Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Größe: px
Ab Seite anzeigen:

Download "Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de"

Transkript

1 lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP) [Reif, Tyga, Yoshida, 1994]: Ein Entscheidungspoblem egeben: ein System von idealisiet spiegelnden und bechenden optischen Elementen (keine Veluste, keine Beugung, monochom. Licht, etc.); ein Stahl (Anfangsposition & Richtung); und ein Punkt P. Fage: tifft de Stahl (nach endlich vielen Umlenkungen) den Punkt P?. Zachmann ompute-aphik 2 - SS

2 Ein optische ompute Einfache optische Elemente: y 2y y' = y+1 analog: -1 if ( y>0 ) y' = 2.y analog: 2 Daaus kann man komplexe optische Elemente bauen, mit einem Eingangsfenste, und zwei Ausgangsfenste. Zachmann ompute-aphik 2 - SS 08 3 Simulation eine Tuing-Maschine (TM) mittels eines optischen omputes: Ein komplexes Element = ein Zustand eine Tuing-Maschine Das Ausgangsfenste, duch das de Lichstahl das komplexe Element veläßt, entspicht dem nächsten Zustand de TM Binäzahl auf dem Band Lichtstahl mit Koodinaten x,y [0,1] Satz (o. Bew.): Das ARTP ist unentscheidba!. Zachmann ompute-aphik 2 - SS

3 Einschänkung des ARTP: Nu Spiegel die senkecht zu eine Koodinatenachse stehen Satz (o. Bew.): Dieses eingeschänkte ARTP ist in PSPAE!. Zachmann ompute-aphik 2 - SS 08 Komplexität des Ray-Tacings ealistische Szenen 5 [Isobe,.., Shizuya, 2005] Definition (infomell): ealistische Szene Alle Stahlgänge haben eine Intensität i N Intensitäten sind auf allen möglichen Stahlgängen monoton fallend: i1 i2 i2 i1 Alle Objekte haben eine monotone Reflexionschaakteistik: i1 i2 i1! i2! i2 i1 i1! i2! mit i1! i1 i2! i2. Zachmann ompute-aphik 2 - SS

4 Definition: das abstakte Ray-Tacing Poblem in diesem Kontext: Ein Entscheidungspoblem egeben: eine ealistische Szene; zwei ausgezeichnete Objekte S und R; ein e > 0, e N. Fage: ibt es einen Stahlgang von S nach R, so daß eine Intensität > e dot eintifft? Achtung: Dastellung im Folgenden läßt einige technische Details weg!. Zachmann ompute-aphik 2 - SS 08 7 Annahme: man kann zu jedem Tipel von Objekten O1, O2, O3 de Szene in polynomielle Zeit entscheiden, ob es einen Stahlgang O1 O2 O3 gibt. Satz (o. Bew.): Das ARTP ist, mit obige Annahme, in polynomielle Zeit bzgl. de Anzahl de Objekte de Szene lösba. Beweisidee: Algoithmus, de auf dynamischem Pogammieen beuht, und ähnlich wie Dijksta's Algo fü shotest paths funktioiniet.. Zachmann ompute-aphik 2 - SS

5 Aveage-ase Komplexität des Ray-Shootings Annahme: wi vewenden itte als Acceleation Data Stuctue Andee DS gehen analog, nu mühsame Annahme: alle Objekte = Kugeln mit Radius Fage: Wie goß ist die ewatete Anzahl Stahl-Kugel-Schnittests bis zum esten Schnitt Bezeichnungen: S(n) = ewatete Anzahl Schnittests n. Zachmann = Anzahl Kugeln in de Szene ompute-aphik 2 - SS De Poisson sche Punktpozeß Definition: unifome Veteilung von Punkten im Raum n Punkte P1,..., Pn X R3 heißen unifom in X veteilt, wenn fü beliebiges A X gilt P [Pi A] = A,1 i n X wobei A = Vol(A). Definition: homogene Poisson sche Punktpozeß Ein Pozeß, de gemäß obige Definition Punkte unifom veteilt im Raum ezeugt, und fü den gilt n lim = ρ 0, n, X X d.h., die Dichte de Punkte ist konstant, heißt homogene Poisson sche Punktpozeß.. Zachmann ompute-aphik 2 - SS

6 Satz (o. Bew.): Sei A R3, N (A) = Anzahl Punkte in A Dann gilt: P [N (A) = k ] = (ρ A )k ρ A e,k 0 k! 0.3 f(x,2) k=2 f(x,3) f(x,4) k=3 k= P Zachmann 2 4 A 6 8 ompute-aphik 2 - SS Veeinfachende Annahmen zu Analyse Annahme im Folgenden: zu jedem Stahl bekommen wi in ewatete Zeit O(S(n)) eine Sotieung de zu testenden Kugeln entlang des Stahls 0 itte egibt ungefähe Sotieung de zu testenden Kugeln entlang des Stahls Macht man wähend de Tavesieung des ittes implizit Bemekung: die Ezeugung diese ungefähen Sotieung benötigt ewatete Zeit O(S(n)). Zachmann ompute-aphik 2 - SS

7 Einneung: S(n) = Anzahl getestete Kugeln Sei: S (n) = Anzahl umsonst getestete Kugeln Kla: S(n) = S (n) + 1 Fage: S (n) =?. Zachmann ompute-aphik 2 - SS Zwischenziel: Anzahl Punkte in einem Makkaoni Ziel: bestimme F( ) = Wahscheinlichkeit, daß es einen Schnitt zwischen Stahl und eine Kugel mit t De Raum alle Kugeln, mit Schnitt t gibt : 0 t I = I( ) (Zylinde mit Kugelhälften als Kappen) Veeinfachung: venachlässige die Kugelkappen Ändet am Egebnis nichts wesentliches, wie man im Velauf sehen wid Volumen: I = π 2 τ. Zachmann ompute-aphik 2 - SS

8 Wahscheinlichkeit, dass sich kein Kugelmittelpunkt in I befindet, ist: P [t0 > τ ] = e ρ I wobei t0 = este Schnittpunkt, = Dichte de Kugelmittelpunkte Behauptung einfach nachechnen: P [t0 > τ ] = 1! k =1 P [N (I) = k ] = 1! (ρ I )k k =1 k! e ρ I =... = 1 e ρ I (e ρ I 1) = e ρ I Daaus bekommt man die Wahscheinlichkeitsveteilungsfunktion F (τ ) = P [t0 τ ] = 1 P [t0 > τ ] = 1 e ρ I. Zachmann ompute-aphik 2 - SS Beechne daaus die Dichtefunktion f( ) (pobability density function, PDF), daß es einen Schnitt bei genau t0 = gibt f (τ ) = F! (τ ) = ρ I e ρ I = ρπ 2 τ e π 2 τ Ziel im Folgenden: wie goß ist die Anzahl de Kugeln, die umsonst getestet weden?. Zachmann ompute-aphik 2 - SS

9 Anzahl umsonst getestete Kugeln Welche Kugeln weden evtl. umsonst getestet? Annahme: este Schnitt bei t = t0 Also: keine Kugelmittelpunkte s in I(t0) Abe: itte. Zachmann ompute-aphik 2 - SS Wie sieht die Region im Raum aus, die Kugelmittelpunkte enthält, die umsonst getestet weden? M I t=0 t = t0 2 M = π! t0 π 2 t0 = ((s + )2 2 )π t0. Zachmann ompute-aphik 2 - SS

10 Wahscheinlichkeit, daß k Punkte in M liegen, bei bekanntem esten Schnittpunkt: P [t = t0 N (M ) = k ] = (ρ M )k ρ M e k! Wahscheinlichkeit, daß k Punkte in M liegen, bei nicht bekanntem esten Schnittpunkt:! P [N (M ) = k ] = P [t0 = t N (M ) = k ] f (t )dt = t =0! t =0 ρ I e ρ I (ρ M )k ρ M e dt k! =... geometische Veteilung mit q = (! )2 = (1 q )k q. Zachmann ompute-aphik 2 - SS Zusammenfassung: die Wahscheinlichkeit, daß k Kugeln umsonst getestet weden, ist U (k ) = (1 q )k q Die mittlee Anzahl umsonst getestete Kugeln ist 1 S (n) = E [U (k )] = = q!! "2 # s $2 = 1+ mit = Kugelgöße und s = Zellendiagonale Achtung:. Zachmann ompute-aphik 2 - SS 08! " S (n) O

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Übe eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Beat Jaggi, beat.jaggi@phben.ch Abstact Ausgehend von einem veallgemeineten Mittelwet wid eine Zahlenfolge definiet, die eine

Mehr

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007 Fußball Enst-Ludwig von Thadden Ringvolesung Univesität Mannheim, 21. Mäz 2007 1. Abeitsmaktökonomik: 1 Ausgangsbeobachtung: Fußballspiele sind Angestellte wie andee Leute auch. Deshalb sollte de Makt

Mehr

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt teueungskonzept zu Vemeidung des chattenwufs eine Windkaftanlage auf ein Objekt Auto: K. Binkmann Lehgebiet Elektische Enegietechnik Feithstaße 140, Philipp-Reis-Gebäude, D-58084 Hagen, fa: +49/331/987

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Diplomarbeit DIPLOMINFORMATIKER

Diplomarbeit DIPLOMINFORMATIKER Untesuchung von Stöfaktoen bei de optischen Messung von Schaubenflächen Diplomabeit eingeeicht an de Fakultät Infomatik Institut fü Künstliche Intelligenz de Technischen Univesität Desden zu Elangung des

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell Begische Univesität Wuppetal FB B Schumpete School of Economics and Management Makoökonomische Theoie und Politik Übung zu Einfühung in die VWL / Makoökonomie Teil 7: Das IS-LM-Modell Thomas Domeatzki

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein.

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein. Physik anwenden und vestehen: Lösunen 5.3 Linsen und optische Instumente 4 Oell Füssli Vela AG 5.3 Linsen und optischen Instumente Linsen 4 ; da die ildweite b vekleinet wid und die ennweite konstant ist,

Mehr

Lösungshinweise und Bewertungskriterien

Lösungshinweise und Bewertungskriterien 27. Bundeswettbeweb Infomatik, 1. Runde Lösungshinweise und Bewetungskiteien Allgemeines Zuest soll an diese Stelle gesagt sein, dass wi uns seh daübe gefeut haben, dass einmal meh so viele Leute sich

Mehr

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung Makoökonomie 1 Pof. Volke Wieland Pofessu fü Geldtheoie und -politik J.W. Goethe-Univesität Fankfut Pof.Volke Wieland - Makoökonomie 1 Mundell-Fleming / 1 Gliedeung 1. Einfühung 2. Makoökonomische Analyse

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Software Engineering Projekt

Software Engineering Projekt FHZ > FACHHOCHSCHULE ZENTRALSCHWEIZ HTA > HOCHSCHULE FÜR TECHNIK+ARCHITEKTUR LUZERN Softwae Engineeing Pojekt Softwae Requiements Specification SRS Vesion 1.0 Patick Bündle, Pascal Mengelt, Andy Wyss,

Mehr

Modellbasen für virtuelle Behaglichkeitssensoren

Modellbasen für virtuelle Behaglichkeitssensoren Modellbasen fü vituelle Behaglichkeitssensoen Felix Felgne, Lotha Litz felgne@eit.uni-kl.de Technische Univesität Kaiseslauten / Lehstuhl fü Autoatisieungstechnik Ewin-Schödinge-Staße 12, D-67663 Kaiseslauten

Mehr

Strömungs- und Wärmeübergangseffekte. an der rotierenden temperierten Zylinderwelle. unter Beachtung von Geometrieeinflüssen

Strömungs- und Wärmeübergangseffekte. an der rotierenden temperierten Zylinderwelle. unter Beachtung von Geometrieeinflüssen Stömungs- und Wämeübegangseffekte an de otieenden tempeieten Zylindewelle unte Beachtung on Geometieeinflüssen Uniesität de Bundesweh München Fakultät fü Luft- und Raumfahttechnik Institut fü Themodynamik

Mehr

Microscopy for Nanotechnology

Microscopy for Nanotechnology Micoscop fo Nanotechnolog Volesungsskipt: www.cup.uni-muenchen.de/pc/hatschuh Lectues Micoscop fo Nanotechnolog Login: Usename: mnt Passwod: $mnt Klausu am Semesteende Labotou am Semesteende (STM, TM,

Mehr

2 Theoretische Grundlagen

2 Theoretische Grundlagen 2 Theoetische Gundlagen 2.1 Gundlagen de dielektischen Ewämung 2.1.1 Mechanismen de dielektischen Ewämung Die dielektische Ewämung beuht auf de Wechselwikung atomae Ladungstäge elektisch nicht leitende

Mehr

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert -0 - Kapiel Kapialwe und Endwe Kapielübesich. De Ein-Peioden-Fall. De Meh-Peioden-Fall. Diskonieung. Veeinfachungen.5 De Unenehmenswe.6 Zusammenfassung und Schlussfolgeungen -. De Ein-Peioden-Fall: Endwe

Mehr

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

Zur Gleichgewichtsproblematik beim Fahrradfahren

Zur Gleichgewichtsproblematik beim Fahrradfahren technic-didact 9/4, 57 (984). u Gleichgewichtspoblematik beim Fahadfahen Hans Joachim Schlichting Gleichgewicht halten ist die efolgeichste Bewegung des Lebens. Beutelock. Einleitung Die physikalische

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre:

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre: z Pof. D. Johann Gaf Lambsdoff Univesität Passau WS 2007/08 Pflichtlektüe: Engelen, C. und J. Gaf Lambsdoff (2006), Das Keynesianische Konsensmodell, Passaue Diskussionspapiee N. V-47-06, S. 1-7. 8. Tansmissionsmechanismen:

Mehr

2.4 Dynamik (Dynamics)

2.4 Dynamik (Dynamics) .4 Dynaik (Dynaics) Def.: In de Dynaik wid die Kaft als Usache de Bewegung betachtet, hie wid die Statik (.) it de Kineatik (.3) zusaengefüht. Inhalt: Bewegungsgleichungen, Enegiesatz, Abeit, Leistung,

Mehr

Übung 10. Das Mundell-Fleming-Modell

Übung 10. Das Mundell-Fleming-Modell Univesität Ulm 89069 Ulm Gemany Dipl.-Kfm. Philipp Buss Institut fü Witschaftspolitik Fakultät fü Mathematik und Witschaftswissenschaften Ludwig-Ehad-Stiftungspofessu Wintesemeste 2013/2014 Übung 10 Das

Mehr

Exkurs: Portfolio Selection Theory

Exkurs: Portfolio Selection Theory : Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

Die Kolam-Figuren Südindiens

Die Kolam-Figuren Südindiens ETHNOMATHEMATIK z Die Kolam-iguen Südindiens Die Schwellenzeichnungen von Tamil Nadu sind übe Jahhundete hinweg nu mündlich übeliefet woden; abe in ihnen steckt Mathematik, die est duch modene Konzepte

Mehr

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von Unvebindliche Mustebeechnung fü den Wealthmaste Classic Plan von Die anteilsgebundene Lebensvesicheung mit egelmäßige Beitagszahlung bietet Ihnen die pefekte Kombination aus de Sicheheit eine Kapitallebensvesicheung

Mehr

Von der Fakultät für Maschinenbau, Verfahrens- und Energietechnik der Technischen Universität Bergakademie Freiberg. genehmigte.

Von der Fakultät für Maschinenbau, Verfahrens- und Energietechnik der Technischen Universität Bergakademie Freiberg. genehmigte. Auslegung von Mikowellen-Themopozess-Anlagen unte Nutzung von hochfequenz-technischen Pinzipien - am Beispiel eines Entbindeungsofens fü keamische Günköpe Von de Fakultät fü Maschinenbau, Vefahens- und

Mehr

funkschau Sicherheit im Visier Vergleichstest Monitoring M2M

funkschau Sicherheit im Visier Vergleichstest Monitoring M2M K m m u n i k a t i n s t e c h n i k f ü P f i s funkschau Ausgabe 19/2014 10. Oktbe 2014 6,00 sf 10,00 funkschau.de Sicheheit im Visie Spagat zwischen Mbilität und Sicheheit Wettbewebsvteil: Deutsche

Mehr

Grundlagen der Berichterstattung:

Grundlagen der Berichterstattung: Gundlagen de Beichtestattung: Fima: F. Hoffmann-La Roche AG o Inklusive TAVERO AG (100 % Roche Tochte: Tagesvepflegung und weitee Sevices) Aeal: Roche-Aeal in Basel (Genzachestasse) o Fü einige de Daten

Mehr

TECHNISCHE UNIVERSITÄT HAMBURG - HARBURG

TECHNISCHE UNIVERSITÄT HAMBURG - HARBURG TECHNISCHE UNIVERSITÄT HAMBURG - HARBURG Abeitsbeeich Theoetische Elektotechnik Pof. D. sc. techn. C. Schuste Paktikumsvesuch: Schimdämpfung PRAKTIKUMSVERSUCH: SCHIRMDÄMPFUNG Ot de Duchfühung: TUHH Habuge

Mehr

6. Arbeit, Energie, Leistung

6. Arbeit, Energie, Leistung 30.0.03 6. beit, negie, Leitung a it beit? Heben: ewegung Halten: tatich g g it halten: gefühlte beit phikalich: keine beit Seil fetbinden: Haltepunkt veichtet keine beit. Mit Köpegewicht halten: keine

Mehr

Einführung in die Vektoranalysis

Einführung in die Vektoranalysis Einfühung in die Vektoanalysis Eckad Specht Otto-von-Gueicke-Univesität Magdebug Geschieben fü Matoids Matheplanet Vesion 2.2 www.matheplanet.com Novembe 25. Einleitung. Studenten stömen seit einigen Wochen

Mehr

Dynamisches Verhalten einer Asynchronmaschine

Dynamisches Verhalten einer Asynchronmaschine ehtuhl fü Elektiche Antiebe und Mechatonik Pof. D.-ng. D.-ng. S. Kulig Paktikumveuch BENT 6 Dynamiche Vehalten eine Aynchonmachine c S-EAM (9) Veuchthematik Die Aynchonmachine, die übe eine Welle mit eine

Mehr

Zero-sum Games. Vitali Migal

Zero-sum Games. Vitali Migal Sena Gaphentheoe und Kobnatok Wnteseeste 007/08 Zeo-su Gaes Vtal Mgal 1 Inhaltsvezehns 1. Enletung... 3. Dastellung von Spelen... 3 3. Stategen... 4 4. Spele t unvollständge Infoaton... 9 1. Enletung Als

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Preise, Form und Farbe: Fallstricke zwischen Verordnung und Einnahme von Arzneimitteln

Preise, Form und Farbe: Fallstricke zwischen Verordnung und Einnahme von Arzneimitteln Peise, Fom und Fabe: Fallsticke zwischen Veodnung und Einnahme von Azneimitteln Seit Jahen ist die Tendenz im Gesundheitswesen unvekennba, dass andee Akteue imme meh ökonomische und egulatoische Ringe

Mehr

NEUEINSTELLUNG GERINGFÜGIG BESCHÄFTIGTE (Minijob bis 450,00 )

NEUEINSTELLUNG GERINGFÜGIG BESCHÄFTIGTE (Minijob bis 450,00 ) Fima: Pesönliche Angaben: Familienname, Voname Gebutsdatum Familienstand Anschift (Staße, Hausnumme, PLZ, Ot) Staatsangehöigkeit Rentenvesicheungsnumme Gebutsname Gebutsot Beschäftigung: Ausgeübte Tätigkeit:

Mehr

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D.

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D. Anatomsche, physkalsche und funktonelle Modelle des menschlchen Köpes Gundlagen de Modelleung Vsualseung Venetzung Vsualseung Was soll dagestellt weden? Medznsche Blddaten (CT, MT, Photogaphe,...) Anatome

Mehr

Finanzmathematik Kapitalmarkt

Finanzmathematik Kapitalmarkt Finanzmathematik Kapitalmakt Skiptum fü ACI Dealing und Opeations Cetificate und ACI Diploma In Zusammenabeit mit den ACI-Oganisationen Deutschland, Luxemboug, Östeeich und Schweiz Stand: 02. Apil 2010

Mehr

Multiple Vergleiche mit der SAS-Prozedur MIXED

Multiple Vergleiche mit der SAS-Prozedur MIXED Multiple Vegleiche mit de SAS-Pozedu MIXED Eich Schumache Mac Weime Institut fü Angewandte Mathematik und Statistik Deutsches Kebsfoschungszentum Univesität Hohenheim Im Neuenheime Feld 80 70593 Stuttgat

Mehr

4. Energie, Arbeit, Leistung

4. Energie, Arbeit, Leistung 4 43 4. Enege, Abet, Letung Zentale Gößen de Phyk: Bepel: Bechleungung F Annahe: kontante Kaft F Bechleungung: a Enege E, Enhet Joule ( [J] [] [kg / ] zuückgelegte eg: at E gbt zwe gundätzlche Foen on

Mehr

Optimierung der Lagerhaltung im. bearbeitet von. betreut von. Prof. Dr. Oliver Vornberger. Am Grewenkamp 19

Optimierung der Lagerhaltung im. bearbeitet von. betreut von. Prof. Dr. Oliver Vornberger. Am Grewenkamp 19 Fachbeeich Mathematik/Infomatik Optimieung de Lagehaltung im Kaftfahzeugteile-Gohandel Diplomabeit beabeitet von Diete Stumpe beteut von Pof. D. Olive Vonbege 2. Apil 1996 Diete Stumpe Am Gewenkamp 19

Mehr

Technisches Zeichnen Technische Kommunikation. Informationsband. Grund- und Fachbildung Metall. EUROPA-FACHBUCHREIHE für Metallberufe. 7.

Technisches Zeichnen Technische Kommunikation. Informationsband. Grund- und Fachbildung Metall. EUROPA-FACHBUCHREIHE für Metallberufe. 7. EUROP-FCHUCHREIHE fü Metallbeufe echnisches Zeichnen echnische Kommunikation Gund- und Fachbildung Metall Infomationsband. uflage Euopa-N.: VERLG EUROP-LEHRMIEL. Nouney, Vollme GmbH & Co. KG Düsselbege

Mehr

Licht und Heizung bleiben an

Licht und Heizung bleiben an Anne Allex, Götz Renge und Anton Schweige: Licht und Heizung bleiben an auch bei wenig Geld 20 20 C 10 10 C 0 C 0 Anne Allex AutoInnen Anne Allex geb. 29. Dezembe 1958 in Belin-Mitte Studium de Witschaftswissenschaften,

Mehr

2 Mechanik des Massenpunkts und starrer Körper

2 Mechanik des Massenpunkts und starrer Körper 8 Mechanik des Massenpunks und sae Köpe MEV Mechanik des Massenpunks und sae Köpe Bewegung In diese Kapiel geh es u Bewegung: Geschwindigkei, Beschleunigung, Roaion ec Und zwa nu u den Velauf de Bewegung,

Mehr

Versuchsumdruck. Impulse auf Leitungen Simulation der Messergebnisse mit PSpice

Versuchsumdruck. Impulse auf Leitungen Simulation der Messergebnisse mit PSpice Hocscule STUDIENGANG ELEKTRO-UND INFORMATIONSTECHNIK Blatt von 3 Ascaffenbug Pof. D.-Ing. U. Boctle, Dipl.-Ing. Hans Hitzinge, Amin Hut Vesuc 4/5 Paktikum Scaltungstecnik I Vesion.0 vom 7.0.003 Vesucsumduck

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Frässtifte 202 202 202

Frässtifte 202 202 202 Fässtifte 1 Fässtifte Inhaltsvezeichnis Inhalt Seite Allgemeine Infomationen 3 De schnelle Weg zum optimalen Wekzeug 4 Antieb Inhalt Seite HM-Fässtifte fü univeselle Anwendungen (HM = Hatmetall) HM-Fässtifte

Mehr

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven Das Zwei-Köe-Poblem 9 Woche_Skitoc, /5 agange-gleichngen, Integale e Bewegng, Bahnkven Betachtet ween wei Pnktmassen m n m an en Oten (t n (t, ie übe ein abstansabhängiges Potenial U( miteinane wechselwiken

Mehr

P. Knoll, Vorlesung: Raman- und Infrarot-Spektroskopie, 2std. SS 2004 Seite 1. VORLESUNG und UE. P. Knoll. Vorbesprechung

P. Knoll, Vorlesung: Raman- und Infrarot-Spektroskopie, 2std. SS 2004 Seite 1. VORLESUNG und UE. P. Knoll. Vorbesprechung P. Knoll, Volesung: Raman- und Infaot-Spektoskopie, std. SS 4 Seite 1 VORLESUNG und UE P. Knoll RAMAN- UND INFRAROT-SPEKTROSKOPIE LVA: 437783 (VO) std., 4377 (UE) std. Vobespechung Ot: HS411, Univesität

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen leomagneische Wellen In einem Wechselsomeis mi Spule und Kondensao (Schwingeis wechsel die negie peiodisch wischen -Feld im Kondensao und -Feld in de Spule. Spule und Kondensao sind geschlossen aufgebau

Mehr

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum

Mehr

C# Programm: Raytracer (3D Renderer)

C# Programm: Raytracer (3D Renderer) C# Programm: Raytracer (3D Renderer) Hiermit verbrachten wir die letzte Einheit in C# des Informatikunterrichtes. Dieser Raytracer ist ein Programm, das nur mit wenigen Informationen über einen Raum, der

Mehr

Das makroökonomische Grundmodell

Das makroökonomische Grundmodell Univesität Ulm 89069 Ulm Gemany Dipl.-WiWi Sabina Böck Institut fü Witschaftspolitik Fakultät fü Mathematik und Witschaftswissenschaften Ludwig-Ehad-Stiftungspofessu Wintesemeste 2008/2009 Übung 3 Das

Mehr

1 Vom Problem zum Programm

1 Vom Problem zum Programm 1 Vom Problem zum Programm Ein Problem besteht darin, aus einer gegebenen Menge von Informationen eine weitere (bisher unbekannte) Information zu bestimmen. 1 Vom Problem zum Programm Ein Algorithmus ist

Mehr

HyperCoat CTPM125 DE

HyperCoat CTPM125 DE HypeCoat DE CEATIZIT secets of success Secets of success CEATIZIT ist de Patne fü anspuchsvollste Hatstofflösungen. Hatstoffe und Wekzeuge von CEATIZIT - das sind einzigatige Lösungen, die integative Bestandteil

Mehr

Endbericht zum Forschungs- und Entwicklungsvorhaben ISIMAT. Interaktives Schiffsverkehrsmanagement-Tool. Teilprojekt 2:

Endbericht zum Forschungs- und Entwicklungsvorhaben ISIMAT. Interaktives Schiffsverkehrsmanagement-Tool. Teilprojekt 2: zum Foschungs- und Entwicklungsvohaben ISIMAT Inteaktives Schiffsvekehsmanagement-Tool Teilpojekt 2: Stuktuen, Schnittstellen, Domänenstategie Hambug, den 3.0.2006 Das diesem Beicht zugunde liegende Vohaben

Mehr

Grundlagen der Betriebswirtschaft

Grundlagen der Betriebswirtschaft Gundlagen de Betiebswitschaft Wi wollen in unsem Wissen vom Gebauch de Spache eine Odnung hestellen: eine Odnung zu einem bestimmten Zweck (z.b. Veständnis de betiebswitschaftlichen Gundlagen; eine von

Mehr

Wisconsin Works: Ein Modell zukunftsorientierter Sozialpolitik

Wisconsin Works: Ein Modell zukunftsorientierter Sozialpolitik Wisconsin Woks: Ein Modell zukunftsoientiete Sozialpolitik Vobemekung und Bewetung D. Wilfied Pewo und D. Dik Fanke Die Sozialhilfe-Refom in den USA ist in vollem Gang. Viele Bundesstaaten haben mit Refomen

Mehr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr Aufgabe 8.1: Zeigerverdopplung Ermitteln Sie an folgendem Beispiel den Rang für jedes Listenelement sequentiell und mit dem in der Vorlesung vorgestellten parallelen

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

Anstelle einer Schlichtung kann auf Antrag sämtlicher Parteien eine Mediation durchgeführt werden.

Anstelle einer Schlichtung kann auf Antrag sämtlicher Parteien eine Mediation durchgeführt werden. M u s t e v o l a g e fü Fodeungsklage aus Abeitsecht (Steitwet bis maximal 30'000.--, das Vefahen ist kostenlos) HINWEIS: Vo Eineichung de Klage beim Geicht, muss das Schlichtungsvefahen vo de zentalen

Mehr

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung.

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung. Neufaung de Studienodnung (Satzung) fü den Bachelo- und den konekutiven Mate-Studiengang de Witchaftinfomatik am Fachbeeich Witchaft de Fachhochchule Kiel Aufgund de 86 Ab. 7 de Hochchulgeetze (HSG) in

Mehr

Dr. Jürgen Faik: Vorlesungsskriptum Betriebswirtschaftslehre

Dr. Jürgen Faik: Vorlesungsskriptum Betriebswirtschaftslehre D. Jügen Faik E-Mail: jfaik@web.de D. Jügen Faik: Volesungsskiptum Betiebswitschaftslehe PLEASE DO NOT QUOTE!!! Fankfut am Main im Septembe 004 Gliedeung 1. Gundlagen und Begiff de BWL 1.0 Zum Begiff des

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert:

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert: Winteseeste 009 / 00 FK Wäeleitung I teodynaiscen Gleicgewict: Sind die beiden Seiten auf untesciedlice Tep., so fließt ein Wäesto. Diese ist popotional zu Tepeatudiffeenz TT -T, zu Quescnittsfläce A,

Mehr

10. Deutsches MesseForum 2006 Messen: Marktplätze für Innovationen

10. Deutsches MesseForum 2006 Messen: Marktplätze für Innovationen www.auma-messen.de E D I T I O N 2 4 Ausstellungs- und Messe-Ausschuss de Deutschen Witschaft e.v. Littenstaße 9 10179 Belin Telefon (030) 24 000-0 Telefax (030) 24 000-330 10. Deutsches MesseFoum 2006

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4 Mai 2010 - An alle Haushalte oe, T h Me sen: n i Z meh % 5 2, 3. Jah im 4 VR-FinalSpaen Unse Anlagepodukt spielt Ihnen beeits vo dem esten Anstoß de Fußball-Weltmeisteschaft 2010 in Südafika einen exklusiven

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Supply Chain Management

Supply Chain Management 1 Supply Chan Management Supply Chan Metcs - The key to mpovement - Lay Lapde: What About Measung Supply Chan Pefomance? (Potal ode http://www.ascet.com/) http://www.supply-chan.og/ (SCOR Model) Supply

Mehr

Mechanik II Prof. Popov SS 09 Seite 1 Aufgabenkatalog Kinematik und Kinetik

Mechanik II Prof. Popov SS 09 Seite 1 Aufgabenkatalog Kinematik und Kinetik Mechanik II Pof. Popov SS 09 Seite 1 Vowot uf den foenden Seiten ist de ufabenkatao fü Mechanik 2 abeduckt, aus de jede Woche ufaben fü die Goße Übun, die Tutoien und das eienständie beiten ausewäht weden.

Mehr

... als Teil der Finanzplanung

... als Teil der Finanzplanung Liquiditätsplan ... als Teil de Finanzplanung Liquiditätsstatus Kuzfistig 1 Woche bis 1 Monat Planungseinheit: Tag Finanzplan i.e.s. mittelfistig 1 Jah Planungseinheit: Woche o. Monat Kapitalbedafsplan

Mehr

Auswahl der DAM-Software. Die DAM-Benutzeroberfläche. DAM-Software für weitere Aufgaben nutzen. Verwalten des Archivs. Weitere DAM-Funktionen

Auswahl der DAM-Software. Die DAM-Benutzeroberfläche. DAM-Software für weitere Aufgaben nutzen. Verwalten des Archivs. Weitere DAM-Funktionen Auswahl de DAM-Softwae Die DAM-Benutzeobefläche DAM-Softwae fü weitee Aufgaben nutzen Vewalten des Achivs Weitee DAM-Funktionen Fallstudien 201 Die Bildvewaltungssoftwae 7 Dieses Kapitel soll Ihnen eine

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

on von Strömung Milovan Perić CD-adapco Nürnberg Office www.cd-adapco.com

on von Strömung Milovan Perić CD-adapco Nürnberg Office www.cd-adapco.com Gekoppelte Simulatio on von Strömung und Bewegung umströmter Körper Milovan Perić CD-adapco Nürnberg Office www.cd-adapco.com Milovan.Peric@de.cd-a cd-a adapco.comcom Inhalt Gekoppelte Simulation von Strömung

Mehr

Wirtschaft in Mittelnassau

Wirtschaft in Mittelnassau Industie- und Handelskamme Limbug Febua 2014 Mäz 2014 IHK-Wahl 2014 Die Witschaft hat gewählt Witschaft in Mittelnassau Schwepunktthema Deutschland im Wettbeweb: Gutes sichen Neues wagen Regionale Umfage

Mehr

3D Grafik mit TrueSpace 5. Crashkurs März 2013. März 2013 Einführung in die 3D-Bearbeitung - 2012 Frank Kaden 1/26

3D Grafik mit TrueSpace 5. Crashkurs März 2013. März 2013 Einführung in die 3D-Bearbeitung - 2012 Frank Kaden 1/26 3D Grafik mit TrueSpace 5 Crashkurs März 2013 März 2013 Einführung in die 3D-Bearbeitung - 2012 Frank Kaden 1/26 3D Grafik mit TrueSpace dreidimensionales Visualisierungs-, Modellier-, Animationsprogramm

Mehr

Diplomarbeit der Philosophisch-naturwissenschaftlichen Fakultät. vorgelegt von. Michael Held

Diplomarbeit der Philosophisch-naturwissenschaftlichen Fakultät. vorgelegt von. Michael Held Scipting fü CORBA Diplomabeit de Philosophisch-natuwissenschaftlichen Fakultät de Univesität Ben vogelegt von Michael Held 1999 Leite de Abeit: Pof. D. Osca Niestasz Institut fü Infomatik und angewandte

Mehr

Optimale Strategien beim Spiel Rot und Schwarz

Optimale Strategien beim Spiel Rot und Schwarz Fachbereich 6-Mathematik Seminar Spieltheorie und Glücksspiele Sommersemester 09 Optimale Strategien beim Spiel Rot und Schwarz Verfasser Tatiana Wandraj 29. August 2009 Betreuer Prof. Dr. Alfred Müller

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Unsere Energiezukunft III

Unsere Energiezukunft III Unsee Enegiezukunft III Zusammenfassung des Pogessia-Enegie-Podiums vom 1. Mäz 2012 Bei den nachstehenden Enegiewandlungskonzepten gilt de Vosatz - Die lokal vohandenen Enegieessoucen (Sonne, Wind, Geothemie,

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

09/2011. Gründungswerkstatt. Die magische Drei. Von Top-Journalisten lernen. Neues Online-Werkzeug der IHK hilft nicht nur Existenzgründern

09/2011. Gründungswerkstatt. Die magische Drei. Von Top-Journalisten lernen. Neues Online-Werkzeug der IHK hilft nicht nur Existenzgründern 09/2011 Gündungswekstatt Neues Online-Wekzeug de IHK hilft nicht nu Existenzgünden Die magische Dei Gedanken übe eine faszinieende Zahl Von Top-Jounalisten lenen Alexande Niemetz und Wolfgang Weime auf

Mehr

Optisches Multi-Sensor-Messverfahren zur dimensionellen in-line Messung von Strangprofilen im Fertigungsprozess

Optisches Multi-Sensor-Messverfahren zur dimensionellen in-line Messung von Strangprofilen im Fertigungsprozess Optisches Multi-Senso-Messvefahen zu dimensionellen in-line Messung von Stangpofilen im Fetigungspozess De Technischen Fakultät de Univesität Elangen-Nünbeg zu Elangung des Gades D O K T O R I N G E N

Mehr

VII. Bilanz und Erfolgsanalyse

VII. Bilanz und Erfolgsanalyse Untenehmensfinanzieun Wintesemeste 20/2 Pof. D. Alfed Luhme VII. Bilanz und Efolsanalyse Bewetunsmodelle fü bösenoientiete Untenehmen Wachstum, Eienkapitalentabilität und Dividendenpolitik Das Poblem de

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

VU Quantitative BWL. 1.Teil: Produktion und Logistik [Stefan Rath] 2.Teil: Finanzwirtschaft [Tomáš Sedliačik] Quantitative BWL: Finanzwirtschaft

VU Quantitative BWL. 1.Teil: Produktion und Logistik [Stefan Rath] 2.Teil: Finanzwirtschaft [Tomáš Sedliačik] Quantitative BWL: Finanzwirtschaft VU Quanave BWL.Tel: odukon und Logsk [Sefan Rah] 2.Tel: Fnanzwschaf [Tomáš Sedlačk] Quanave BWL: Fnanzwschaf Ogansaosches De LV beseh aus zwe Telen:. Tel: odukon und Logsk [4.0.203 22..203] Sefan Rah Insu

Mehr

Funds Transfer Pricing. Daniel Schlotmann

Funds Transfer Pricing. Daniel Schlotmann Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd

Mehr

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar Workshop: Einführung in die 3D-Computergrafik Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar 1 Organisatorisches Tagesablauf: Vormittags: Theoretische Grundlagen Nachmittags: Bearbeitung

Mehr

Das Risiko ist jedoch nicht nur vom Risiko der einzelnen Aktien, sondern auch von deren Kovarianz abhängig: Bsp. 2-Aktien-Portfolio.

Das Risiko ist jedoch nicht nur vom Risiko der einzelnen Aktien, sondern auch von deren Kovarianz abhängig: Bsp. 2-Aktien-Portfolio. SBWL GK nanzwtschaft Schedelseke otefeulletheoe Ene Enfühung. akowtz-odell (a) nnahen De Entschedungen de Investoen snd ewels auf ene eode gechtet. Investoen vefügen übe subektve Wahschenlchketsvostellungen

Mehr