Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014"

Transkript

1 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/04 Fach (A) Prüfungstag 9. Mai 04 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise Spezielle Arbeitshinweise 09:00 - :00 Uhr Mathematische Formelsammlungen (keine selbst angefertigten) ohne Musterlösungen, Taschenrechner ohne Graphikdisplay, keine CAS-Rechner, frei programmierbare Speicher müssen gelöscht sein. Das Handbuch muss vorliegen. Sollte Ihr Taschenrechner die Möglichkeit zum numerischen Differenzieren oder Integrieren bieten oder in der Lage sein, Gleichungen oder Gleichungssysteme zu lösen, dürfen Sie bei Ihren Lösungen davon keinen Gebrauch machen. Ihre Lösungswege sind so zu gestalten und zu dokumentieren, wie sie ohne diese Hilfsmittel durchgeführt werden. Bleistifte dürfen nur für Skizzen benutzt werden. Die Reinschriften und Entwürfe sind nur auf den besonders gekennzeichneten Bögen anzufertigen, die Sie für die Prüfung erhalten. Diese sind zu nummerieren und sofort mit Ihrem Namen zu versehen. Für jede neue Aufgabe ist ein neuer gekennzeichneter Bogen zu beginnen. Schwerwiegende oder gehäufte Verstöße gegen die sprachliche Richtigkeit oder gegen die äußere Form führen zu einem Abzug von bis zu einem Punkt (Malus- Regelung). Bedenken Sie die Folgen einer Täuschung oder eines Täuschungsversuchs! Der Aufgabensatz besteht aus vier verschiedenen Einzelaufgaben, die Sie alle bearbeiten müssen! Gesamtzahl der abgegebenen Lösungsblätter (Reinschrift): Bewertungseinheiten, Gesamtpunkte und Gesamtnote : Blätter Aufgabe Nr.: Soll Ist 8 Ist (ggf. Zweitkorrektur) Summe: 00 Notenpunkte: 5 Punkte Punkte Maluspunkt - Punkt Punkt Insgesamt: Datum, Unterschrift: Punkte Note: Punkte Note: gilt nur für doppelt qualifizierende Bildungsgänge mit Fachhochschulreife

2 Abschlussprüfung Fachoberschule 04 Aufgabenvorschlag A Funktionsuntersuchung /8 Gegeben sei die Funktion f mit der Funktionsgleichung f( x) = x x+ ; x. 8. Untersuchen Sie das Symmetrieverhalten des Graphen von f und begründen Sie Ihre Aussage. Untersuchen Sie das Verhalten der Funktionswerte von f im Unendlichen. /4. Bestimmen Sie die Koordinaten des Schnittpunktes des Graphen von f mit der y-achse. Berechnen Sie die Nullstellen der Funktion f. /7. Bestimmen Sie die Hoch-, Tief- und Wendepunkte des Graphen von f. /5.4 Zeichnen Sie den Graphen von f im Intervall [ 4,5; 4] unter Zuhilfenahme aller ermittelten Punkte. Berechnen Sie auch die Funktionswerte am Rand des Intervalls. Nutzen Sie hierfür das Koordinatensystem auf der folgenden Seite. /5.5 Verschiebt man den Graphen der Funktion f um eine Längeneinheit in Richtung y-achse nach oben, erhält man den Graphen der Funktion g mit der Funktionsgleichung gx ( ) = x x+ ; x. 8 5; 4 vermutet. Eine Nullstelle der Funktion g wird im Intervall [ ] /7 Weisen Sie nach, dass in diesem Intervall wirklich eine Nullstelle liegt. Berechnen Sie einen Näherungswert für diese Nullstelle durch ein geeignetes Verfahren. Brechen Sie die Berechnung nach drei Iterationsschritten ab. Beurteilen Sie die Genauigkeit des von Ihnen berechneten Näherungswertes. Fortsetzung auf der folgenden Seite Aufgabenvorschlag A Abschlussprüfung Fachoberschule 04 Seite von 5

3 A Koordinatensystem zu Aufgabe : Funktionsuntersuchung Aufgabenvorschlag A Abschlussprüfung Fachoberschule 04 Seite von 5

4 A Skisprungschanze /6 0 y Der Anlauf einer Skisprungschanze (siehe Abbildung) soll durch eine ganzrationale Funktion dritten Grades beschrieben werden, so dass der Startpunkt S(0 05) ein Wendepunkt ist und die Tangente im Absprungpunkt A(00 5) die Steigung 0, hat. Dieses Problem ist eindeutig lösbar x. Stellen Sie das Gleichungssystem zur Bestimmung der Koeffizienten dieser Funktion auf. Zur Kontrolle: d = 05 b = a b +00 c + d = a + 00 b + c = 0, /7. Bestimmen Sie die gesuchte Funktionsgleichung mithilfe des obigen Gleichungssystems. Bemerkung: Die Variablen a, b, c, d sind die Koeffizienten der ganzrationalen Funktion. Grades in absteigender Reihenfolge.. Der Schüler Felix hat eine Abschrift der Aufgabenstellung (s. o.) bekommen, in der das Wort dritten unleserlich ist. Trotzdem erkennt er aus den geforderten Eigenschaften, dass es eine ganzrationale Funktion dritten Grades sein muss, wenn man zu einer eindeutigen Lösung kommen möchte. Erläutern Sie, welche mathematischen Überlegungen ihm zu dieser Erkenntnis verhelfen. /6 / Aufgabenvorschlag A Abschlussprüfung Fachoberschule 04 Seite von 5

5 A Pelletspeicher /5 Ein Speicher für Holzpellets (Holzkügelchen als Brennstoff) hat die Form eines Zylinders mit einer aufgesetzten Halbkugel. Der Radius des Zylinders sowie der Radius der Halbkugel ist r, die Höhe des Zylinders ist h. Der Speicher besitzt ein Fassungsvermögen (Volumen) von m. Er ist so konstruiert, dass die Oberfläche des Speichers, bestehend aus der Grund- und Mantelfläche des Zylinders sowie der Oberfläche der Halbkugel (ohne Grundkreis), eine minimale Größe annimmt.. Skizzieren Sie den Körper und zeichnen Sie die Radien r sowie die Höhe h ein. /. Die Oberfläche A des Speichers kann durch einen Funktionsterm mit der Variablen r wie folgt beschrieben werden: Ar ( ) = π r + = π r + 4r r Leiten Sie diesen Funktionsterm her. /7. Bestimmen Sie den Radius r sowie die Höhe h des Speichers mit minimaler Oberfläche. Berechnen Sie die Oberfläche dieses Speichers. /6 Aufgabenvorschlag A Abschlussprüfung Fachoberschule 04 Seite 4 von 5

6 A 4 Augenklinik / Ein Architekt plant auf einem rechteckigen Grundstück den Bau einer Augenklinik mit einem kreisförmigen Innenhof. Von oben sieht das Gebäude wie ein riesiges Auge aus (siehe Abbildung). Das verwendete Koordinatensystem benutzt die südwestliche Ecke des Grundstücks als Koordinatenursprung. Eine Längeneinheit entspricht 00 Metern. Die x-achse verläuft in West-Ost-Richtung und die y-achse in Süd- Nord-Richtung. In diesem Koordinatensystem lassen sich der nördliche und südliche Rand des Gebäudes durch folgende Funktionsgleichungen beschreiben: ( ) = + ( ) n x 0, 5x, 5x 0, 5 und s x = 0, x +, 8x, 99x+,. LE = 00 m n s n s 4. Zeigen Sie, dass die Schnittpunkte der Randfunktionen an den Stellen 0,5 und,5 liegen und geben Sie die Schnittpunkte an. 4. Zwischen dem Gebäude und der südlichen Grundstücksgrenze soll eine Grünfläche angelegt werden, die in der Abbildung hellgrau gefärbt ist. Die östliche und die westliche Grenze der Grünfläche sollen parallel zur y-achse verlaufen. Berechnen Sie den Flächeninhalt dieser Grünfläche und geben Sie das Ergebnis in Quadratmetern an. 4. Das Gebäude erhält ein Flachdach, das in der Abbildung dunkelgrau gefärbt ist. Der Durchmesser des Innenhofs (weiße Kreisfläche) beträgt 50 Meter. Berechnen Sie den Flächeninhalt dieses Daches und geben Sie das Ergebnis in Quadratmetern an. 4.4 Begründen Sie, ohne den Wert des Integrals zu berechnen, dass gilt: ( ( ) ( )) s x n x dx < 0. Dazu benötigte Informationen können der Abbildung entnommen werden. 4 n x dx = erfüllt ist. 5 Berechnen Sie die anderen Lösungen dieser Gleichung. 4.5 Zeigen Sie, dass für b = die Gleichung ( ) b /4 /6 /7 / / Aufgabenvorschlag A Abschlussprüfung Fachoberschule 04 Seite 5 von 5

7 Abschlussprüfung Fachoberschule 04 Erwartungshorizont für Aufgabenvorschlag A Die Anzahl der Bewertungseinheiten für jede Teilaufgabe ist verbindlich. Die Verteilung der Bewertungseinheiten innerhalb einer Teilaufgabe ist der korrigierenden Lehrkraft überlassen. Aufg.. Die Exponenten von x sind sowohl gerade als auch ungerade, der Graph ist weder achsensymmetrisch zur y-achse noch punktsymmetrisch zum Ursprung. oder f( x) f( x), f( x) f( x) Der höchste Exponent der Variablen im Funktionsterm von f ist. Da a im Summand ax positiv ist, verläuft der Graph von minus unendlich nach plus unendlich oder lim f( x) und lim f( x). x x BE in AB Erbrachte Teilleistung I II III BE Begutachtung. Nullstellen: f( x ) = 0 x x+ = 0 x x+ 6 = 0 8 Erste Lösung x N = durch Probieren ( x x+ 6) : ( x ) = x + x 8 Polynomdivision x x 8= 0 p-q-formel x N = 4 ; x N = weitere Nullstellen x N = ; x N = doppeltzählende Nullstelle Schnittpunkt mit y-achse: f(0) = ; S y (0 ) 6 Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite von 9

8 Erwartungshorizont A Aufg.. f ( x) = x = 0 notwendige Bedingung 8 x = ;x = p-q-formel, mögliche Extremstellen E E f ( x) = x 0 hinreichende Bedingung 4 f () = > 0 Minimum bei x E = f ( x) = x< 0 Maximum bei x E = 7 4 f () = 0 Tiefpunkt T ( 0) f ( ) = 4 Hochpunkt H ( 4) Wendepunkt f ( x) = x= 0 notwendige Bedingung 4 x w = 0 f '''( x ) = hinreichende Bedingung 4 f (0) = > 0 Rechts-Links-Wendepunkt bei x w = f (0) = Wendepunkt W (0 ).4 x N = ; x N = 4 ; x N = ; T ( 0) ; H ( 4) ; W (0 ) s.o. f ( 4,5) =, 64 linker Randpunkt L ( 4,5,64) f (4) = 4 rechter Randpunkt R (4 4) BE in AB Erbrachte Teilleistung I II III BE Begutachtung Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite von 9

9 Erwartungshorizont A Aufg..4 BE in AB Erbrachte Teilleistung I II III BE Begutachtung.5 g ( 5) = 5,5 ; g ( 4) = g g liegt Nst. im Intervall [ 5; 4] Wegen ( 5) ( 4) = 5,5 < 0 gx ( n) x = n x + n g'( xn ) Newtonsches Näherungsverfahren gx ( ) = x x+, g'( x ) = x 8 8 Startwert wählen; Berechnung Algorithmus kennen und anwenden (Bem.: Mögliche Lösungen sind unten aufgeführt, auch andere Lösungsansätze sind denkbar.) Je nach Verfahren und Startwert der Berechnung wird eine begründete Aussage darüber getroffen, wie viele Nachkommastellen sich nicht mehr verändern und mit welcher Genauigkeit die Nullstelle deshalb bestimmt wurde. Summe Aufgabe : 5 Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite von 9 5

10 Erwartungshorizont A Anlage zum Erwartungshorizont von Aufgabe : Beispielrechnungen für verschiedene Startwerte zur Kontrolle Beispielrechnung für Startwert -5 xs - erste Näherung -5 xn f(x n ) f'(x n ) xs -5-5,5 7,875 x -4, , , x -4,898-0, ,57456 x -4, ,6E-05 5,90545 x4-4, ,6549E-0 5,8984 Beispielrechnung für Startwert -4 xs - erste Näherung -4 xn f(x n ) f'(x n ) xs -4 4,5 x -4, -0, ,85859 x -4, , ,98874 x -4, ,6975E-09 5,8984 x4-4, ,8984 Beispielrechnung für Startwert -4,5 xs - erste Näherung -4,5 xn f(x n ) f'(x n ) xs -4,5 -, ,0975 x -4,0769-0, ,78 x -4, , , x -4, ,9E-08 5,8986 x4-4, ,8984 Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite 4 von 9

11 f xs(0;6) = z 0 = z 0z 6 - Erwartungshorizont A Aufg. BE in AB Erbrachte Teilleistung I II III BE Begutachtung. Ansatz: f ( x) = ax + bx + cx + d f ( x) = ax + bx + c f ( x) = 6ax + b Information Bedingung () Punkt (0 05) f ( = 05 () Wendestelle 0 f ( 0) = 0 () Punkt (00 5) f ( 00) = 5 (4) Steigung -0, an der Stelle 00 f ( 00) = 0, 4 Gleichungssystem () d = 05 () () a b b + 00 c + d = 0 = 5 (4) 0 000a + 00b + c = 0,. Lösen des Gleichungssystems a = 0,00004 ; b = 0 ; c =,4 ; d = 05 f( x) = 0, 00004x, 4x Es muss eine ganzrationale Funktion. Grades sein, weil dann die Anzahl der zu bestimmenden Koeffizienten (= 4) mit der Anzahl der Bestimmungsgleichungen (= 4) übereinstimmt. Summe Aufgabe : 0 Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite 5 von 9

12 Erwartungshorizont A Aufg.. BE in AB Erbrachte Teilleistung I II III BE Begutachtung. Herleitung zum Nachweis der Zielfunktion Hauptbedingung: Arh (, ) = AKugel + AZylinder AGrundflächeZylinder A( r, h) = π r + π r + π rh π r = π r + π rh Nebenbedingung: V = VKugel + VZylinder V= π r +π rh V h= r = r πr π r Zielfunktion: V V 4 5 V Ar () = π r + π r r r r r = π + π = π + π r r r 5 5 A( r) r Vr = π + = π r + 4r Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite 6 von 9

13 Erwartungshorizont A Aufg.. BE in AB Erbrachte Teilleistung I II III BE Begutachtung 0 Notw. Bedingung für Extremstellen: A'( r) = π r 4r = 0 = V 6 r,8 5π = 5π 0 Hinr. Bedingung für Extremstellen: A''( r) = π + 48r 0 0 ''(,8) 48,8, 47 0 π A = + > Minimum bei r =,8 = V h r,8,0 πr = π,8 r =,8m ; h =,0m 5 Arh = π + π (, ),8,8,0 7,0 Der Speicher hat eine minimale Oberfläche von 7,0m. Summe Aufgabe : 7 5 Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite 7 von 9

14 f xs(0;6) = z 0 = z 0z 6 - Erwartungshorizont A BE in AB Aufg. 4 I II III BE 4. n( 0, 5) = 0, 475 = s( 0, 5) und n(, 5) = 0, = s(, 5) Die Schnittpunkte sind ( 0, 5 0, 475) und (, 5 0, 475) 4 4. Ansatz: 5, A = s x dx = S 5, S 05, 05, ( ) ( ) ( ) Stammfunktion: 4 59 S( x) 0, 05x + x 0, 995x +, x 50 S( 0, 5) 0, 979; S(, 5) = 0, 9796 Flächeninhalt: A = 0, Ergebnis: Die Grünfläche ist 5767m groß Rechenweg Differenzfunktion d( x) = n( x) s( x) = 0, x, 68x +, 49x, 5 Ansatz: 5, I = d x dx = D, 5 D 0, 5 =, , ( ) ( ) ( ) ( ) 4 Stammfunktion: D x = 0, 05x 0, 56x +, 745x, 5x D( 0, 5) = 0, 056; D(, 5) = 0, 748 Kreisfläche: AK 0, 965 Flächeninhalt: A = I A K = 0, 8466 Ergebnis: Die Dachfläche ist 847m groß. 6 Rechenweg Ansatz: Erbrachte Teilleistung Gutachten 5, ( ) ( ) ( ) I = n x dx = N, 5 N 0, 5 =, , Stammfunktion: N( x) = x + 0, 75x, 5x 6 N( 0, 5) 0, 0967; N(, 5), 708 Kreisfläche: AK 0, 965 Flächeninhalt: A = I A A k = 0, 8464 Ergebnis: Die Dachfläche ist 846m groß. Übertrag: Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite 8 von 9

15 - Erwartungshorizont A BE in AB Aufg. 4 I II III BE Übertrag Laut Abb. gilt für alle x ; : n x > s x s x n x < n ( x) dx = N ( ) N ( ) = ; denn 5 [ ] ( ) ( ) ( ) ( ) ( ( ) ( )) s x n x dx < 0 4 N( x) = x + x x N( ) = ; N() = b n ( x) dx = N ( b) N ( ) = b + b b = b + 45b 9b 8 = 0 Horner-Schema (Lösung b = ) Ansatz für weitere Lösungen: -0 x² +5 x +4 = 0 x² -,5 x 4, = x, =,5 ±,796 b = -,96 b =,696 4 Summe Aufgabe 4: Erbrachte Teilleistung Gutachten Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite 9 von 9

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (B) Prüfungstag 5. April Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung Fachoberschule 2014 Mathematik

Abschlussprüfung Fachoberschule 2014 Mathematik Abschlussprüfung Fachoberschule 04 Aufgabenvorschlag A Funktionsuntersuchung /8 Gegeben sei die Funktion f mit der Funktionsgleichung f( x) = x x+ ; x. 8. Untersuchen Sie das Symmetrieverhalten des Graphen

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 007 / 008 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 008 / 009 Fach (A) Name, Vorname Klasse Prüfungstag 9. April 009 Prüfungszeit Zugelassene Hilfsmittel

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 7 / 8 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/0 Fach (B) Prüfungstag. Juni 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 00/0 Fach (A) Prüfungstag. Mai 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 00/0 Fach (B) Prüfungstag 6. Juni 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (A) Prüfungstag 5. Mai Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise Spezielle

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 008 / 009 Fach Mathematik (B) Name, Vorname Klasse Prüfungstag 7. Mai 009 Prüfungszeit Zugelassene

Mehr

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007 Senatsverwaltung für Bildung, Wissenschaft und Forschung Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr / 7 Name, Vorname: Klasse: Prüfungsfach: Mathematik Prüfungstag:

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2012/2013

Abschlussprüfung an der Fachoberschule im Schuljahr 2012/2013 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/0 Fach Mathematik (A) Prüfungstag 9. April 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine

Mehr

Abschlussprüfung an der Fachoberschule im Herbst 2012

Abschlussprüfung an der Fachoberschule im Herbst 2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Fach Name, Vorname Klasse Abschlussprüfung an der Fachoberschule im Herbst 0 (B) Prüfungstag 0..0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Fach Abschlussprüfung an der Fachoberschule im Schuljahr 009/00 Mathematik (B) Name, Vorname Klasse Prüfungstag 4. Juni 00 Prüfungszeit Zugelassene

Mehr

= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung

= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung Abschlussprüfung Fachoberschule () Aufgabenvorschlag B / 4 Gegeben ist die Funktion f mit der Funktionsgleichung 4 f ( x) x x x = + +. Dazu ist ein Rechteck gegeben, dessen Seiten parallel zu den Koordinatenachsen

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Fach Abschlussprüfung an der Fachoberschule im Schuljahr 009/00 Mathematik (A) Name, Vorname Klasse Prüfungstag 5. Mai 00 Prüfungszeit Zugelassene

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

/46. Abschlussprüfung Fachoberschule 2013 Mathematik

/46. Abschlussprüfung Fachoberschule 2013 Mathematik Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag B /46 Am. Februar 0 wird um 4:00 Uhr ein Erdbeben mit der Anfangsstärke auf der sogenannten Richter-Skala gemessen. Das Beben dauert etwas länger als

Mehr

Abschlussprüfung an der Fachoberschule im Herbst 2013

Abschlussprüfung an der Fachoberschule im Herbst 2013 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Herbst 013 Fach (B) Prüfungstag. November 013 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Nichttechnik - A I - Lösung

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Nichttechnik - A I - Lösung Abschlussprüfung Berufliche Oberschule Mathematik Nichttechnik - A I - Lösung Teilaufgabe. Gegeben ist die ganzrationale Funktion g dritten Grades mit D g IR, deren Graph G g in untenstehender Abbildung

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Nur für die Lehrkraft

Nur für die Lehrkraft Senatsverwaltung für Bildung, Jugend und Wissenschaft Fach Abschlussprüfung an der Fachoberschule im Schuljahr 0/5 (B) Nur für die Lehrkraft Prüfungstag 7. April 05 Prüfungszeit Zugelassene Hilfsmittel

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

1 /40. Abschlussprüfung Fachoberschule 2011 Mathematik ( ) = 0, 001 0, , Abb.1 (erstesteilstück der Achterbahn)

1 /40. Abschlussprüfung Fachoberschule 2011 Mathematik ( ) = 0, 001 0, , Abb.1 (erstesteilstück der Achterbahn) Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag A /40 Das erste Teilstück einer Achterbahn ruht auf sechs senkrechten Stützen, die in Abständen von 5 m aufgestellt sind (siehe Abb.). Es lässt sich

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

1 /40. dargestellt werden.

1 /40. dargestellt werden. Abschlussprüfung Fachoberschule 0 () Aufgabenvorschlag B /40 Auf der Berliner Stadtautobahn A00 / Autobahndreieck Charlottenburg wurde über einen bestimmten Zeitraum die Staulänge l in Abhängigkeit von

Mehr

1 /41. Abschlussprüfung Fachoberschule 2010, (Mathematik) Aufgabenvorschlag B

1 /41. Abschlussprüfung Fachoberschule 2010, (Mathematik) Aufgabenvorschlag B , (Mathematik) / Gegeben ist eine Funktion f mit der Funktionsgleichung f ( x) = x x + x 6x+ ; x. Untersuchen Sie das Symmetrieverhalten des Graphen von f und begründen Sie Ihre Aussage. /. Untersuchen

Mehr

Abschlussprüfung Fachoberschule 2015 Herbst Mathematik

Abschlussprüfung Fachoberschule 2015 Herbst Mathematik bschlussprüfung Fachoberschule 5 Herbst ufgabenvorschlag B Funktionsuntersuchung / Gegeben ist die Funktion f mit der Funktionsgleichung Der Graph der Funktion ist G f. f 5 5 ; IR.. Untersuchen Sie das

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Freitag, 29. Mai 2009, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Abschlussprüfung Fachoberschule 2017 Mathematik

Abschlussprüfung Fachoberschule 2017 Mathematik Abschlussprüfung Fachoberschule 7 Aufgabenvorschlag B Funktionsuntersuchung /4 Gegeben ist die Funktion f mit der Funktionsgleichung f( x) = x x x +, x IR.. Berechnen Sie die fehlenden Funktionswerte f(x)

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Nur für die Lehrkraft

Nur für die Lehrkraft Senatsverwaltung für Bildung, Jugend und Wissenschaft Fach bschlussprüfung an der Fachoberschule im Herbst 5 B Nur für die Lehrkraft Prüfungstag 7. Dezember 5 Prüfungszeit Zugelassene Hilfsmittel llgemeine

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Erfolg im Mathe-Abi 2012

Erfolg im Mathe-Abi 2012 Gruber I Neumann Erfolg im Mathe-Abi 2012 Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Windkraftanlage... 5 2 Heizkosten... 6 3

Mehr

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für Bildung, Jugend und Sport Prüfung am Ende der Jahrgangsstufe 10 Schriftliche Prüfung Schuljahr: 014/015 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 135 Minuten. Jede

Mehr

Abschlussprüfung Fachoberschule 2014 Herbst Mathematik

Abschlussprüfung Fachoberschule 2014 Herbst Mathematik Abschlussprüfung Fachoberschule 01 Herbst 1 Funktionsuntersuchung /0 Die Absprung- und Tauchphase eines Schwimmers kann vom Absprung vom Startblock bis zum Wiederauftauchen durch den Graphen der Funktion

Mehr

Vergleichsklausur 12.1 Mathematik vom 20.12.2005

Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Mit CAS S./5 Aufgabe Alternative: Ganzrationale Funktionen Berliner Bogen Das Gebäude in den Abbildungen heißt Berliner Bogen und steht in Hamburg. Ein

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

5.5. Abituraufgaben zu ganzrationalen Funktionen

5.5. Abituraufgaben zu ganzrationalen Funktionen .. Abituraufgaben zu ganzrationalen Funktionen Aufgabe : Kurvendiskussion, Fläche zwischen zwei Schaubildern () Untersuchen Sie f(x) x x und g(x) x auf Symmetrie, Achsenschnittpunkte, Extrempunkts sowie

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung 2015. Grundkurs mit CAS Aufgabenvorschlag. Aufgabenstellung 1. Aufgabenstellung 2. Aufgabenstellung 3

Mathematik. Zentrale schriftliche Abiturprüfung 2015. Grundkurs mit CAS Aufgabenvorschlag. Aufgabenstellung 1. Aufgabenstellung 2. Aufgabenstellung 3 Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2015 Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit: Nachschlagewerk zur Rechtschreibung der deutschen Sprache

Mehr

1 x x2 3 mit D f = IR. Teilaufgabe 1.1 (5 BE) Berechnen Sie die Nullstellen der Funktion f und geben Sie das Symmetrieverhalten von G f.

1 x x2 3 mit D f = IR. Teilaufgabe 1.1 (5 BE) Berechnen Sie die Nullstellen der Funktion f und geben Sie das Symmetrieverhalten von G f. Abschlussprüfung Berufliche Oberschule 0 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f( x) x x mit D f = IR. Teilaufgabe. (5 BE) Berechnen Sie die Nullstellen

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Abiturprüfung 2008. Mathematik, Grundkurs

Abiturprüfung 2008. Mathematik, Grundkurs M GK HT 3 Seite 1 von Name: Abiturprüfung 008 Mathematik, Grundkurs Aufgabenstellung: Gegeben ist die Funktion f mit x f( x) = ( x+ 1) e, x IR. Der Graph von f ist in der nebenstehenden Abbildung dargestellt.

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Nur für die Lehrkraft

Nur für die Lehrkraft Senatsverwaltung für Bildung, Jugend und Familie Fach Abschlussprüfung an der Fachoberschule im Schuljahr 06/7 (B) Nur für die Lehrkraft Prüfungstag. Mai 07 Prüfungszeit Zugelassene Hilfsmittel 09:00 :00

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

1 Kurvenuntersuchung /40

1 Kurvenuntersuchung /40 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8

Mehr

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Abschlussprüfung an der Berufsoberschule im Schuljahr 2010/2011

Abschlussprüfung an der Berufsoberschule im Schuljahr 2010/2011 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Berufsoberschule im Schuljahr 00/0 Fach (B) Prüfungstag. Mai 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Nur für die Lehrkraft

Nur für die Lehrkraft Senatsverwaltung für Bildung, Jugend und Wissenschaft Fach Abschlussprüfung an der Fachoberschule im Herbst 0 (A) Nur für die Lehrkraft Prüfungstag 7. November 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine

Mehr

T Nach- bzw. Wiederholungsprüfung:

T Nach- bzw. Wiederholungsprüfung: Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:

Mehr

Abschlussprüfung Berufliche Oberschule 2016 Mathematik 12 Nichttechnik - A I - Lösung x. = x 3 8x

Abschlussprüfung Berufliche Oberschule 2016 Mathematik 12 Nichttechnik - A I - Lösung x. = x 3 8x Abschlussprüfung Berufliche Oberschule Mathematik Nichttechnik - A I - Lösung Teilaufgabe. Gegeben ist die Funktion f mit f( ) Der Graph wir mit G f bezeichnet. 8 und D f IR. Teilaufgabe. ( BE) Ermitteln

Mehr

Extremstellenbestimmung: A'(a) = 50 2a = 0 a = 25 und damit b = 25.

Extremstellenbestimmung: A'(a) = 50 2a = 0 a = 25 und damit b = 25. 6. Anwendungen der Differentialrechnung 6. Extremwertaufgben Eine Größe G hänge von mehreren Variablen ab. Wenn man sich dafür interesssiert, für welche Werte dieser Variablen die davon abhängige Größe

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Mündliches Abitur in IViathematik

Mündliches Abitur in IViathematik Mündliches Abitur in IViathematik Zusatzprüfung: Kurzvortrag mit Prüfungsgespräcti Ziele: Nachweis von fachlichem Wissen und der Fähigkeit, dies angemessen darzustellen erbringen fachlich überfachlich

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2012 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2012 Mathematik Seite 1 von 1 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 01 Mathematik 1. Aufgabenart Analysis. Aufgabenstellung Aufgabe 1: Untersuchung ganzrationaler Funktionen Aufgabe

Mehr

ANALYSIS. 3. Extremwertaufgaben (folgt)

ANALYSIS. 3. Extremwertaufgaben (folgt) ANALYSIS 1. Untersuchung ganzrationaler Funktionen 1.1 Symmetrie 2 1.2 Ableitung 2 1.3 Berechnung der Nullstellen 3 1.4 Funktionsuntersuchung I 4 1.5 Funktionsuntersuchung II 6 2. Bestimmung ganzrationaler

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 205 (ohne CAS) Baden-Württemberg Wahlteil Analysis Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 205 Aufgabe A

Mehr

Nur für die Lehrkraft

Nur für die Lehrkraft Senatsverwaltung für Bildung, Jugend und Familie Fach Abschlussprüfung an der Fachoberschule im Schuljahr 06/7 (A) Nur für die Lehrkraft Prüfungstag 9. Mai 07 Prüfungszeit Zugelassene Hilfsmittel 09:00

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Musteraufgaben Fachoberschule 2017 Mathematik

Musteraufgaben Fachoberschule 2017 Mathematik Musteraufgaben Fachoberschule 07 Funktionsuntersuchung /8 Gegeben ist die Funktion f mit der Funktionsgleichung f(x) = 0,05x 0,75x +,x +,8 und dem Definitionsbereich x [0;0]. Der Graph G f der Funktion

Mehr

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 000 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - GM1. INFINITESIMALRECHNUNG I. 10

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

1. Mathematikklausur NAME:

1. Mathematikklausur NAME: Themen: Ganzrationale Funktionen: Skizzieren, untersuchen bestimmen. 1. Mathematikklausur NAME: Schreiben Sie die Lösung mit dem Lösungsweg auf ein kariertes Doppelblatt. Lassen Sie auf jeder Seite einen

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

Ministerium für Schule und Weiterbildung NRW M GK HT 3 Seite 1 von 5. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Ministerium für Schule und Weiterbildung NRW M GK HT 3 Seite 1 von 5. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Seite 1 von 5 Unterlagen für die Lehrkraft Abiturprüfung 27 Mathematik, Grundkurs 1. Aufgabenart 1 Analysis 2. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage 4. Bezüge zu den Vorgaben 27 1.

Mehr

Zentrale Klausur am Ende der Einführungsphase Mathematik

Zentrale Klausur am Ende der Einführungsphase Mathematik Teil I (hilfsmittelfrei) Seite von Name: Zentrale Klausur am Ende der Einführungsphase Teil I: Hilfsmittelfreier Teil Aufgabe : Analysis 05 Mathematik Die Abbildung zeigt den Graphen der Funktion f mit

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen?

Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen? R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Lösungen VBKA Ganzrationale Funktionen I Zur Vorbereitung einer Klassenarbeit en: A A A A A A A4 A4 n n Was bedeutet: f(x) = a x + a x +... + a x + a x +

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg Pflichtteilaufgaben zu Funktionenkompetenz Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016 1 Übungsaufgaben: Ü1: Die Abbildung zeigt

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f

Mehr

Abschlussprüfung Berufliche Oberschule 2015 Mathematik 12 Nichttechnik - A I - Lösung. y-achse 1

Abschlussprüfung Berufliche Oberschule 2015 Mathematik 12 Nichttechnik - A I - Lösung. y-achse 1 Abschlussprüfung Berufliche Oberschule 0 Mathematik Nichttechnik - A I - Lösung Teilaufgabe Nebenstehende Abbildung zeigt den Graphen G f' der ersten Ableitungsfunktion einer in ganz IR definierten ganzrationalen

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik ZK M A1 (mit CAS) Seite 1 von 5 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 011 Mathematik 1. Aufgabenart Analysis. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage

Mehr

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Aufgabe : Eine zum Ursprung symmetrische ganzrationale Funktion.Ordnung hat im Ursprung die Tangente mit der Gleichung y = 7x und in

Mehr

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation 5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation Aufgabe : Verschiebung und Streckung trigonometrischer Funktionen (5) a) Bestimmen Sie die Periode p sowie die Nullstellen der Funktion

Mehr

Abiturprüfung Baden-Württemberg 1999

Abiturprüfung Baden-Württemberg 1999 c 00 by Rainer Müller - http://www.emath.de Abiturprüfung Baden-Württemberg 999 Grundkurs Mathematik - Analysis Zu jedem t > 0 ist eine Funktion f t gegeben durch f t (x) = 3t x(x 3t) ; x IR Ihr Schaubild

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr