Longitudinale und transversale Relaxationszeit

Größe: px
Ab Seite anzeigen:

Download "Longitudinale und transversale Relaxationszeit"

Transkript

1 Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T 2 (Lebensdauer der Quermagnetisierung) M z (t)/m 1. Fett (26ms) CSF (24ms) weiße Substanz (78ms) graue Substanz (92ms) M xy (t)/m Fett (8ms) weiße Substanz (9ms) graue Substanz (1ms) CSF (16ms) t [msec] t [msec] 1

2 Signaldetektion Rotierender magnetischer Dipol Signalspule Freier Induktionszerfall (Free Induction Decay, FID) Induziertes Signal (ohne Dämpfung) FID Signal Induzierte Spannung t [msec] t [msec] 2

3 Transversale Relaxation Transversale Relaxationszeiten T 2 und T 2 * (Lebensdauer der Quermagnetisierung) Freier Induktionszerfall (Free Induction Decay, FID) Einfluß von Inhomogenitäten des Magnetfeldes: T 2 vs T 2 * M xy (t) = M exp(-t/t 2 ) 1. M xy (t) = M exp(-t/t 2 ).8 FID Signal M xy (t) / M.6.4 M xy (t) = M exp(-t/t 2 *) t [msec] t [msec] 3

4 2. Magnetresonanztomographie (MRT, MRI) 2.5. Pulssequenz und Bildrekonstruktion 4

5 Pulssequenz Beispiel einer Pulssequenz 5 Quelle: Hendrix, A., Magnete, Spins und Resonanzen. Siemens AG (23); Medical Solutions

6 Schichtselektion 6 Quelle: Hendrix, A., Magnete, Spins und Resonanzen. Siemens AG (23); Medical Solutions

7 Multischichtmessung TR: time of repetition 7 Quelle: Hendrix, A., Magnete, Spins und Resonanzen. Siemens AG (23); Medical Solutions

8 Schichtselektion Inverse Fouriertransformation ν = (γ/2π)b z Amplitude ν Zeit Fouriertransformation Frequenz ν / Β ν ν z z 8

9 9 Einschub: Fourier-Transformation

10 Allgemeine Bemerkungen zu Transformationen Ziel einer Transformation Daten in eine andere Repräsentation zu bringen, die Vorteile für anschließende Operationen bringt (z.b. Filterung der Daten) Darstellung innerer Zusammenhänge oder verbesserte Robustheit gegenüber Störungen Beispiele für Signal-Repräsentationen Repräsentation in der Zeit-Domäne ( time-amplitude representation ) Repräsentation in der Frequenz-Domäne ( spectrum ): Fourier-Transformation Repräsentation in der Zeit-Frequenz-Domäne ( time-frequency representation ): Short-time Fourier-Transformation, Wavelet-Transformation, Adaptive Approximation Grundprinzip Zerlegung eines Signals in eine Summe von Basisfunktionen mit dazugehörenden Koeffizienten Basisfunktionen der Fourier-Transformation: Sinus und Kosinus 1

11 Sampling rate / Sampling frequency / Abtastrate 1,, 5, -,5-1, 1/f Zeit [s] Datenerfassung: analoges Zeitsignal Digitalisierung: Abtastfrequenz / Sampling rate (Sampling frequency) f: Rate, mit der ein im Zeitverlauf kontinuierliches Signal (analoges Signal) in ein im Zeitverlauf diskretes Signal (digitales Signal) umgewandelt wird (Analog-Digital Wandlung des Signals). Länge des Zeitintervals hängt von der Anwendung ab, wird aber durch das Nyquist-Shannon-Theorem begrenzt. 11

12 Nyquist-Frequenz / Aliasing Bei der Konvertierung eines analogen in ein digitales Signal (beim Abtasten eines Signals in diskreten Intervallen) muss die Abtastfrequenz größer sein als das Zweifache der höchsten Frequenz des Input-Signals, um das Original aus der abgetasteten Version wieder korrekt rekonstruieren zu können. Die maximal analysierbare Frequenz wird durch die Hälfte der Nyquist- Frequenz bestimmt: f c = 1 / (2f) Aliasing: Effekt, der verursacht, dass verschiedene kontinuierliche Signale ununterscheidbar werden, wenn sie abgetastet werden. 12

13 Nyquist-Frequenz / Aliasing Signalfrequenz: Sampling Rate: ν = 1 Hz f = 22 Hz Signalfrequenz: Sampling Rate: ν = 1 Hz f = 14 Hz 1s 1s 13

14 Spektrum Elektromagnetisches Spektrum des sichtbaren Lichts Was sagt es uns? Das sichtbare Licht setzt sich aus vielen Farben zusammen. Ihre Superposition (Summe) resultiert in weißem Licht. Wie können wir dieses Wissen in der Signalverarbeitung verwenden? 14

15 Spektrum Üblicherweise sehen wir dem zusammengesetzten Signal nicht dessen einzelne Komponenten an. 15

16 Beispiel: Rechteckfunktion Eine Rechteck-Funktion kann sehr gut durch Sinusfunktionen beschrieben werden. Je mehr harmonische Funktionen wir verwenden, umso besser kann ein Signal, das mit einer Sinusform auf den ersten Blick nicht viel gemeinsam hat, angenähert werden. Sind unendliche Sinus- und Kosinusfunktionen ausreichend, um jedes Signal darzustellen? (Harmonische Funktion in der Akustik/Technik: ganzzahliges Vielfaches einer Grundfrequenz) Figure by courtesy of Piotr J. Durka

17 Spektrum Aber: enthalten echte Signale wirklich nur Sinus- oder Kosinus- Komponenten? Natürlich nicht! Aber manchmal kann man sie als Summe von Sinus- und Kosinus-Anteilen beschreiben. Warum Kosinus? Um die Phase zu berücksichtigen. 17

18 18 Allgemeine Bemerkung zur Fourier-Transformation

19 Fourier-Reihe + Fourier-Transformation Fourier-Reihen: Methode, eine periodische Funktion (ein Signal) als Summe aus Sinus- und Kosinus-Komponenten darzustellen (harmonische Analyse) Fourier-Reihen liefern die Basis für die Darstellung eines Signals in der Frequenzdomäne. Fourier-Transformation kann als Grenzfall der komplexen Fourier-Serie betrachtet werden, indem man die Periode T gegen unendlich gehen lässt Mathematische Bedingungen: Im folgenden betrachten wir ein zeitkontinuierliches, periodisches, reelles Signal x(t), welches den Dirichlet-Bedingungen genügt, d.h. es ist innerhalb einer Periode T absolut integrierbar, hat endlich viele Maxima und Minima, und besitzt höchstens eine endliche Anzahl von Sprungstellen, deren Sprunghöhen alle endlich sind. 19

20 Fourier-Reihen Trigonometrische Form x( t) = a 2 + k k ) k = 1 [ a cos( kω t) + b sin( kω t ] 2π ω = T Grundkreisfrequenz, T Periodendauer a = 2 T t + T t x( t) dt a k, b k Fourier-Koeffizienten a k = 2 T t + T t x( t)cos( kω t) dt k = 1,2,3, 2 t = + T bk x( t)sin( kωt) dt k = 1,2,3, T t 2

21 Fourier-Reihen Harmonische Form x( t) = C + C k cos( kωt + θ k ) k = 1 C = k a 2 2 k C = a + b 2 k k = 1,2,3, tanθ k = b a k k k = 1,2,3, a k, b k sind die Koeffizienten der trigonometrischen Darstellung. 21

22 Fourier-Reihen Komplexe Form k= ikω t x( t) = c k e mit den komplexen Fourier-Koeffizienten c k = 1 T t + T t x( t) e ikω t dt k =, -2,-1,,1,2,3, und folgendem Zusammenhang mit den Koeffizienten der trigonometrischen Form a 1 c = ck = ( ak ibk ) 2 2 k = 1,2,3, 22

23 Fourier-Transformation FT Die Gleichungen und x( t) i 2πft = X ( f ) e df beschreiben ein Fourier-Paar x( t) 1 i = ω ω t X ( ) e dω 2π x( t) X ( f ) mit der nichtperiodischen Zeitfunktion x(t) und ihrer Fourier-Transformierten ( Spektrum ) X(f). Die Rücktransformation wird inverse Fourier-Transformation genannt. Besonders zu beachten ist die Symmetrie zwischen der Fourier-Transformation und der inversen Fourier-Transformation, was von großer Bedeutung für deren Anwendungen ist. 23

24 Fourier-Transformation FT Was sagt diese Gleichung aus? Das Signal wird mit einer komplexen Exponentialfunktion (d.h. Sinus- und Kosinusfunktion) einer bestimmten Frequenz f multipliziert, und dann über alle Zeiten t integriert. Liefert diese Integration einen großen Wert, dann hat das Signal x(t) eine (dominante) spektrale Komponente der Frequenz f, d.h. ein wesentlicher Teil des Signals besteht aus Frequenz f. Liefert diese Integration einen kleinen Wert, dann bedeutet das, dass das Signal x(t) keine Hauptkomponente bei dieser Frequenz besitzt. Ist der Integralwert Null, dann ist diese Frequenz nicht im Signal enthalten. Das Integral wird für alle Frequenzen f berechnet. 24

25 Fourier-Transformation FT Was sagt diese Gleichung aus? Das Integral liefert Informationen über den Zeitraum ± ; d.h. unabhängig davon, wann die Komponente mit der Frequenz f auftritt, wird sie das Ergebnis beeinflussen. Eine Fourier-Transformation gibt Auskunft darüber, ob ein bestimmte Frequenz- Komponente existiert oder nicht. Diese Information ist unabhängig davon, in welchem Zeitintervall dies geschieht. 25

26 Frequenz Spektrale Darstellung Fourier Amplitude 26

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung 2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung Übergang zwischen den beiden Energieniveaus ω l = γb 0 γ/2π Larmor-Frequenz ν L 500 400 300 200 100 ν L = (γ/2π)b 0 [MHz/T] 1 H 42.57

Mehr

Lokale Frequenzanalyse

Lokale Frequenzanalyse Lokale Frequenzanalyse Fourieranalyse bzw. Powerspektrum liefern globale Maße für einen Datensatz (mittleres Verhalten über die gesamte Länge des Datensatzes) Wiederkehrdiagramme zeigten, dass Periodizitäten

Mehr

Argumente für die diskrete Realisierung der Fourierintegrale

Argumente für die diskrete Realisierung der Fourierintegrale Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich

Mehr

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Fourier - Transformation

Fourier - Transformation Fourier - Transformation Kurzversion 2. Sem. Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim, Tiefenbronner Str. 65 75175 Pforzheim Überblick / Anwendungen / Motivation: Die Fourier-Transformation

Mehr

Die Fourier-Transformation

Die Fourier-Transformation 1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden

Mehr

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB MATLAB Kurs 2010 Teil 2 Eine Einführung in die via MATLAB 26.11.2010 & 03.12.2010 nhaltsverzeichnis 1 2 3 Ziele Kurze Einführung in die -Analyse Ziele Kurze Einführung in die -Analyse MATLAB Routinen für

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Fourier-Zerlegung, Fourier-Synthese

Fourier-Zerlegung, Fourier-Synthese Fourier-Zerlegung, Fourier-Synthese Periodische Funktionen wiederholen sich nach einer Zeit T, der Periode. Eine periodische Funktion f(t) mit der Periode T genügt der Beziehung: f( t+ n T) = f( t) für

Mehr

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT Physikalische Grundlagen der Magnetresonanz-Tomographie MRT http://www.praxis-nuramed.de/images/mrt_3_tesla.png Seminarvortrag am 30.05.2016 von Nanette Range MRT Bilder Nanette Range 30.05.2016 2 Motivation

Mehr

3 Diskrete Fourier-Transformation

3 Diskrete Fourier-Transformation 33 3 Diskrete Fourier-Transformation Inhalt 3 Diskrete Fourier-Transformation... 33 3. Grundlagen... 34 3.. Diskrete Fourier-Transformation... 34 3..2 Eigenschaften der diskreten Fourier-Transformation...

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer:

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer: WS 0 Fourier-Reihe: Jede einigrermaßen gutartige 1 periodishe reelle Zeitfuntion x(t) ann mittels einer Fourier-Reihe dargestellt werden als eine Summe omplexer Amplituden (Fourier-Synthese): xt () e n

Mehr

Hauptkomponentenanalyse. Principal Component Analysis (PCA)

Hauptkomponentenanalyse. Principal Component Analysis (PCA) Hauptkomponentenanalyse Principal Component Analysis (PCA) Principal Component Analysis (PCA) Welche Ziele verfolgt man bei der Verwendung einer PCA? Repräsentation multidimensionaler Daten mit einer geringeren

Mehr

V 322 Überlagerung und Modulation /AD-Wandler

V 322 Überlagerung und Modulation /AD-Wandler V 322 Überlagerung und Modulation /AD-Wandler 1. Aufgaben 1.1 Digitalisieren Sie ein analoges Signal und experimentieren mit der Abtastrate und Sampleanzahl. 1.2 Überlagern Sie 2 Frequenzen und beobachten

Mehr

Multipuls-NMR in der Organischen Chemie. Puls und FID

Multipuls-NMR in der Organischen Chemie. Puls und FID Puls und FID Obwohl der Puls eine bestimmte, am NMR-Spektrometer vorab eingestellte Sendefrequenz ν 1 hat, ist er in der Lage, über einen relativ weiten Frequenzbereich von mehreren khz, den gesamten Resonanzbereich

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 5 8 Aus ontinuierlichem Signal werden in onstanten Zeitintervallen Daten entnommen ontinuierliches Signal x(t) Einheitsimpulsfuntion Gewichtete

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Biosignalverarbeitung (Schuster)

Biosignalverarbeitung (Schuster) Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,

Mehr

Spektralanalyse

Spektralanalyse 4. Spektralanalyse Die Spektralanalyse ermittelt, welche Beiträge die einzelnen Frequenzen zu einem Signal liefern. Je nach Art des Zeitsignals wird der Frequenzgehalt durch die Fourier-Transformation,

Mehr

NANO III - MSR. Signalabtastung Analog Digital Converter (ADC) Digital Analog Converter (DAC) Themen: DAC

NANO III - MSR. Signalabtastung Analog Digital Converter (ADC) Digital Analog Converter (DAC) Themen: DAC NANO III - MSR Themen: Signalabtastung Analog Digital Converter (ADC) A ADC D Digital Analog Converter (DAC) D DAC A Nano III MSR Physics Basel, Michael Steinacher 1 Signalabtastung Praktisch alle heutigen

Mehr

7 Fourier-Transformation

7 Fourier-Transformation 7 Fourier-Transformation Ausgangspunkt: Die bereits bekannte Fourier-Reihenentwicklung einer T-periodischen, stückweise stetig differenzierbaren Funktion f T : R R, f T (t) = k= γ k e ikωt mit Frequenz

Mehr

Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Modul Grundpraktikum Physik Teil I. Fourieranalyse

Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Modul Grundpraktikum Physik Teil I. Fourieranalyse 04 Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Modul Grundpraktikum Physik eil I Fourieranalyse Stichworte: FOURIERreihe (trigonometrische Reihe), FOURIERkoeffizienten, FOURIERanalyse

Mehr

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu 1 Grundlagen Abtasttheorem Fenster Zeit - Frequenzauflösung Pegelgenauigkeit Overlap Mittelung 2 2 volle Schwingungen 32 Abtastwerte Amplitude = 1 Pascal Signallänge = 1 Sekunde Eine Frequenzline bei 2

Mehr

Seminar Digitale Signalverarbeitung

Seminar Digitale Signalverarbeitung Universität Koblenz-Landau Institut für integrierte aturwissenschaften Abteilung Physik Dr. Merten Joost Seminar Digitale Signalverarbeitung Thema: Fast Fourier Transformation Praktische Durchführung einer

Mehr

1 C A = A. y 1 y 2. x 1 x 2. x n B @ B @ C A. y m

1 C A = A. y 1 y 2. x 1 x 2. x n B @ B @ C A. y m Kapitel Systeme Ein System ist eine Anordnung von miteinander verbundenen Komponenten zur Realisierung einer technischen Aufgabenstellung. Ein System kann als Operator aufgefasst werden, der Eingangsgrößen

Mehr

GT- Labor. Inhaltsverzeichnis

GT- Labor. Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Versuchsvorbereitung 2 1.1 Qualitatives Spektrum der Ausgangsspannung des Eintaktmodulators 2 1.2 Spektrum eines Eintaktmodulators mit nichtlinearem Element 2 1.3 Bandbreite

Mehr

Signalverarbeitung - Filterung, PSD, Korrelationen

Signalverarbeitung - Filterung, PSD, Korrelationen 9. Dezember 2010 1 Signalverarbeitung - Filterung, PSD, Korrelationen Messtechnik Vorlesung 9. Dezember 2010 9. Dezember 2010 2 Zurück zur Schnellen Fourier-Transformation (FFT) Ein FFT-Beispiel mit zwei

Mehr

5.8.8 Michelson-Interferometer ******

5.8.8 Michelson-Interferometer ****** 5.8.8 ****** Motiation Ein wird mit Laser- bzw. mit Glühlampenlicht betrieben. Durch Verschieben eines der beiden Spiegel werden Intensitätsmaxima beobachtet. Experiment S 0 L S S G Abbildung : Aufsicht

Mehr

Analoge CMOS-Schaltungen

Analoge CMOS-Schaltungen Analoge CMOS-Schaltungen PSPICE: Fourier-Analyse 12. Vorlesung Einführung 1. Vorlesung 8. Vorlesung: Inverter-Verstärker, einige Differenzverstärker, Miller-Verstärker 9. Vorlesung: Miller-Verstärker als

Mehr

Fourier-Reihe mit komplexer Exponentialfunktion

Fourier-Reihe mit komplexer Exponentialfunktion Fourier-Reihe mit komplexer Exponentialfunktion Jörn Loviscach Versionsstand: 9. Juni 2010, 15:54 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Überlagung sinusförmiger

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr

4.2 Abtastung und Rekonstruktion zeitkontinuierlicher

4.2 Abtastung und Rekonstruktion zeitkontinuierlicher 7 4 Fouriertransformation für zeitdiskrete Signale und Systeme nicht auf [, ] zeitbegrenzt ist. Es kommt daher zu einer Überlappung der periodischen Fortsetzungen. Für die Herleitung der Poissonschen Summenformel

Mehr

5. Übung für Übungsgruppen Musterlösung

5. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, Department Informatik der Universität Hamburg) 5. Übung für Übungsgruppen Musterlösung (U. Köthe, Department Informatik,

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

HS D FB Hochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik

HS D FB Hochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik HS D FB 4 Hochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektrotechnik und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Inhaltsverzeichnis 1 Einführung 2 FFT 3 Anwendungen 4 Beschränkungen 5 Zusammenfassung Definition Fouriertransformation

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

LABORVERSUCH MT2. Grundlagen der digitalen Messsignalerfassung. Labor Messtechnik FGA. Prof. Dr. rer. nat.g. Haussmann Dipl. Ing.

LABORVERSUCH MT2. Grundlagen der digitalen Messsignalerfassung. Labor Messtechnik FGA. Prof. Dr. rer. nat.g. Haussmann Dipl. Ing. LABORVERSUCH MT2 Grundlagen der digitalen Messsignalerfassung Prof. Dr. rer. nat.g. Haussmann Dipl. Ing. Wolfgang Then Ha V06/06 Versuch Grundlagen der digitalen Messsignalfassung Seite 1 0. Bedeutung

Mehr

Modulationsverfahren

Modulationsverfahren Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:

Mehr

Allgemeine Beschreibung (1)

Allgemeine Beschreibung (1) Allgemeine Beschreibung (1) Jede periodische Funktion x(t) kann in allen Bereichen, in denen sie stetig ist oder nur endlich viele Sprungstellen aufweist, in eine trigonometrische Reihe entwickelt werden,

Mehr

Erstes Nyquistkriterium im Zeitbereich

Erstes Nyquistkriterium im Zeitbereich Erstes Nyquistkriterium im Zeitbereich Für dieses Kapitel wurde vorausgesetzt, dass die Detektion eines Symbols nicht durch Nachbarimpulse beeinträchtigt werden soll. Dies erreicht man durch die Detektion

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Technische Grundlagen der Informatik Kapitel 10

Technische Grundlagen der Informatik Kapitel 10 Technische Grundlagen der Informatik Kapitel 10 Prof. Dr.-Ing. S. A. Huss Fachbereich Informatik TU Darmstadt S. A. Huss / Folie 10-1 Inhaltsübersicht Digitale Verarbeitung analoger Signale Signale Wert-

Mehr

Titel: Darstellung und Analyse abgetasteter Signale Titel-Kürzel: ABT

Titel: Darstellung und Analyse abgetasteter Signale Titel-Kürzel: ABT Titel: Darstellung und Analyse abgetasteter Signale Titel-Kürzel: ABT Autoren: Niklaus Schmid, sni Koautor: U. Gysel, gys Version: v2.0 31. Dezember 2005 v2.1 7. Januar 2006 Korrekturen von G. Lekkas verarbeitet

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Analogmultiplexer als Amplitudenmodulatoren

Analogmultiplexer als Amplitudenmodulatoren Analogmultiplexer als Amplitudenmodulatoren Dipl.-Phys. Jochen Bauer 09.11.014 Einführung und Motivation Mit dem zunehmenden Verschwinden von Mittel- und Langwellensendern ergibt sich die Notwendigkeit

Mehr

Übung 2 vom

Übung 2 vom Übung vom.0.04 Aufgabe 5 Gegeben ist die Gleichung sin(α) + sin(α + β) + sin(α + β) = 0 Für welches Argument β ist diese Gleichung für jedes α erfüllt? Wo findet diese Gleichung Anwendung in der Technik?

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

Das NMR-Experiment in der Vektordarstellung

Das NMR-Experiment in der Vektordarstellung Das NMR-Experiment in der Vektordarstellung Kerne mit einer Spinquantenzahl I = ½ ( 1 H, 13 C) können in einem äußeren statischen homogenen Magnetfeld B 0 (Vektorfeld) zwei Energiezustände einnehmen: +½

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

5 Modulationsverfahren

5 Modulationsverfahren U: Latex-docs/Angewandte Physik/2004/VorlesungWS04-05, 21. Dezember 2004 89 5 Modulationsverfahren Abbildung 1: Schema eines Übertragungssystems Bei der Übertragung von Signalen durch Übertragungskanäle

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München Prof. Hußmann

Mehr

Signale und ihre Spektren

Signale und ihre Spektren Einleitung Signale und ihre Spektren Fourier zeigte, dass man jedes in der Praxis vorkommende periodische Signal in eine Reihe von Sinus- und Cosinusfunktionen unterschiedlicher Frequenz zerlegt werden

Mehr

Digitale Signalverarbeitung Juli 2004

Digitale Signalverarbeitung Juli 2004 Westfälische Wilhelms-Universität Münster Institut für Angewandte Physik xperimentelle Übungen für Fortgeschrittene Digitale Signalverarbeitung Juli 2004 In der Digitaltechnik ist es nicht möglich, physikalische

Mehr

Vom Zeit- zum Spektralbereich: Fourier-Analyse

Vom Zeit- zum Spektralbereich: Fourier-Analyse Vom Zeit- zum Spektralbereich: Fourier-Analyse Ergebnis der Analyse Zerlegung eines beliebigen periodischen Signals in einem festen Zeitfenster in eine Summe von Sinoidalschwingungen Ermittlung der Amplituden

Mehr

Skriptum zur 4. Laborübung. Spektren

Skriptum zur 4. Laborübung. Spektren Elektrotechnische Grundlagen der Informatik (LU 182.085) Skriptum zur 4. Laborübung Spektren Christof Pitter Wolfgang Puffitsch Technische Universität Wien Institut für Technische Informatik (182) 1040,

Mehr

VAD - Voice Activity Detection -

VAD - Voice Activity Detection - VAD - - erstellt: Robert Schaar s63012 erstellt: Robert Schaar s63012 Mensch-Maschine-Robotik 1. Einleitung 2. Aufbau des Algorithmus 2.1. allgemeiner Aufbau 2.2. Fourier-Transformation 2.3. Short-Time

Mehr

Strategien der Schwingungsanalyse

Strategien der Schwingungsanalyse 1 Strategien der Schwingungsanalyse (Grundlagen) 1. Prolog Approximation einer Zeitfunktion Zur Einführung in das Thema soll die Approximation einer Zeitfunktion x( durch einen Satz von Basisfunktionen

Mehr

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier- Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;

Mehr

Kapitel 2: Fourieranalyse. Analoge, periodische Signale

Kapitel 2: Fourieranalyse. Analoge, periodische Signale ZHW, NM, 5/, Rur Kapitel : Fourieranalyse Analoge, periodische Signale Inhaltsverzeichnis. EINLEIUNG.... LINEARER MIELWER... 3. LEISUNG UND EFFEKIVWER...3 4. WINKELFUNKIONEN...3 5. FOURIERREIHE...4 6.

Mehr

Abtastung schmalbandiger Signale und ihre Anwendung zur Hüllkurvenanalyse bei rechnergestützten schwingungsdiagnostischen Systemen

Abtastung schmalbandiger Signale und ihre Anwendung zur Hüllkurvenanalyse bei rechnergestützten schwingungsdiagnostischen Systemen tm Technisches Messen 74 (2007) 2 / DOI 10.1524/teme.2007.74.2.63 Oldenbourg Verlag 63 Abtastung schmalbandiger Signale und ihre Anwendung zur Hüllkurvenanalyse bei rechnergestützten schwingungsdiagnostischen

Mehr

Definition MRT. MRT Magnetresonanztomographie = MRI Magnetic Resonance Imaging = Kernspintomographie = NMR Nuclear Magnetic Resonance

Definition MRT. MRT Magnetresonanztomographie = MRI Magnetic Resonance Imaging = Kernspintomographie = NMR Nuclear Magnetic Resonance MaReCuM Seminar MRT OA PD Dr. med Henrik Michaely Leiter des Geschäftsfelds Abdominelle und Vaskuläre Bildgebung Institut für Klinische Radiologie und Nuklearmedzin Definition MRT MRT Magnetresonanztomographie

Mehr

Der Ton macht die Musik

Der Ton macht die Musik Der Ton macht die Musik Analyse von Tonsignalen mittels Fourier-Transformationen Teilnehmer: Tobias Berchner Holger Hesse Yasir Kaynar Dieu Thuy Linh Tran Viet Son Pham Jonas Pohl Henry Salfner Heinrich-Hertz-Oberschule,

Mehr

Bildrekonstruktion & Multiresolution

Bildrekonstruktion & Multiresolution Bildrekonstruktion & Multiresolution Verkleinern von Bildern? Was ist zu beachten? Es kann aliasing auftreten! Das Abtasttheorem sagt wie man es vermeidet? ===> Page 1 Verkleinern von Bildern (2) Vor dem

Mehr

Labor SMV Versuch 1. Erläuterungen zum Aliasing. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor SMV Versuch 1. Erläuterungen zum Aliasing. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor SMV Versuch Erläuterungen zum Aliasing FB: EuI, Darmstadt, den 26.5 Elektrotechnik und Informationstechnik Rev., 9.5 Auf den folgenden Seiten sind einige typische Abtastsituationen zusammengestellt,

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

5.5 Theorie und Praxis der Signalabtastung

5.5 Theorie und Praxis der Signalabtastung ELEKTRONIK FÜR EMBEDDED SYSTEMS TEIL 5, ABSCHNITT 5 EES05_03 SEITE 1 5.5 Theorie und Praxis der Signalabtastung Wie gut ist eigentlich "digital"? Von der digitalen Speicherung und Verarbeitung eigentlich

Mehr

Mathematik und Musik: Fourieranalyse

Mathematik und Musik: Fourieranalyse Mathematik und Musik: Fourieranalyse Matheseminar JKU Linz WS2015/16 Peter Gangl Linz 5. Februar 2016 1 / 20 Outline 1 Musik mathematisch betrachtet 2 2 / 20 Outline 1 Musik mathematisch betrachtet 2 2

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM

MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM MRT Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM WARUM SIND RÖNTGEN UND CT NICHT GENUG? MAGNETRESONANZTOMOGRAPHIE Die Große Frage? "Image by AZRainman.com Wie schaffen wir das überhaupt?

Mehr

Die Diskrete Fouriertransformation (DFT)

Die Diskrete Fouriertransformation (DFT) Kapitel Die Diskrete Fouriertransformation (DFT). Einleitung Zerlegt man Signale in sinusoidale (oder komplex exponentielle) Komponenten, dann spricht man von der Darstellung der Signale im Frequenzbereich.

Mehr

MaReCuM MRT. OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin

MaReCuM MRT. OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin MaReCuM MRT OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin Definition MRT MRT Magnetresonanztomographie = MRI Magnetic

Mehr

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1 Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe System zur digitalen Signalverarbeitung: Signal- Quelle AAF ADC DAC RCF DSP Po rt Po rt Signal- Ziel Das Bild zeigt ein allgemeines System zur

Mehr

Projektdokumentation

Projektdokumentation Thema: Bildschärfung durch inverse Filterung von: Thorsten Küster 11027641 Lutz Kirberg 11023468 Gruppe: Ibv-team-5 Problemstellung: Bei der Übertragung von Kamerabildern über ein Video-Kabel kommt es

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

Modulationsanalyse. Amplitudenmodulation

Modulationsanalyse. Amplitudenmodulation 10/13 Die liefert Spektren der Einhüllenden von Teilbändern des analysierten Signals. Der Anwender kann damit Amplitudenmodulationen mit ihrer Frequenz, ihrer Stärke und ihrem zeitlichen Verlauf erkennen.

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Seminarübungen: Dozent: Alexander Weber Ort: 33/1101 Zeit: Mo 9.45 11.15 Uhr (Beginn: 20.04.2015) Vorlesungsskript:

Mehr

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass

Mehr

1 Analoge und digitale Signale

1 Analoge und digitale Signale Hochfrequenztechnik II Modulationsverfahren MOD/1 1 Analoge und digitale Signale Modulationsverfahren werden benötigt, um ein vorhandenes Basisbandsignal s(t) über ein hochfrequentes Trägersignal zu übertragen.

Mehr

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation 18 Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 28. März 2015, 21:30 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos:

Mehr

Spektra von periodischen Signalen. Resonanz. Jonathan Harrington

Spektra von periodischen Signalen. Resonanz. Jonathan Harrington Spektra von periodischen Signalen. Resonanz. Jonathan Harrington Spektrum von einem Zeitsignal Zeitsignal 1. Das Zeitsignal wird durch eine Fourier- Analyse in Sinusoiden zerlegt 2. Spektrum: die Abbildung

Mehr

Fourier-Reihen: Definitionen und Beispiele

Fourier-Reihen: Definitionen und Beispiele Fourier-Reihen: Definitionen und Beispiele Die Fourieranalysis beschäftigt sich mit dem Problem Funktionen in Kosinus und Sinus zu entwickeln. Diese Darstellungen sind in der Mathematik sowie in der Physik

Mehr

Lab3 - Fourieranalyse von Signalen

Lab3 - Fourieranalyse von Signalen 1 Einleitung Lab3 - Fourieranalyse von Signalen M. Brandner, C. Wallinger Die spektrale Analyse deterministischer und zufälliger Signale ist von zentraler Bedeutung in der Messtechnik, da sehr viele interessante

Mehr