KG

Und was wird aus meinem Berichtswesen? <Speaker> Oracle Deutschland B.V. & Co. KG Und was wird aus meinem Berichtswesen? Oracle Deutschland B.V. & Co. KG Die Zukunft von Oracle Reports Statement of Direction (März 2012) Oracle Application Development Tools: Statement of Direction

Mehr

Logical Data Warehouse SQL mit Oracle DB und Hadoop

Logical Data Warehouse SQL mit Oracle DB und Hadoop Logical Data Warehouse SQL mit Oracle DB und Hadoop Matthias Fuchs DWH Architekt ISE Information Systems Engineering GmbH Ingo Reisky Senior Consultant Opitz Consulting Deutschland GmbH ISE Information

Mehr

Big Data in der Forschung

Big Data in der Forschung Big Data in der Forschung Dominik Friedrich RWTH Aachen Rechen- und Kommunikationszentrum (RZ) Gartner Hype Cycle July 2011 Folie 2 Was ist Big Data? Was wird unter Big Data verstanden Datensätze, die

Mehr

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache. Apache Hadoop Distribute your data and your application Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache The Apache Software Foundation Community und

Mehr

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP Seminar WS 2012/13 S. Chaudhuri et al, CACM, Aug. 2011 Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP 2 Vorkonfigurierte, komplette Data Warehouse-Installation Mehrere Server,

Mehr

PROFI UND NUTANIX. Portfolioerweiterung im Software Defined Data Center

PROFI UND NUTANIX. Portfolioerweiterung im Software Defined Data Center PROFI UND NUTANIX Portfolioerweiterung im Software Defined Data Center IDC geht davon aus, dass Software-basierter Speicher letztendlich eine wichtige Rolle in jedem Data Center spielen wird entweder als

Mehr

Microsoft Azure: Ein Überblick für Entwickler. Malte Lantin Technical Evangelist, Developer Experience & Evangelism (DX) Microsoft Deutschland GmbH

Microsoft Azure: Ein Überblick für Entwickler. Malte Lantin Technical Evangelist, Developer Experience & Evangelism (DX) Microsoft Deutschland GmbH Microsoft Azure: Ein Überblick für Entwickler Malte Lantin Technical Evangelist, Developer Experience & Evangelism (DX) Microsoft Deutschland GmbH Moderne Softwareentwicklung Microsoft Azure unterstützt

Mehr

QUICK-START EVALUIERUNG

QUICK-START EVALUIERUNG Pentaho 30 für 30 Webinar QUICK-START EVALUIERUNG Ressourcen & Tipps Leo Cardinaals Sales Engineer 1 Mit Pentaho Business Analytics haben Sie eine moderne und umfassende Plattform für Datenintegration

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr