Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Save this PDF as:
Größe: px
Ab Seite anzeigen:

Download "Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014"

Transkript

1 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/04 Fach (A) Prüfungstag 9. Mai 04 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise Spezielle Arbeitshinweise 09:00 - :00 Uhr Mathematische Formelsammlungen (keine selbst angefertigten) ohne Musterlösungen, Taschenrechner ohne Graphikdisplay, keine CAS-Rechner, frei programmierbare Speicher müssen gelöscht sein. Das Handbuch muss vorliegen. Sollte Ihr Taschenrechner die Möglichkeit zum numerischen Differenzieren oder Integrieren bieten oder in der Lage sein, Gleichungen oder Gleichungssysteme zu lösen, dürfen Sie bei Ihren Lösungen davon keinen Gebrauch machen. Ihre Lösungswege sind so zu gestalten und zu dokumentieren, wie sie ohne diese Hilfsmittel durchgeführt werden. Bleistifte dürfen nur für Skizzen benutzt werden. Die Reinschriften und Entwürfe sind nur auf den besonders gekennzeichneten Bögen anzufertigen, die Sie für die Prüfung erhalten. Diese sind zu nummerieren und sofort mit Ihrem Namen zu versehen. Für jede neue Aufgabe ist ein neuer gekennzeichneter Bogen zu beginnen. Schwerwiegende oder gehäufte Verstöße gegen die sprachliche Richtigkeit oder gegen die äußere Form führen zu einem Abzug von bis zu einem Punkt (Malus- Regelung). Bedenken Sie die Folgen einer Täuschung oder eines Täuschungsversuchs! Der Aufgabensatz besteht aus vier verschiedenen Einzelaufgaben, die Sie alle bearbeiten müssen! Gesamtzahl der abgegebenen Lösungsblätter (Reinschrift): Bewertungseinheiten, Gesamtpunkte und Gesamtnote : Blätter Aufgabe Nr.: Soll Ist 8 Ist (ggf. Zweitkorrektur) Summe: 00 Notenpunkte: 5 Punkte Punkte Maluspunkt - Punkt Punkt Insgesamt: Datum, Unterschrift: Punkte Note: Punkte Note: gilt nur für doppelt qualifizierende Bildungsgänge mit Fachhochschulreife

2 Abschlussprüfung Fachoberschule 04 Aufgabenvorschlag A Funktionsuntersuchung /8 Gegeben sei die Funktion f mit der Funktionsgleichung f( x) = x x+ ; x. 8. Untersuchen Sie das Symmetrieverhalten des Graphen von f und begründen Sie Ihre Aussage. Untersuchen Sie das Verhalten der Funktionswerte von f im Unendlichen. /4. Bestimmen Sie die Koordinaten des Schnittpunktes des Graphen von f mit der y-achse. Berechnen Sie die Nullstellen der Funktion f. /7. Bestimmen Sie die Hoch-, Tief- und Wendepunkte des Graphen von f. /5.4 Zeichnen Sie den Graphen von f im Intervall [ 4,5; 4] unter Zuhilfenahme aller ermittelten Punkte. Berechnen Sie auch die Funktionswerte am Rand des Intervalls. Nutzen Sie hierfür das Koordinatensystem auf der folgenden Seite. /5.5 Verschiebt man den Graphen der Funktion f um eine Längeneinheit in Richtung y-achse nach oben, erhält man den Graphen der Funktion g mit der Funktionsgleichung gx ( ) = x x+ ; x. 8 5; 4 vermutet. Eine Nullstelle der Funktion g wird im Intervall [ ] /7 Weisen Sie nach, dass in diesem Intervall wirklich eine Nullstelle liegt. Berechnen Sie einen Näherungswert für diese Nullstelle durch ein geeignetes Verfahren. Brechen Sie die Berechnung nach drei Iterationsschritten ab. Beurteilen Sie die Genauigkeit des von Ihnen berechneten Näherungswertes. Fortsetzung auf der folgenden Seite Aufgabenvorschlag A Abschlussprüfung Fachoberschule 04 Seite von 5

3 A Koordinatensystem zu Aufgabe : Funktionsuntersuchung Aufgabenvorschlag A Abschlussprüfung Fachoberschule 04 Seite von 5

4 A Skisprungschanze /6 0 y Der Anlauf einer Skisprungschanze (siehe Abbildung) soll durch eine ganzrationale Funktion dritten Grades beschrieben werden, so dass der Startpunkt S(0 05) ein Wendepunkt ist und die Tangente im Absprungpunkt A(00 5) die Steigung 0, hat. Dieses Problem ist eindeutig lösbar x. Stellen Sie das Gleichungssystem zur Bestimmung der Koeffizienten dieser Funktion auf. Zur Kontrolle: d = 05 b = a b +00 c + d = a + 00 b + c = 0, /7. Bestimmen Sie die gesuchte Funktionsgleichung mithilfe des obigen Gleichungssystems. Bemerkung: Die Variablen a, b, c, d sind die Koeffizienten der ganzrationalen Funktion. Grades in absteigender Reihenfolge.. Der Schüler Felix hat eine Abschrift der Aufgabenstellung (s. o.) bekommen, in der das Wort dritten unleserlich ist. Trotzdem erkennt er aus den geforderten Eigenschaften, dass es eine ganzrationale Funktion dritten Grades sein muss, wenn man zu einer eindeutigen Lösung kommen möchte. Erläutern Sie, welche mathematischen Überlegungen ihm zu dieser Erkenntnis verhelfen. /6 / Aufgabenvorschlag A Abschlussprüfung Fachoberschule 04 Seite von 5

5 A Pelletspeicher /5 Ein Speicher für Holzpellets (Holzkügelchen als Brennstoff) hat die Form eines Zylinders mit einer aufgesetzten Halbkugel. Der Radius des Zylinders sowie der Radius der Halbkugel ist r, die Höhe des Zylinders ist h. Der Speicher besitzt ein Fassungsvermögen (Volumen) von m. Er ist so konstruiert, dass die Oberfläche des Speichers, bestehend aus der Grund- und Mantelfläche des Zylinders sowie der Oberfläche der Halbkugel (ohne Grundkreis), eine minimale Größe annimmt.. Skizzieren Sie den Körper und zeichnen Sie die Radien r sowie die Höhe h ein. /. Die Oberfläche A des Speichers kann durch einen Funktionsterm mit der Variablen r wie folgt beschrieben werden: Ar ( ) = π r + = π r + 4r r Leiten Sie diesen Funktionsterm her. /7. Bestimmen Sie den Radius r sowie die Höhe h des Speichers mit minimaler Oberfläche. Berechnen Sie die Oberfläche dieses Speichers. /6 Aufgabenvorschlag A Abschlussprüfung Fachoberschule 04 Seite 4 von 5

6 A 4 Augenklinik / Ein Architekt plant auf einem rechteckigen Grundstück den Bau einer Augenklinik mit einem kreisförmigen Innenhof. Von oben sieht das Gebäude wie ein riesiges Auge aus (siehe Abbildung). Das verwendete Koordinatensystem benutzt die südwestliche Ecke des Grundstücks als Koordinatenursprung. Eine Längeneinheit entspricht 00 Metern. Die x-achse verläuft in West-Ost-Richtung und die y-achse in Süd- Nord-Richtung. In diesem Koordinatensystem lassen sich der nördliche und südliche Rand des Gebäudes durch folgende Funktionsgleichungen beschreiben: ( ) = + ( ) n x 0, 5x, 5x 0, 5 und s x = 0, x +, 8x, 99x+,. LE = 00 m n s n s 4. Zeigen Sie, dass die Schnittpunkte der Randfunktionen an den Stellen 0,5 und,5 liegen und geben Sie die Schnittpunkte an. 4. Zwischen dem Gebäude und der südlichen Grundstücksgrenze soll eine Grünfläche angelegt werden, die in der Abbildung hellgrau gefärbt ist. Die östliche und die westliche Grenze der Grünfläche sollen parallel zur y-achse verlaufen. Berechnen Sie den Flächeninhalt dieser Grünfläche und geben Sie das Ergebnis in Quadratmetern an. 4. Das Gebäude erhält ein Flachdach, das in der Abbildung dunkelgrau gefärbt ist. Der Durchmesser des Innenhofs (weiße Kreisfläche) beträgt 50 Meter. Berechnen Sie den Flächeninhalt dieses Daches und geben Sie das Ergebnis in Quadratmetern an. 4.4 Begründen Sie, ohne den Wert des Integrals zu berechnen, dass gilt: ( ( ) ( )) s x n x dx < 0. Dazu benötigte Informationen können der Abbildung entnommen werden. 4 n x dx = erfüllt ist. 5 Berechnen Sie die anderen Lösungen dieser Gleichung. 4.5 Zeigen Sie, dass für b = die Gleichung ( ) b /4 /6 /7 / / Aufgabenvorschlag A Abschlussprüfung Fachoberschule 04 Seite 5 von 5

7 Abschlussprüfung Fachoberschule 04 Erwartungshorizont für Aufgabenvorschlag A Die Anzahl der Bewertungseinheiten für jede Teilaufgabe ist verbindlich. Die Verteilung der Bewertungseinheiten innerhalb einer Teilaufgabe ist der korrigierenden Lehrkraft überlassen. Aufg.. Die Exponenten von x sind sowohl gerade als auch ungerade, der Graph ist weder achsensymmetrisch zur y-achse noch punktsymmetrisch zum Ursprung. oder f( x) f( x), f( x) f( x) Der höchste Exponent der Variablen im Funktionsterm von f ist. Da a im Summand ax positiv ist, verläuft der Graph von minus unendlich nach plus unendlich oder lim f( x) und lim f( x). x x BE in AB Erbrachte Teilleistung I II III BE Begutachtung. Nullstellen: f( x ) = 0 x x+ = 0 x x+ 6 = 0 8 Erste Lösung x N = durch Probieren ( x x+ 6) : ( x ) = x + x 8 Polynomdivision x x 8= 0 p-q-formel x N = 4 ; x N = weitere Nullstellen x N = ; x N = doppeltzählende Nullstelle Schnittpunkt mit y-achse: f(0) = ; S y (0 ) 6 Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite von 9

8 Erwartungshorizont A Aufg.. f ( x) = x = 0 notwendige Bedingung 8 x = ;x = p-q-formel, mögliche Extremstellen E E f ( x) = x 0 hinreichende Bedingung 4 f () = > 0 Minimum bei x E = f ( x) = x< 0 Maximum bei x E = 7 4 f () = 0 Tiefpunkt T ( 0) f ( ) = 4 Hochpunkt H ( 4) Wendepunkt f ( x) = x= 0 notwendige Bedingung 4 x w = 0 f '''( x ) = hinreichende Bedingung 4 f (0) = > 0 Rechts-Links-Wendepunkt bei x w = f (0) = Wendepunkt W (0 ).4 x N = ; x N = 4 ; x N = ; T ( 0) ; H ( 4) ; W (0 ) s.o. f ( 4,5) =, 64 linker Randpunkt L ( 4,5,64) f (4) = 4 rechter Randpunkt R (4 4) BE in AB Erbrachte Teilleistung I II III BE Begutachtung Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite von 9

9 Erwartungshorizont A Aufg..4 BE in AB Erbrachte Teilleistung I II III BE Begutachtung.5 g ( 5) = 5,5 ; g ( 4) = g g liegt Nst. im Intervall [ 5; 4] Wegen ( 5) ( 4) = 5,5 < 0 gx ( n) x = n x + n g'( xn ) Newtonsches Näherungsverfahren gx ( ) = x x+, g'( x ) = x 8 8 Startwert wählen; Berechnung Algorithmus kennen und anwenden (Bem.: Mögliche Lösungen sind unten aufgeführt, auch andere Lösungsansätze sind denkbar.) Je nach Verfahren und Startwert der Berechnung wird eine begründete Aussage darüber getroffen, wie viele Nachkommastellen sich nicht mehr verändern und mit welcher Genauigkeit die Nullstelle deshalb bestimmt wurde. Summe Aufgabe : 5 Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite von 9 5

10 Erwartungshorizont A Anlage zum Erwartungshorizont von Aufgabe : Beispielrechnungen für verschiedene Startwerte zur Kontrolle Beispielrechnung für Startwert -5 xs - erste Näherung -5 xn f(x n ) f'(x n ) xs -5-5,5 7,875 x -4, , , x -4,898-0, ,57456 x -4, ,6E-05 5,90545 x4-4, ,6549E-0 5,8984 Beispielrechnung für Startwert -4 xs - erste Näherung -4 xn f(x n ) f'(x n ) xs -4 4,5 x -4, -0, ,85859 x -4, , ,98874 x -4, ,6975E-09 5,8984 x4-4, ,8984 Beispielrechnung für Startwert -4,5 xs - erste Näherung -4,5 xn f(x n ) f'(x n ) xs -4,5 -, ,0975 x -4,0769-0, ,78 x -4, , , x -4, ,9E-08 5,8986 x4-4, ,8984 Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite 4 von 9

11 f xs(0;6) = z 0 = z 0z 6 - Erwartungshorizont A Aufg. BE in AB Erbrachte Teilleistung I II III BE Begutachtung. Ansatz: f ( x) = ax + bx + cx + d f ( x) = ax + bx + c f ( x) = 6ax + b Information Bedingung () Punkt (0 05) f ( = 05 () Wendestelle 0 f ( 0) = 0 () Punkt (00 5) f ( 00) = 5 (4) Steigung -0, an der Stelle 00 f ( 00) = 0, 4 Gleichungssystem () d = 05 () () a b b + 00 c + d = 0 = 5 (4) 0 000a + 00b + c = 0,. Lösen des Gleichungssystems a = 0,00004 ; b = 0 ; c =,4 ; d = 05 f( x) = 0, 00004x, 4x Es muss eine ganzrationale Funktion. Grades sein, weil dann die Anzahl der zu bestimmenden Koeffizienten (= 4) mit der Anzahl der Bestimmungsgleichungen (= 4) übereinstimmt. Summe Aufgabe : 0 Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite 5 von 9

12 Erwartungshorizont A Aufg.. BE in AB Erbrachte Teilleistung I II III BE Begutachtung. Herleitung zum Nachweis der Zielfunktion Hauptbedingung: Arh (, ) = AKugel + AZylinder AGrundflächeZylinder A( r, h) = π r + π r + π rh π r = π r + π rh Nebenbedingung: V = VKugel + VZylinder V= π r +π rh V h= r = r πr π r Zielfunktion: V V 4 5 V Ar () = π r + π r r r r r = π + π = π + π r r r 5 5 A( r) r Vr = π + = π r + 4r Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite 6 von 9

13 Erwartungshorizont A Aufg.. BE in AB Erbrachte Teilleistung I II III BE Begutachtung 0 Notw. Bedingung für Extremstellen: A'( r) = π r 4r = 0 = V 6 r,8 5π = 5π 0 Hinr. Bedingung für Extremstellen: A''( r) = π + 48r 0 0 ''(,8) 48,8, 47 0 π A = + > Minimum bei r =,8 = V h r,8,0 πr = π,8 r =,8m ; h =,0m 5 Arh = π + π (, ),8,8,0 7,0 Der Speicher hat eine minimale Oberfläche von 7,0m. Summe Aufgabe : 7 5 Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite 7 von 9

14 f xs(0;6) = z 0 = z 0z 6 - Erwartungshorizont A BE in AB Aufg. 4 I II III BE 4. n( 0, 5) = 0, 475 = s( 0, 5) und n(, 5) = 0, = s(, 5) Die Schnittpunkte sind ( 0, 5 0, 475) und (, 5 0, 475) 4 4. Ansatz: 5, A = s x dx = S 5, S 05, 05, ( ) ( ) ( ) Stammfunktion: 4 59 S( x) 0, 05x + x 0, 995x +, x 50 S( 0, 5) 0, 979; S(, 5) = 0, 9796 Flächeninhalt: A = 0, Ergebnis: Die Grünfläche ist 5767m groß Rechenweg Differenzfunktion d( x) = n( x) s( x) = 0, x, 68x +, 49x, 5 Ansatz: 5, I = d x dx = D, 5 D 0, 5 =, , ( ) ( ) ( ) ( ) 4 Stammfunktion: D x = 0, 05x 0, 56x +, 745x, 5x D( 0, 5) = 0, 056; D(, 5) = 0, 748 Kreisfläche: AK 0, 965 Flächeninhalt: A = I A K = 0, 8466 Ergebnis: Die Dachfläche ist 847m groß. 6 Rechenweg Ansatz: Erbrachte Teilleistung Gutachten 5, ( ) ( ) ( ) I = n x dx = N, 5 N 0, 5 =, , Stammfunktion: N( x) = x + 0, 75x, 5x 6 N( 0, 5) 0, 0967; N(, 5), 708 Kreisfläche: AK 0, 965 Flächeninhalt: A = I A A k = 0, 8464 Ergebnis: Die Dachfläche ist 846m groß. Übertrag: Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite 8 von 9

15 - Erwartungshorizont A BE in AB Aufg. 4 I II III BE Übertrag Laut Abb. gilt für alle x ; : n x > s x s x n x < n ( x) dx = N ( ) N ( ) = ; denn 5 [ ] ( ) ( ) ( ) ( ) ( ( ) ( )) s x n x dx < 0 4 N( x) = x + x x N( ) = ; N() = b n ( x) dx = N ( b) N ( ) = b + b b = b + 45b 9b 8 = 0 Horner-Schema (Lösung b = ) Ansatz für weitere Lösungen: -0 x² +5 x +4 = 0 x² -,5 x 4, = x, =,5 ±,796 b = -,96 b =,696 4 Summe Aufgabe 4: Erbrachte Teilleistung Gutachten Erwartungshorizont A Abschlussprüfung Fachoberschule 04 Seite 9 von 9

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (B) Prüfungstag 5. April Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung Fachoberschule 2014 Mathematik

Abschlussprüfung Fachoberschule 2014 Mathematik Abschlussprüfung Fachoberschule 04 Aufgabenvorschlag A Funktionsuntersuchung /8 Gegeben sei die Funktion f mit der Funktionsgleichung f( x) = x x+ ; x. 8. Untersuchen Sie das Symmetrieverhalten des Graphen

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 007 / 008 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 7 / 8 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 008 / 009 Fach (A) Name, Vorname Klasse Prüfungstag 9. April 009 Prüfungszeit Zugelassene Hilfsmittel

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/0 Fach (B) Prüfungstag. Juni 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 00/0 Fach (A) Prüfungstag. Mai 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 00/0 Fach (B) Prüfungstag 6. Juni 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (A) Prüfungstag 5. Mai Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise Spezielle

Mehr

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007 Senatsverwaltung für Bildung, Wissenschaft und Forschung Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr / 7 Name, Vorname: Klasse: Prüfungsfach: Mathematik Prüfungstag:

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 008 / 009 Fach Mathematik (B) Name, Vorname Klasse Prüfungstag 7. Mai 009 Prüfungszeit Zugelassene

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2012/2013

Abschlussprüfung an der Fachoberschule im Schuljahr 2012/2013 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/03 Fach Mathematik (B) Prüfungstag 3. Mai 03 Prüfungszeit Zugelassene Hilfsmittel Allgemeine

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Vergleichsklausur 12.1 Mathematik vom 20.12.2005

Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Mit CAS S./5 Aufgabe Alternative: Ganzrationale Funktionen Berliner Bogen Das Gebäude in den Abbildungen heißt Berliner Bogen und steht in Hamburg. Ein

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2012/2013

Abschlussprüfung an der Fachoberschule im Schuljahr 2012/2013 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/0 Fach Mathematik (A) Prüfungstag 9. April 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Abschlussprüfung an der Fachoberschule im Herbst 2012

Abschlussprüfung an der Fachoberschule im Herbst 2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Fach Name, Vorname Klasse Abschlussprüfung an der Fachoberschule im Herbst 0 (B) Prüfungstag 0..0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Abschlussprüfung an der Fachoberschule im Herbst 2013

Abschlussprüfung an der Fachoberschule im Herbst 2013 Senatsverwaltung für Bildung, Jugend und Wissenschaft an der Fachoberschule im Herbst Fach (A) Prüfungstag. Dezember Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise Spezielle Arbeitshinweise

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 205 (ohne CAS) Baden-Württemberg Wahlteil Analysis Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 205 Aufgabe A

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Freitag, 29. Mai 2009, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

T Nach- bzw. Wiederholungsprüfung:

T Nach- bzw. Wiederholungsprüfung: Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 00 im Fach Mathematik 6. Mai 00 LÖSUNGEN UND BEWERTUNGEN Mittlerer Schulabschluss 00, schriftliche

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Fach Abschlussprüfung an der Fachoberschule im Schuljahr 009/00 Mathematik (B) Name, Vorname Klasse Prüfungstag 4. Juni 00 Prüfungszeit Zugelassene

Mehr

Tag der Mathematik 2012

Tag der Mathematik 2012 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Bepunktung Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK Orientierungsaufgaben für das ABITUR 01 MATHEMATIK Im Auftrag des TMBWK erarbeitet von: Aufgabenkommission Mathematik Gymnasium, Fachberater Mathematik Gymnasium, CAS-Multiplikatoren Hinweise für die Lehrerinnen

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Erfolg im Mathe-Abi 2012

Erfolg im Mathe-Abi 2012 Gruber I Neumann Erfolg im Mathe-Abi 2012 Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Windkraftanlage... 5 2 Heizkosten... 6 3

Mehr

= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung

= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung Abschlussprüfung Fachoberschule () Aufgabenvorschlag B / 4 Gegeben ist die Funktion f mit der Funktionsgleichung 4 f ( x) x x x = + +. Dazu ist ein Rechteck gegeben, dessen Seiten parallel zu den Koordinatenachsen

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Abschlussprüfung Fachoberschule 2016 Mathematik

Abschlussprüfung Fachoberschule 2016 Mathematik Abschlussprüfung Fachoberschule 06 Aufgabenvorschlag A Funktionsuntersuchung /6 Gegeben ist die Funktion f mit der Funktionsgleichung f ( x) = x + x; x IR. Berechnen Sie die Funktionswerte f( x ) für folgende

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2009. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2009. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2009 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung 2015. Grundkurs mit CAS Aufgabenvorschlag. Aufgabenstellung 1. Aufgabenstellung 2. Aufgabenstellung 3

Mathematik. Zentrale schriftliche Abiturprüfung 2015. Grundkurs mit CAS Aufgabenvorschlag. Aufgabenstellung 1. Aufgabenstellung 2. Aufgabenstellung 3 Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2015 Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit: Nachschlagewerk zur Rechtschreibung der deutschen Sprache

Mehr

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für Bildung, Jugend und Sport Prüfung am Ende der Jahrgangsstufe 10 Schriftliche Prüfung Schuljahr: 014/015 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 135 Minuten. Jede

Mehr

Thüringer Kultusministerium

Thüringer Kultusministerium Prüfungstag: Mittwoch, den 07. Juni 2000 Prüfungsbeginn: 8.00 Uhr Thüringer Kultusministerium Realschulabschluss Schuljahr 1999/2000 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer

Mehr

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen H. Gruber, R. Neumann Erfolg im Mathe-Abi Prüfungsaufgaben Hessen Übungsbuch für den Grundkurs mit Tipps und Lösungen - plus Aufgaben für GTR und CAS Inhaltsverzeichnis Inhaltsverzeichnis 1 Ganzrationale

Mehr

Nur für die Lehrkraft

Nur für die Lehrkraft Senatsverwaltung für Bildung, Jugend und Wissenschaft Fach Abschlussprüfung an der Fachoberschule im Schuljahr 0/5 (A) Nur für die Lehrkraft Prüfungstag. Juni 05 Prüfungszeit Zugelassene Hilfsmittel Allgemeine

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

TEST Basiswissen Mathematik für Ingenieurstudiengänge

TEST Basiswissen Mathematik für Ingenieurstudiengänge TEST Basiswissen Mathematik für Ingenieurstudiengänge Erste Fassung März 2013 Dieser Test beinhaltet Aufgaben zu den wesentlichen Themen im Bereich Mathematik, die Basiswissen für ein Ingenieurstudium

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

Nullserie zur Prüfungsvorbereitung

Nullserie zur Prüfungsvorbereitung Nullserie zur Prüfungsvorbereitung Die folgenden Hilfsmittel und Bedingungen sind an der Prüfung zu beachten. Erlaubte Hilfsmittel Beliebiger Taschenrechner (Der Einsatz von Lösungs- und Hilfsprogrammen

Mehr

Kernfach Mathematik Thema: Analysis

Kernfach Mathematik Thema: Analysis Kernfach Mathemati Bahnlinie Bei A-Stadt endet eine Bahnlinie. In nebenstehender Zeichnung ist ein Koordinatenreuz so gelegt worden, dass A mit dem Ursprung zusammenfällt. Die Bahnlinie verläuft entlang

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Fach Abschlussprüfung an der Fachoberschule im Schuljahr 009/00 Mathematik (A) Name, Vorname Klasse Prüfungstag 5. Mai 00 Prüfungszeit Zugelassene

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

/46. Abschlussprüfung Fachoberschule 2013 Mathematik

/46. Abschlussprüfung Fachoberschule 2013 Mathematik Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag B /46 Am. Februar 0 wird um 4:00 Uhr ein Erdbeben mit der Anfangsstärke auf der sogenannten Richter-Skala gemessen. Das Beben dauert etwas länger als

Mehr

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg Baden-Württemberg: Fachhochschulreie 2015 www.mathe-augaben.com Hauptprüung Fachhochschulreie 2015 Baden-Württemberg Augabe 1 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Ergänzungen zum Fundamentum

Ergänzungen zum Fundamentum Matura 2014 - Mathematik - Gymnasium Immensee 2 Ergänzungen zum Fundamentum Abstand eines Punktes zu einer Geraden d = AP v v Substitution ohne Grenzen Mit u = g(x) gilt: f(g(x))dx = 1 u f(u)du Matura

Mehr

Abschlussprüfung Fachoberschule 2015 Mathematik

Abschlussprüfung Fachoberschule 2015 Mathematik Abschlussprüfung Fachoberschule 05 Aufgabenvorschlag A Funktionsuntersuchung /0 Gegeben sei die Funktion f mit der Funktionsgleichung = + ;. f( ),5 5,065 Der Graph von f ist G f.. Untersuchen Sie Gf auf

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011 LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 011 im Fach Mathematik 18. Mai

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Vorstellung Microsoft Mathematics 4.0

Vorstellung Microsoft Mathematics 4.0 Vorstellung Microsoft Mathematics 4.0 Inhaltsverzeichnis Plotten einer Funktion... 3 Lösen von Gleichungen... 5 Lösen von Gleichungssystemen... 6 Der Dreieck-Assistent... 8 Vergleich von Mathematics mit

Mehr

Monatliche Grundgebühr: 5,00 Zeitabhängige Nutzung: Feiertags/Sonntags: 0,04 /min

Monatliche Grundgebühr: 5,00 Zeitabhängige Nutzung: Feiertags/Sonntags: 0,04 /min Aufgabe 1: Wortvorschriften Gib zu den Wortvorschriften je eine Funktionsgleichung an: a) Jeder Zahl wird das Doppelte zugeordnet b) Jeder Zahl wird das um 6 verminderte Dreifache zugeordnet c) Jeder Zahl

Mehr

Abschlussprüfung an der Fachoberschule im Herbst 2013

Abschlussprüfung an der Fachoberschule im Herbst 2013 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Herbst 013 Fach (B) Prüfungstag. November 013 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Widerrufsbelehrung der Free-Linked GmbH. Stand: Juni 2014

Widerrufsbelehrung der Free-Linked GmbH. Stand: Juni 2014 Widerrufsbelehrung der Stand: Juni 2014 www.free-linked.de www.buddy-watcher.de Inhaltsverzeichnis Widerrufsbelehrung Verträge für die Lieferung von Waren... 3 Muster-Widerrufsformular... 5 2 Widerrufsbelehrung

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr