Speicher Virtuelle Speicherverwaltung. Speicherverwaltung

Größe: px
Ab Seite anzeigen:

Download "Speicher Virtuelle Speicherverwaltung. Speicherverwaltung"

Transkript

1 Speicherverwaltung Die Speicherverwaltung ist derjenige Teil eines Betriebssystems, der einen effizienten und komfortablen Zugriff auf den physikalischen Arbeitsspeicher eines Computer ermöglicht. Je nach Einsatzbereich des Computers werden unterschiedliche Speicherverwaltungsmechanismen verwendet. Direkte Speicherverwaltung In vielen Embedded Systems wird nur ein Prozess, also nur ein Programm zur gleichen Zeit ausgeführt. Dieser Prozess hat dann exklusiven Zugriff auf den physikalischen Arbeitsspeicher und kann diesen direkt adressieren. Eine Verwaltung des Speichers ist in diesen Computern trivial und besteht darin die angeforderte Adresse über den Adressbus zugänglich zu machen. Segmentierung In Systemen mit wenig Arbeitsspeicher aber mehreren aktiven Prozessen wird das System der Segmentierung angewendet. Dabei wird der Arbeitsspeicher in feste Segmente eingeteilt. Alle Prozesse haben Kenntnis über die feste Einteilung. Die Speicherverwaltung kann nun ganze Segmente, wie z.b. das Programmsegment, wenn ein Prozess gerade nicht rechnend ist, auf langsameren z.b. Festplattenspeicher auslagern. Diese Art der Speicherverwaltung war in den Anfängen der Entwicklung von Computern weit verbreitet. Das Betriebssystem MS-DOS nutzte anfangs ausschließlich die Segmentierung. Virtuelle Speicherverwaltung Die beiden beschriebenen Varianten haben die Einschränkung, dass die aktiven Prozesse selbst niemals mehr Speicherplatz belegen dürfen als physikalisch zur Verfügung steht. Um dieses durch immer komplexere Programme entstandene Problem zu lösen, wurde das Prinzip der virtuellen Speicherverwaltung entwickelt. Dabei verwenden Prozesse nur noch virtuelle und keine physikalischen Adressen mehr. Die Umsetzung der virtuellen Adresse in eine physikalische Adresse übernimmt die Memory Management Unit. Die virtuelle Speicherverwaltung ist heute in beinahe jedem modernen Betriebssystem verwirklicht. Quelle: Seite 1

2 Virtueller Adressraum Der virtuelle Adressraum oder auch virtuelle Speicher bezeichnet in der Computertechnik den Adressraum, der einem Prozess für Daten als auch für das Programm selbst vom Betriebssystem zur Verfügung gestellt wird. Nur die Betriebssysteme, die eine virtuelle Speicherverwaltung verwenden, können einen virtuellen Adressraum generieren und dadurch Speicherseiten, die physikalisch nicht zusammenhängend sind, für den Programmierer bzw. das Programm als logisch zusammenhängenden Speicherbereich abbilden. Die virtuelle Speicherverwaltung ermöglicht weiterhin die Implementierung von Speicherschutzmechanismen. So erlauben beispielsweise Linux und Windows bis zu 4 Gigabyte große Programme und die Verarbeitung eines ebenso großen Speicherbereichs, obwohl nur 256 Megabyte physikalischer Arbeitsspeicher zur Verfügung steht. Die Umsetzung der verwendeten virtuellen Adressen auf die physikalische Adresse wird durch die Memory Management Unit des Betriebssystem erreicht. Prozesse können somit Adressen verwenden, die theoretisch auf dem Rechner nicht existieren können. Die Größe des Virtuellen Adressraums kann aus der Definition der Virtuellen Adresse berechnet werden. So ist beispielsweise in einer IA-32-Architektur eine Virtuelle Adresse 32 Bit breit, je 10 Bit für eine zweistufige Seitentabelle und 12 Bit für das Offset. Somit lassen sich Byte adressieren. Das entspricht 2 32 Byte, also 4 Gigabyte. Quelle: Seite 2

3 Paging Als Paging (im engl. abgeleitet von page (dt. Speicherseite)) bezeichnet man eine Methode der Hauptspeicherverwaltung durch Betriebssysteme. Dabei wird häufig aus Effizienzgründen die so genannte Memory Management Unit des Prozessors eingesetzt, sofern der Prozessor eine solche bereitstellt. Sehr häufig wird der Begriff Paging im deutschen Sprachraum allerdings synonym mit der gesamten virtuellen Speicherverwaltung gebraucht. Dieser Sprachgebrauch ist jedoch unpräzise, da das Paging nur einen - wenn auch zentralen - Aspekt der virtuellen Speicherverwaltung ausmacht. Zu unterscheiden ist das Paging jedoch deutlich vom Swapping, da letzteres nicht nur auf Speicherseiten, sondern auf ganze Segmente des Speichers ausgeführt wird und somit Teil der Segmentierung ist. Zweck des Pagings Das wesentliche Problem, das durch Paging gelöst wird, ist das Problem der externen Fragmentierung. Dieses Problem ist das folgende: Jedem Prozess wird vom Betriebssystem ein Adressraum zugeordnet. Würde es sich hierbei um einen zusammenhängenden Hauptspeicherbereich handeln, so entstünden im Lauf der Zeit zwischen den Adressräumen der Prozesse Lücken, da neue Prozesse zumeist nicht dieselbe Speichermenge benötigen wie beendete Prozesse und diese somit nicht eins zu eins ersetzen können. Eine regelmäßige Neuordnung des Speichers (Kompaktifizierung genannt) wäre zwar möglich, aber sehr aufwändig. In erster Näherung kann man das Problem lindern, indem man die Prozesse segmentiert, d.h. nicht einen einzigen zusammenhängenden Adressraum, sondern mehrere kleinere Segmente an die Prozesse vergibt. Dies würde die externe Fragmentierung jedoch nicht vollständig beseitigen. Das Paging hingegen beseitigt die externe Fragmentierung gänzlich. Funktionsweise Beim Paging werden logischer Speicher und physikalischer Speicher unterschieden. Der logische Speicher beschreibt die Organisation des Hauptspeichers aus Programmsicht. Der physikalische Speicher ist durch den verfügbaren Hauptspeicher sowie ggf. zusätzlichen ausgelagerten Speicher (z.b. in Form einer Auslagerungsdatei) gegeben. Man unterteilt den logischen Speicher in gleich große Stücke, die man als Seiten (pages) bezeichnet. Auch der physikalische Speicher ist derart unterteilt - hier nennt man die einzelnen Stücke Seitenrahmen (frames). Eine Seite passt genau in einen Seitenrahmen. Um Seiten und Seitenrahmen einander zuordnen zu können, wird eine Seitentabelle verwendet. Dementsprechend existiert für jeden Prozess eine derartige Seitentabelle. Nun wird klar, warum hier keine externe Fragmentie- Quelle: Seite 3

4 rung im Hauptspeicher mehr auftreten kann: Zwar ist der logische Speicher weiterhin zusammenhängend, im physischen Speicher können die benachbarten Seiten jedoch in weit von einander entfernt liegenden Seitenrahmen abgelegt werden. Die Reihenfolge der Seitenrahmen ist damit beliebig, und somit macht es auch keinen Sinn mehr, von Lücken und damit von externer Fragmentierung zu sprechen. Da die Zugriffszeit auf einzelne physische Speicherzellen immer identisch ist, müssen keine Effizienzeinbußen in Kauf genommen werden. Da bei diesem Verfahren der Zugriff auf die Seitentabelle sehr häufig ist, verwenden moderne Prozessoren zu diesem Zweck in der Regel spezielle Hardware-Register, die sogenannte Memory Management Unit. (Dieser Artikel liefert Ihnen zusätzliche detaillierte Informationen über die Verwendung der Seitentabelle.) Adressberechnung beim Paging In der Terminologie der obigen Grafik entspricht eine logische Speicheradresse der virtuellen Adresse. Der physische Speicher heißt hier reale Adresse. Man entnimmt der Grafik, dass sich die physische Speicheradresse sehr einfach aus zwei Teilen berechnet: Der erste Teil wird der virtuellen Adresse entnommen, der zweite Teil der Seitentabelle. Dabei handelt es sich um zwei Binärzahlen. Werden diese konkateniert, so ergibt sich eine neue Binärzahl, die genau die physische Speicheradresse ist. Derartige Berechnungen werden von der Memory Management Unit ausgeführt. Demand Paging Wie oben schon erwähnt, wird der Paging-Mechanismus auch zur virtuellen Speicherverwaltung ausgenutzt. Erfolgt nun ein Zugriff auf eine Speicherseite, die nicht im Hauptspeicher, sondern im Auslagerungsspeicher abliegt, so wird zunächst ein Seitenfehler ausgelöst. Dieser führt zu einem Software-Interrupt und schließlich zum Laden der Seite in den Hauptspeicher. Diese Technik bezeichnet man als Demand Paging. Quelle: Seite 4

5 Kriterien für Seitenersetzung Dafür werden verschiedene Kriterien zur Bewertung herangezogen: Die Zugehörigkeit der Speicherseite zum aktiven Prozess Der letzte Zugriff auf die Speicherseite Die Unversehrtheit der Speicherseite, weil eine unveränderte Seite nicht auf den Hintergrundspeicher zurückgeschrieben werden muss, sondern direkt durch die neue angeforderte Seite überschrieben werden kann. Seitenersetzungsstrategien Folgende Strategien werden verwendet: First In - First Out Least recently used: Die am längsten nicht genutzte Seite wird ausgelagert. Not recently Used: Seiten, die innerhalb eines Zeitintervalls nicht benutzt und nicht modifziert wurden, werden bevorzugt ausgelagert. Danach Seiten, die entweder nicht benutzt oder modifiziert wurden und als letzte Gruppe erst Speicherseiten, die modifiziert und benutzt wurden. Not frequently Used: Seitenzugriffe werden mit dem zeitlichen Abstand zur aktuellen Anfrage korreliert und so ein Wert ermittelt. Quelle: Seite 5

6 Memory Management Unit Bei der Memory Management Unit (MMU) handelt es sich um eine Funktionseinheit einer CPU, die zum Zugriff auf den Arbeitsspeicher oder sonstige Hardware das Übersetzen von Virtuellen Adressen in physikalische Adressen bewerkstelligt. Sie ermöglicht damit den Zugriff auf den gesamten Virtuellen Adressraum, den ein Betriebssystem mit Hilfe der Virtuellen Speicherverwaltung zur Verfügung stellt. MMUs sind standardmäßig in allen modernen Desktop- und Server-CPUs vorhanden. Anwendungen für eingebettete Prozessoren und Microcontroller können meist auf eine Adressübersetzung verzichten, dementsprechend beinhaltet der größte Teil der Prozessoren für diesen Einsatzbereich keine MMU. In manchen älteren Systemen, die Bank Switching verwenden, so zum Beispiel einigen Heimcomputern, existiert eine MMU als eigenständiger Chip außerhalb der CPU. Funktionsprinzip Jede durch einen Prozess angeforderte Virtuelle Adresse wird zuerst durch die Memory Management Unit in eine physikalische Adresse umgesetzt, bevor sie auf den Adressbus geschrieben wird. Man unterscheidet die möglichen Arten der Adressübersetzung (engl. Adress translation) nach der Art der verwendeten Seitentabellen. Einstufige Seitentabelle Die Adressumsetzung mit Hilfe einer einstufigen Seitentabelle geschieht durch Interpretation der n höherwertigen Bits einer Virtuellen Adresse als Seitennummer der angeforderten Speicherseite und der Verwendung der m niederwertigen Bits als Offset. Die Seitennummer bestimmt dabei ausgehend von der Basisadresse der Seitentabelle, welche in einem Register der Memory Management Unit gehalten wird, denjenigen Eintrag in der Seitentabelle, aus dem die Basisadresse der nötigen realen Speicherseite abzulesen ist. Des Weiteren beinhaltet die Seitentabelle auf den höherwertigen Bits Statusinformationen über die Speicherseite, die beispielsweise Auskunft geben, ob sich die Speicherseite im RAM befindet oder ob sie seit dem letzten Zugriff verändert wurde. Die aus der Seitentabelle ausgelesene Basisadresse der realen Speicherseite zusammen mit dem unveränderten Offset ergeben die reale Adresse. Quelle: Seite 6

7 Mehrstufige Seitentabelle Die Adressumsetzung mit Hilfe einer k-stufigen Seitentabelle geschieht durch Aufteilung einer Virtuellen Adresse in k*n höherwertige Bits als Seitentabellenverweise und m niederwertige Bits als Offset. Mit dem k-ten Verweis in der Virtuellen Adresse wird aus der k- ten Seitentabelle die Basisadresse der Seitentabelle der Stufe k+1 ausgelesen. Die letzte Stufe enthält dann den tatsächlichen Verweis auf die reale Basisadresse. Die aus der letzten Stufe der Seitentabellen ausgelesene Basisadresse der realen Speicherseite zusammen mit dem unveränderten Offset ergeben die reale Adresse. Invertierte Seitentabelle Insbesondere einstufige, aber auch mehrstufige, Seitentabellen benötigen sehr viel Speicherplatz, nur um die Seitentabelle im Speicher abzulegen. Mit dem Ansatz der invertierten Seitentabelle beseitigt man dies Problem. Es wird in der Seitentabelle nicht mehr ein Eintrag pro virtueller Seite angelegt, sondern nur noch je ein Eintrag pro realer Speicherseite. Der Zugriff auf diese Tabelle benötigt nun jedoch einen Suchvorgang, um die virtuelle Adresse in der gesamten Seitentabelle zu finden und die zugehörige reale Adresse auszulesen. Häufig wird das Suchen in der invertierten Seitentabelle durch das Vorschalten einer Hashtabelle beschleunigt. Seitenfehler Bei jedem Verfahren kann es natürlich passieren, dass die angeforderte Virtuelle Adresse sich in einer nicht im Arbeitsspeicher befindlichen Speicherseite befindet, sondern erst durch Paging vom Hintergrundspeicher in den Arbeitsspeicher geladen werden muss. Die Memory Management Unit signalisiert dies, sobald sie in den Statusbits einer Seitentabelle einen Ungültig Eintrag vorfindet, indem sie einen so genannten Seitenfehler auslöst. in Seitenfehler (engl. page fault) tritt bei Betriebssystemen mit virtueller Speicherverwaltung und Paging auf, wenn ein Programm auf einen Speicherbereich zugreift, der sich gerade nicht im Hauptspeicher befindet, sondern beispielsweise auf die Festplatte ausgelagert wurde. Das Betriebssystem sorgt nun dafür, dass der angeforderte Speicherbereich wieder in den Hauptspeicher geladen wird, damit das Programm darauf zugreifen kann. Ein Seitenfehler ist daher kein Fehler im eigentlichen Sinne. Der Anwender spürt von diesem Vorgang nichts, maximal eine Verlangsamung der Geschwindigkeit, da das Laden der Seite einen kurzen Augenblick benötigt. Quelle: Seite 7

8 Aufgaben 1. Was versteht man unter dem Begriff Fragmentierung? 2. Erläutern Sie mit eigenen Worten die Notwendigkeit einer virtuellen Speicherverwaltung. 3. Was bedeutet die Abkürzung MMU? Welche Hauptaufgabe hat sie (Stichpunkte)? 4. Aus welchen Teilen setzt sich der physikalische Speicher beim Paging zusammen? 5. Erklären Sie den grundsätzlichen Vorgang wie beim Paging der Zugriff eines Programms auf den physikalischen Speicher abläuft. 6. Was verbirgt sich hinter dem demand paging? 7. Beim Paging können verschiedene Seitenersetzungsstrategien zum Einsatz kommen. Recherchieren Sie was man unter einer First In First Out Strategie versteht. 8. Überlegen Sie, welchen Vorteil die Verwendung von virtuellen und physikalischen Adressen in Bezug auf die Länge der jeweiligen Adressen haben kann. 9. Geben Sie an welche Informationen in einer Seitentabelle abgelegt sind. 10. Welchen Vorteil hat eine mehrstufige Seitentabelle gegenüber einer einstufigen? 11. Gegeben sei folgende virtuelle Adresse und nebenstehende, zugehörige Seitentabelle. Virtuelle Adresse: Bestimmen Sie die angesprochene physikalische Adresse Quelle: Seite 8

9 Lösung 1. Was versteht man unter dem Begriff Fragmentierung? In modernen Betriebssystemen können mehrere Prozesse gleichzeitig laufen. Jeder Prozess benötigt für das eigentliche Programm und die Daten eine bestimmte Menge Arbeitsspeicher. Ist der gesamte Arbeitsspeicher lückenlos belegt und ein Prozess A wird beendet, so wird auch dessen Anteil am Arbeitsspeicher frei. Startet nun der nächste Prozess B ist nicht sicher gestellt dass der von ihm angeforderte Arbeitsspeicher exakt so groß ist wie die durch Prozess A freigewordene Lücke. Benötigt B weniger Speicher, so bleiben im Arbeitsspeicher Lücken ungenutzt. Es entstehen Fragmente. 2. Erläutern Sie mit eigenen Worten die Notwendigkeit einer virtuellen Speicherverwaltung. Wird von einem Prozess B weniger Speicher angefordert als ein vorher laufender Prozess A freigegeben hat so entstehen Fragmente. Wird von B dagegen mehr Speicher angefordert als zur Verfügung steht, so kann der neue Prozess nicht starten. Mit Hilfe von Paging als Teil der virtuellen Speicherverwaltung kann dieses Problem umgangen werden indem man Prozesse nur mehr auf virtuelle Adressen zugreifen lässt die dann erst in die eigentlichen physikalischen Adressen umgesetzt werden. 3. Was bedeutet die Abkürzung MMU? Welche Hauptaufgabe hat sie (Stichpunkte)? MMU = Memory Management Unit Teil der CPU; Zuständig für Umsetzung von virtuellen in physikalische Adressen. 4. Aus welchen Teilen setzt sich der physikalische Speicher beim Paging zusammen? Physik. Speicher = Hauptspeicher + ausgelagerter Speicher (z. B. Auslagerungsdatei) 5. Erklären Sie den grundsätzlichen Vorgang wie beim Paging der Zugriff eines Programms auf den physikalischen Speicher abläuft. Ein Prozess sieht nur den ihm zugewiesenen logischen Speicher. Auf dessen Adressen greift er zu. Nun wird in der Regel in der MMU die logische Adresse mit Hilfe einer Seitentabelle in eine physikalische übersetzt und die Daten geschrieben / gelesen. Quelle: Seite 9

10 6. Was verbirgt sich hinter dem demand paging? Wird über eine virtuelle Adresse und die zugehörige Seitentabelle auf Daten zugegriffen die sich nicht im Hauptspeicher sondern in einer Auslagerungsdatei befinden so müssen die entsprechenden Daten erst in den Arbeitsspeicher geladen werden. Dieser Vorgang wird als demand paging bezeichnet. 7. Beim Paging können verschiedene Seitenersetzungsstrategien zum Einsatz kommen. Recherchieren Sie was man unter einer First In First Out Strategie versteht. Die zuerst in den Arbeitsspeicher geschriebenen Daten werden sobald der Hauptspeicher voll ist auch als erste ausgelagert. 8. Überlegen Sie, welchen Vorteil die Verwendung von virtuellen und physikalischen Adressen in Bezug auf die Länge der jeweiligen Adressen haben kann. Mit Hilfe von relativ kurzen virtuellen Adressen können sehr lange physikalische Adressen angesprochen werden. Voraussetzung dafür ist lediglich dass in der Seitentabelle mehr Platz für die Basisadresse vorgesehen ist als in der virtuellen Adresse für die Seitennummer zur Verfügung steht. 9. Geben Sie an welche Informationen in einer Seitentabelle abgelegt sind. In den höherwertigen Bits stehen Statusinformationen (z. B. die Speicherseite befindet sich im RAM / wurde ausgelagert oder ob die Speicherseite verändert wurde) in den niederwertigen Bits befindet sich die Basisadresse der physikalischen Adresse. 10. Welchen Vorteil hat eine mehrstufige Seitentabelle gegenüber einer einstufigen? Greift ein Prozess auf eine virtuelle Adresse zu, so muss diese Adresse in einer einstufigen Tabelle aus allen möglichen Einträgen herausgesucht werden. Beispiel: Virtuelle Adresse = 20 Bit Seitennummer + 12 Bit Offset --> Es müssen in der Seitentabelle 2 20 = Adressen durchsucht werden Findet der gleiche Zugriff jedoch bei einem mehrstufigen Verfahren statt, so ist die Suche nach der gewünschten Adresse aufgeteilt, so dass sie schneller erfolgen kann. Beispiel: Virt. Adresse = 10 Bit Seitentab Bit Seitennr Bit Offset --> In der 1. Stufe sind 2 10 = 1024 Einträge zu durchsuchen. In der 2. Stufe sind 2 10 = 1024 Einträge zu durchsuchen. --> Macht zusammen 2048 zu durchsuchende Einträge. --> Das sind nur 0,19% des obigen Aufwands! Quelle: Seite 10

11 11. Gegeben sei folgende virtuelle Adresse und nebenstehende, zugehörige Seitentabelle. Virtuelle Adresse: Bestimmen Sie die angesprochene physikalische Adresse Die Seitentabelle enthält acht Zeilen --> die ersten drei Bit (0 1 0 ) der virtuellen Adresse bestimmen die Seitennummer, die restlichen vier Bit ( ) geben den Offset an. --> Dual = 2 Dezimal --> in der dritten Zeile (Zeilen werden bei Null beginnend durchnummeriert!) der Seitentabelle steht die Basisadresse --> Physikalische Adresse = Basisadresse Offset Quelle: Seite 11

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Speicherverwaltung Aufgaben der Speicherverwaltung wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Sowohl die ausführbaren Programme selbst als auch deren Daten werden in verschiedenen Speicherbereichen

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Betriebssysteme Aufgaben Management von Ressourcen Präsentation einer einheitlichen

Mehr

Paging. Einfaches Paging. Paging mit virtuellem Speicher

Paging. Einfaches Paging. Paging mit virtuellem Speicher Paging Einfaches Paging Paging mit virtuellem Speicher Einfaches Paging Wie bisher (im Gegensatz zu virtuellem Speicherkonzept): Prozesse sind entweder ganz im Speicher oder komplett ausgelagert. Im Gegensatz

Mehr

Übung zu Einführung in die Informatik # 10

Übung zu Einführung in die Informatik # 10 Übung zu Einführung in die Informatik # 10 Tobias Schill tschill@techfak.uni-bielefeld.de 15. Januar 2016 Aktualisiert am 15. Januar 2016 um 9:58 Erstklausur: Mi, 24.02.2016 von 10-12Uhr Aufgabe 1* a),

Mehr

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Technische Informatik II Wintersemester 2002/03 Sommersemester 2001 Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Speicher ist eine wichtige Ressource, die sorgfältig verwaltet werden muss. In der Vorlesung

Mehr

Übung zu Grundlagen der Betriebssysteme. 13. Übung 22.01.2012

Übung zu Grundlagen der Betriebssysteme. 13. Übung 22.01.2012 Übung zu Grundlagen der Betriebssysteme 13. Übung 22.01.2012 Aufgabe 1 Fragmentierung Erläutern Sie den Unterschied zwischen interner und externer Fragmentierung! Als interne Fragmentierung oder Verschnitt

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de)

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

Kapitel VI. Speicherverwaltung. Speicherverwaltung

Kapitel VI. Speicherverwaltung. Speicherverwaltung Kapitel VI Speicherverwaltung 1 Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern (1 oder mehrere Bytes) Jedes Wort hat eine eigene

Mehr

Betriebssysteme. Dipl.-Ing.(FH) Volker Schepper

Betriebssysteme. Dipl.-Ing.(FH) Volker Schepper Speicherverwaltung Real Mode Nach jedem starten eines PC befindet sich jeder x86 (8086, 80386, Pentium, AMD) CPU im sogenannten Real Mode. Datenregister (16Bit) Adressregister (20Bit) Dadurch lassen sich

Mehr

Kapitel 6 Speicherverwaltung Seite 1 zum Teil nach: Silberschatz&Galbin, Operating System Concepts, Addison-Wesley)

Kapitel 6 Speicherverwaltung Seite 1 zum Teil nach: Silberschatz&Galbin, Operating System Concepts, Addison-Wesley) Kapitel 6 Speicherverwaltung Seite 1 6 Speicherverwaltung 6.1 Hintergrund Ein Programm muß zur Ausführung in den Hauptspeicher gebracht werden und in die Prozeßstruktur eingefügt werden. Dabei ist es in

Mehr

Speicherverwaltung (Swapping und Paging)

Speicherverwaltung (Swapping und Paging) Speicherverwaltung (Swapping und Paging) Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente 750k 0 Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente

Mehr

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler 1 Überlegungen Wenn wir einige Seiten eines Programms in den Speicher laden, brauchen wir eine Strategie, welche Seiten als nächstes geladen werden

Mehr

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Die Idee Virtuelle Adressen Prozess 1 Speicherblock 0 Speicherblock 1 Speicherblock 2 Speicherblock 3 Speicherblock 4 Speicherblock

Mehr

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13 UNIVERSITÄT LEIPZIG Enterprise Computing Einführung in das Betriebssystem z/os Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13 Verarbeitungsgrundlagen Teil 2 Virtual Storage el0100 copyright

Mehr

5 Speicherverwaltung. bs-5.1 1

5 Speicherverwaltung. bs-5.1 1 5 Speicherverwaltung bs-5.1 1 Pufferspeicher (cache) realer Speicher Primärspeicher/Arbeitsspeicher (memory) Sekundärspeicher/Hintergrundspeicher (backing store) (Tertiärspeicher/Archivspeicher) versus

Mehr

Rechnernutzung in der Physik. Betriebssysteme

Rechnernutzung in der Physik. Betriebssysteme Rechnernutzung in der Physik Betriebssysteme 1 Betriebssysteme Anwendungsprogramme Betriebssystem Treiber BIOS Direkter Zugriff von Anwenderprogrammen auf Hardware nur in Ausnahmefällen sinnvoll / möglich:

Mehr

Banner T 1 T 2. Bild T 7 T 8. Fließtext T 9

Banner T 1 T 2. Bild T 7 T 8. Fließtext T 9 Name, Vorname: Matrikel-Nr.: Aufgabe 1 Wir schreiben das Jahr 2010. Ein Desktop-System mit drei identischen Prozessoren P = {P 1, P 2, P 3 } wird zur Darstellung einer Webseite verwendet. Insgesamt neun

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 11 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Welche der folgenden Aussagen gelten? a) Im allgemeinen gilt: ein Deadlock tritt auf gdw. der Resource-Allocation Graph einen Zykel

Welche der folgenden Aussagen gelten? a) Im allgemeinen gilt: ein Deadlock tritt auf gdw. der Resource-Allocation Graph einen Zykel Aufgabe 1 (5 Punkte) (Multiple Choice) Beantworten Sie folgende Fragen durch Ankreuzen der richtigen Antwort. Für jede falsche Antwort wird ein Punkt abgezogen (es werden minimal 0 Punkte vergeben). Welche

Mehr

4.3 Hintergrundspeicher

4.3 Hintergrundspeicher 4.3 Hintergrundspeicher Registers Instr./Operands Cache Blocks Memory Pages program 1-8 bytes cache cntl 8-128 bytes OS 512-4K bytes Upper Level faster Disk Tape Files user/operator Mbytes Larger Lower

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

Anbindung zum Betriebssystem (BS)

Anbindung zum Betriebssystem (BS) 5.1 Einleitung Anbindung zum Betriebssystem (BS) Aufgaben BS Schnittstelle zur Hardware Sicherstellung des Betriebs mit Peripherie Dienste erfüllen für Benutzung Rechner durch Verwaltung der Ressourcen

Mehr

Zwei Möglichkeiten die TLB zu aktualisieren

Zwei Möglichkeiten die TLB zu aktualisieren Zwei Möglichkeiten die TLB zu aktualisieren Die MMU kümmert sich um alles (Hardware-Lösung) sucht die p-entry wenn diese nicht da ist, behandelt direkt das TLB-miss zum Schluss wird die neue p-entry (virt

Mehr

Technische Informatik I. Übung 3 Speicherhierarchie. v t d 0 d 1 d 2 d 3 0 1 2 3. Technische Informatik I Übung 3. Technische Informatik I Übung 3

Technische Informatik I. Übung 3 Speicherhierarchie. v t d 0 d 1 d 2 d 3 0 1 2 3. Technische Informatik I Übung 3. Technische Informatik I Übung 3 Institut für Kommunikationsnetze und Rechnersysteme Technische Informatik I Paul J. Kühn, Matthias Meyer Übung 3 Speicherhierarchie Inhaltsübersicht Aufgabe 3.1 Daten-Cache Aufgabe 3.2 Virtueller Speicher

Mehr

20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem

20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem 20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem Autor Susanne Albers, Universität Freiburg Swen Schmelzer, Universität Freiburg In diesem Jahr möchte

Mehr

CA Übung 30.01.2006. Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder

CA Übung 30.01.2006. Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder CA Übung 30.01.2006 Hallo zusammen! Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder Adrian Schüpbach: scadrian@student.ethz.ch Christian Fischlin: cfischli@student.ethz.ch

Mehr

(Cache-Schreibstrategien)

(Cache-Schreibstrategien) Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. 2. Nennen Sie zwei rotierende magnetische digitale Datenspeicher. 3. Nennen Sie zwei

Mehr

Memory Management. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at

Memory Management. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at Memory Management Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at 1 Speicherverwaltung Effektive Aufteilung und Verwaltung des Arbeitsspeichers für BS und Programme Anforderungen

Mehr

Echtzeitbetriebssysteme

Echtzeitbetriebssysteme Speicherverwaltung (Memory Management) Aufgaben der Memory-Management-Unit ist l der Speicherschutz und l die Adressumsetzung Wird durch Hardware unterstützt l Memory Management Unit (MMU) l MMU wird vom

Mehr

Linux Paging, Caching und Swapping

Linux Paging, Caching und Swapping Linux Paging, Caching und Swapping Inhalte Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Maren Bennewitz Version 5.2.214 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von

Mehr

Fachbericht Thema: Virtuelle Speicherverwaltung

Fachbericht Thema: Virtuelle Speicherverwaltung Fachbericht 15.10.99 1 HINTERGRÜNDE/ MOTIVATION 2 2 FUNKTIONEN DER SPEICHERVERWALTUNG 2 3 ARTEN DER SPEICHERVERWALTUNG 2 3.1 STATISCHE SPEICHERVERWALTUNG 2 3.2 DYNAMISCHE SPEICHERVERWALTUNG 3 3.2.1 REALER

Mehr

OPERATIONEN AUF EINER DATENBANK

OPERATIONEN AUF EINER DATENBANK Einführung 1 OPERATIONEN AUF EINER DATENBANK Ein Benutzer stellt eine Anfrage: Die Benutzer einer Datenbank können meist sowohl interaktiv als auch über Anwendungen Anfragen an eine Datenbank stellen:

Mehr

Kapitel 8: Physischer Datenbankentwurf

Kapitel 8: Physischer Datenbankentwurf 8. Physischer Datenbankentwurf Seite 1 Kapitel 8: Physischer Datenbankentwurf Speicherung und Verwaltung der Relationen einer relationalen Datenbank so, dass eine möglichst große Effizienz der einzelnen

Mehr

4. Übung - Betriebssysteme

4. Übung - Betriebssysteme 1. ufgabe: Systemstart 4. Übung - etriebssysteme Informatik I für Verkehrsingenieure ufgaben inkl. eispiellösungen a Welche ufgabe hat das IOS und was passiert beim Starten eines Systems? b Welche ufgaben

Mehr

Freispeicherverwaltung Martin Wahl,

Freispeicherverwaltung Martin Wahl, Freispeicherverwaltung Martin Wahl, 17.11.03 Allgemeines zur Speicherverwaltung Der physikalische Speicher wird in zwei Teile unterteilt: -Teil für den Kernel -Dynamischer Speicher Die Verwaltung des dynamischen

Mehr

Kapitel 9 Hauptspeicherverwaltung

Kapitel 9 Hauptspeicherverwaltung Kapitel 9 Hauptspeicherverwaltung Einführung: Speicher als Betriebsmittel Speicherkapazität wächst ständig ein PC heute hat 1000 mal soviel Speicher wie 1965 der größte Computer der Welt Anwendungsprogramme

Mehr

MMU Virtualisierung. ISE Seminar 2012. Thomas Schaefer 1

MMU Virtualisierung. ISE Seminar 2012. Thomas Schaefer 1 MMU Virtualisierung ISE Seminar 2012 Thomas Schaefer 1 Inhalt Allgemein MMU: Virtualisiert Probleme Problem 1: Ballooning Problem 2: Memory-Sharing Kurz: Problem 3 & 4 Translation Lookside Buffer TLB in

Mehr

Systemprogramme bezeichnen alle Programme, die bestimmte Aufgaben unterstützen, die unabhängig von einer konkreten Anwendung sind

Systemprogramme bezeichnen alle Programme, die bestimmte Aufgaben unterstützen, die unabhängig von einer konkreten Anwendung sind Betriebssysteme Systemprogramme bezeichnen alle Programme, die bestimmte Aufgaben unterstützen, die unabhängig von einer konkreten Anwendung sind Umfaßt z.b. auch Compiler, Interpreter und Dienstprogramme

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Maren Bennewitz Version 13.2.213 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten

Mehr

5.6 Segmentierter virtueller Speicher

5.6 Segmentierter virtueller Speicher 5.6 Segmentierter virtueller Speicher Zur Erinnerung: Virtueller Speicher ermöglicht effiziente und komfortable Nutzung des realen Speichers; Sharing ist problematisch. Segmentierung erleichtert Sharing,

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 13. Vorlesung Inhalt Cache Lesen Schreiben Überschreiben Memory Management Unit (MMU) Translation Lookaside Buffer (TLB) Klausurvorbereitung Inhalte der Klausur Rechnergrundlagen

Mehr

Lösungsvorschlag zur 6. Übung

Lösungsvorschlag zur 6. Übung rof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 9/1 Lösungsvorschlag zur 6. Übung 1 räsenzübungen 1.1 Schnelltest a) Caches und virtueller Speicher können

Mehr

Lösungsskizzen zur Abschlussklausur Betriebssysteme

Lösungsskizzen zur Abschlussklausur Betriebssysteme Lösungsskizzen zur Abschlussklausur Betriebssysteme 24. Januar 2013 Name: Vorname: Matrikelnummer: Studiengang: Hinweise: Tragen Sie zuerst auf allen Blättern (einschlieÿlich des Deckblattes) Ihren Namen,

Mehr

5 Kernaufgaben eines Betriebssystems (BS)

5 Kernaufgaben eines Betriebssystems (BS) 5 Kernaufgaben eines Betriebssystems (BS) Betriebssystem ist eine Menge von Programmen, die die Abarbeitung anderer Programme auf einem Rechner steuern und überwachen, insbesondere verwaltet es die Hardware-Ressourcen

Mehr

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft Prozeß: drei häufigste Zustände Prozeß: anatomische Betrachtung jeder Prozeß verfügt über seinen eigenen Adreßraum Sourcecode enthält Anweisungen und Variablen Compiler überträgt in Assembler bzw. Binärcode

Mehr

Betriebssysteme I WS 2013/2014. Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404

Betriebssysteme I WS 2013/2014. Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Betriebssysteme I WS 213/214 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 271/74-45, Büro: H-B 844 Stand: 2. Januar 214 Betriebssysteme / verteilte Systeme Betriebssysteme

Mehr

Praktikum Informatik 2: Betriebssysteme und Rechnernetze

Praktikum Informatik 2: Betriebssysteme und Rechnernetze Praktikum Informatik 2: Betriebssysteme und Rechnernetze Thema: 4. Speicherverwaltung Datum: 19.03.2008 vorgelegt von: Antje Stoppa Carsten Erdmann Andr é Hartwig Ulrike Saretzki Inhaltsverzeichnis 1 Motivation

Mehr

6 Speicherverwaltung

6 Speicherverwaltung 6 Speicherverwaltung 6.1 Hintergrund Ein Programm muß zur Ausführung in den Hauptspeicher gebracht werden und in die Prozeßstruktur eingefügt werden. Dabei ist es in mehreren Schritten zu modifizieren.

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 2010/2011 Wolfgang Heenes, atrik Schmittat 12. Aufgabenblatt 07.02.2011 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen bearbeitet werden.

Mehr

8. Swapping und Virtueller Speicher

8. Swapping und Virtueller Speicher 8. Swapping und Virtueller Speicher Der physikalische Adreßraum wird weiter abgebildet auf Arbeitsspeicher und Plattenspeicher. Prozesse (deren benutzte Seiten) die nicht laufen (und bald nicht laufen)

Mehr

Warum also mit einem 32-Bit-System arbeiten, wenn es Systeme für 64 Bit gibt?

Warum also mit einem 32-Bit-System arbeiten, wenn es Systeme für 64 Bit gibt? Mehr als 4GB RAM mit 32-Bit Windows XP nutzen ( Mit freundlicher Erlaubnis: https://grafvondiepelrath.wordpress.com/2015/01/10/windowsxp-mit-8-gb-ram-betreiben/) Das Windows XP -32-Bit-System wird auch

Mehr

Systemsoftware (SYS) Fakultät für Informatik WS 2008/2009 Christian Baun. Übungsklausur

Systemsoftware (SYS) Fakultät für Informatik WS 2008/2009 Christian Baun. Übungsklausur Hochschule Mannheim Systemsoftware (SYS) Fakultät für Informatik WS 2008/2009 Christian Baun Übungsklausur Aufgabe 1: Definieren Sie den Begriff der Systemsoftware. Nennen Sie die Aufgaben und Komponenten

Mehr

183.579, WS2012 Übungsgruppen: Mo., 07.01. Do., 10.01.2013

183.579, WS2012 Übungsgruppen: Mo., 07.01. Do., 10.01.2013 VU Technische Grundlagen der Informatik Übung 7: Speicher, Peripherie 183.579, WS2012 Übungsgruppen: Mo., 07.01. Do., 10.01.2013 Aufgabe 1: Ihre Kreativität ist gefragt! Um die Qualität der Lehrveranstaltung

Mehr

Grundlagen Rechnerarchitektur und Betriebssysteme

Grundlagen Rechnerarchitektur und Betriebssysteme Grundlagen Rechnerarchitektur und Betriebssysteme Johannes Formann Definition Computer: Eine Funktionseinheit zur Verarbeitung von Daten, wobei als Verarbeitung die Durchführung mathematischer, umformender,

Mehr

Betriebssysteme und Systemsoftware

Betriebssysteme und Systemsoftware Merlin Denker Version 2 1 / 18 Vorwort Dieses Dokument soll einen Überblick über verschiedene Strategien aus der an der RWTH Aachen gehaltenen Vorlesung bieten. Die vorliegende Version dieses Dokuments

Mehr

Technische Informatik 2 Speichersysteme, Teil 3

Technische Informatik 2 Speichersysteme, Teil 3 Technische Informatik 2 Speichersysteme, Teil 3 Prof. Dr. Miroslaw Malek Sommersemester 2004 www.informatik.hu-berlin.de/rok/ca Thema heute Virtueller Speicher (Fortsetzung) Translation Lookaside Buffer

Mehr

Lehreinheit H1 Hardware Grundlagen

Lehreinheit H1 Hardware Grundlagen Hardware Lehreinheit H1 Hardware Grundlagen Zeitrahmen 90 Minuten Zielgruppe Volksschule Inhaltliche Voraussetzung Keine Lehrziel Funktionsweise der Hardware verstehen, den Computer von Innen kennen lernen

Mehr

Betriebssysteme Betriebssysteme und. Netzwerke. Netzwerke Theorie und Praxis

Betriebssysteme Betriebssysteme und. Netzwerke. Netzwerke Theorie und Praxis Einführung Einführung in in Betriebssysteme Betriebssysteme und und Theorie und Praxis Theorie und Praxis Oktober 2006 Oktober 2006 Prof. Dr. G. Hellberg Prof. Dr. G. Hellberg Email: hellberg@drhellberg.de

Mehr

Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme. Vorlesung 4: Memory. Wintersemester 2001/2002. Peter B.

Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme. Vorlesung 4: Memory. Wintersemester 2001/2002. Peter B. Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme Vorlesung 4: Memory Peter B. Ladkin Address Translation Die Adressen, die das CPU benutzt, sind nicht identisch mit den Adressen,

Mehr

Round-Robin Scheduling (RR)

Round-Robin Scheduling (RR) RR - Scheduling Reigen-Modell: einfachster, ältester, fairster, am weitesten verbreiteter Algorithmus Entworfen für interaktive Systeme (preemptives Scheduling) Idee: Den Prozessen in der Bereitschaftsschlange

Mehr

Byte-Taxi. Bedienungsanleitung. Autor: Dimitrios Savvidis

Byte-Taxi. Bedienungsanleitung. Autor: Dimitrios Savvidis Byte-Taxi Bedienungsanleitung Autor: Dimitrios Savvidis Inhaltsverzeichnis 1. Beschreibung 1 2. Systemvoraussetzungen 2 3. Installationsanleitung 3 4. Bedienung 5 5. Infos & Kontakt 8 1. Beschreibung Byte-Taxi

Mehr

Informatik I Modul 6: Betriebssysteme

Informatik I Modul 6: Betriebssysteme Informatik I Modul 6: Betriebssysteme 2012 Burkhard Stiller M6 1 Modul 7: Betriebssysteme Überblick von Betriebssystemen Auftrags- und Speicherverwaltung Einlagerung, Zuweisung, Ersetzung 2012 Burkhard

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 4 Prozesse Maren Bennewitz Version 20.11.2013 1 Begrüßung Heute ist Tag der offenen Tür Willkommen allen Schülerinnen und Schülern! 2 Wdhlg.: Attributinformationen in

Mehr

Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2011 / 2012

Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2011 / 2012 Name: Matrikelnummer: Studiengang: INF CV IM Lehramt BSc MSc BEd MEd Diplom Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 0 / 0 Montag, den. Februar 0, 09: Uhr 0: Uhr Prof. Dr. D. Zöbel, Dipl.

Mehr

5.5.5 Der Speicherverwalter

5.5.5 Der Speicherverwalter 5.5.5 Der Speicherverwalter Speicherverwalter (memory manager) reagiert auf = im einfachsten Fall ein Systemprozess, der für die Umlagerung der Seiten (page swapping) zuständig ist (analog zum Umlagerer/Swapper)

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

Definitionen zum Verschnitt

Definitionen zum Verschnitt Definitionen zum Verschnitt Die absoluten Größen haben eine Einheit. Beim Bilden der Verhältnisgrößen wird die Einheit gekürzt. Man kann bei den Verhältnisgrößen die Größe durch die Anzahl vorgegebener

Mehr

CAS genesisworld.exchange connect Abgleich von Adressen und Terminen

CAS genesisworld.exchange connect Abgleich von Adressen und Terminen Abgleich von Adressen und Terminen Stand Juni 2004 Was ist CAS genesisworld.exchange connect? Inhalt 1 Was ist CAS genesisworld.exchange connect?... 3 2 Systemvoraussetzungen... 5 2.1 Software...5 2.2

Mehr

(a) Wie unterscheiden sich synchrone und asynchrone Unterbrechungen? (b) In welchen drei Schritten wird auf Unterbrechungen reagiert?

(a) Wie unterscheiden sich synchrone und asynchrone Unterbrechungen? (b) In welchen drei Schritten wird auf Unterbrechungen reagiert? SoSe 2014 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Präsenzübung 2 2014-04-28 bis 2014-05-02 Aufgabe 1: Unterbrechungen (a) Wie unterscheiden sich synchrone

Mehr

Lerndokumentation. Arbeitsspeicher. Lerndokumentation Arbeitsspeicher. Ausbildung Vorlehre Informatik. Autor: Ramon Schenk

Lerndokumentation. Arbeitsspeicher. Lerndokumentation Arbeitsspeicher. Ausbildung Vorlehre Informatik. Autor: Ramon Schenk . Kingston DIMM Riegel, High-End RAM mit Passiv-Kühlung Autor: Ramon Schenk Inhaltsverzeichnis 1 Übersicht Dokumentation... 2 2 Der... 2 2.1 Erläuterung... 2 2.2 Speicherverfahren... 2 2.3 Bedeutung des

Mehr

Konzepte von Betriebssystemkomponenten (KVBK) Schwerpunkt Linux

Konzepte von Betriebssystemkomponenten (KVBK) Schwerpunkt Linux Konzepte von Betriebssystemkomponenten (KVBK) Schwerpunkt Linux Adressräume, Page Faults, Demand Paging, Copy on Write Seminar am 24.11.2003, Referent: Johannes Werner Speicherverwaltung ist bei heutigen

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 21/211 Wolfgang Heenes, atrik Schmittat 12. Aufgabenblatt mit Lösungsvorschlag 7.2.211 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen

Mehr

Ein kleines Computer-Lexikon

Ein kleines Computer-Lexikon Stefan Edelmann 10b NIS-Klasse Ein kleines Computer-Lexikon Mainboard Die Hauptplatine! Sie wird auch Motherboard genannt. An ihr wird das gesamte Computerzubehör angeschlossen: z.b. Grafikkarte Soundkarte

Mehr

Betriebssysteme. 8. Betriebsmittelverwaltung. Lehrveranstaltung im Studienschwerpunkt Verwaltungsinformatik

Betriebssysteme. 8. Betriebsmittelverwaltung. Lehrveranstaltung im Studienschwerpunkt Verwaltungsinformatik Betriebssysteme 8. Betriebsmittelverwaltung Lehrveranstaltung im Studienschwerpunkt Verwaltungsinformatik erstellt durch: Name: Telefon: 09281 / 409-279 Fax: 09281 / 409-55279 Email: mailto: Karl.Wohlrab@fhvr-aiv.de

Mehr

Projekt für Systemprogrammierung WS 06/07

Projekt für Systemprogrammierung WS 06/07 Dienstag 30.01.2007 Projekt für Systemprogrammierung WS 06/07 Von: Hassan Bellamin E-Mail: h_bellamin@web.de Gliederung: 1. Geschichte und Definition 2. Was ist Virtualisierung? 3. Welche Virtualisierungssoftware

Mehr

Speicherverwaltung. Gliederung. Speicherverwaltung. Motivation. Übersicht: 1. Einführung und Übersicht. 2. Prozesse und Threads. 3.

Speicherverwaltung. Gliederung. Speicherverwaltung. Motivation. Übersicht: 1. Einführung und Übersicht. 2. Prozesse und Threads. 3. Gliederung 1. Einführung und Übersicht 2. Prozesse und Threads 3. Interrupts Speicherverwaltung 4. Scheduling 5. Synchronisation 6. Interprozesskommunikation 7. Speicherverwaltung Speicherverwaltung Cl.

Mehr

Realisierung: virtueller Prozessor: der reale Prozessor wird periodisch dem Programm zugewiesen Im Prozessor: durch Task-Status Segment (TSS)

Realisierung: virtueller Prozessor: der reale Prozessor wird periodisch dem Programm zugewiesen Im Prozessor: durch Task-Status Segment (TSS) 1.2 Multitasking Damit ein Computer mehrere Aufgaben gleichzeitig erledigen kann, die jede für sich oder die auch gemeinsam arbeiten, z.b. Daten lesen Berechnungen ausführen Netzwerkkontakt abarbeiten

Mehr

Basisinformationstechnologie I Wintersemester 2011/ November 2011 Betriebssysteme

Basisinformationstechnologie I Wintersemester 2011/ November 2011 Betriebssysteme Basisinformationstechnologie I Wintersemester 2011/12 23. November 2011 Betriebssysteme Seminarverlauf 12. Oktober: Organisatorisches / Grundlagen I 19. Oktober: Grundlagen II 26. Oktober: Grundlagen III

Mehr

7. Speicherverwaltung

7. Speicherverwaltung 7. Speicherverwaltung Ziele Zuteilung des Arbeitsspeicher Abbildung der symbolischen Adresse auf die physikalische Adresse Adress-Transformation Symbolische Adresse verschiebbare Adresse physikalische

Mehr

Übersicht. Virtueller Speicher CPU-Modi Virtuelle Maschinen. ISM SS 2015 - Teil 4/ProtectionI

Übersicht. Virtueller Speicher CPU-Modi Virtuelle Maschinen. ISM SS 2015 - Teil 4/ProtectionI Übersicht Virtueller Speicher CPU-Modi Virtuelle Maschinen 2 Behandelter Bereich: Virtualisierung Syscall-Schnittstelle Ports Server Apps Server Apps Betriebssystem Protokolle Betriebssystem Medien Hardware

Mehr

Vorlesung 14 Speichersysteme (2)

Vorlesung 14 Speichersysteme (2) D - CA - XIV - MH - 1 HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR INFORMATIK Vorlesung 14 Speichersysteme (2) Sommersemester 2003 Leitung: Prof. Dr. Miroslaw Malek D - CA - XIV - MH - 2 SPEICHERSYSTEME

Mehr

Wenn alle Referenzbits gleich 1, wird nach FIFO entschieden

Wenn alle Referenzbits gleich 1, wird nach FIFO entschieden 4 Second Chance (5) Second chance zeigt FIFO Anomalie Wenn alle Referenzbits gleich 1, wird nach FIFO entschieden Erweiterung Modifikationsbit kann zusätzlich berücksichtigt werden (Dirty bit) vier Klassen:

Mehr

Speicher und Tuning. Schlangenöl für den Speicher. Ausgabe: 03/2004 Seite: 12 Zeitschrift: Windows IT Pro»

Speicher und Tuning. Schlangenöl für den Speicher. Ausgabe: 03/2004 Seite: 12 Zeitschrift: Windows IT Pro» Speicher und Tuning Schlangenöl für den Speicher Ausgabe: 03/2004 Seite: 12 Zeitschrift: Windows IT Pro» RAM-Optimierungsprogramme mit falschen Versprechen Schlangenöl für den Speicher Immer wieder tauchen

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard Systeme I: Betriebssysteme Kapitel 4 Prozesse Wolfram Burgard Version 18.11.2015 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

staffitpro WEB Produkte und Lizenzen (SaaS) (Ergänzung zu Allgemeine Geschäftsbedingungen audeosoft GmbH staffitpro Web-SaaS )

staffitpro WEB Produkte und Lizenzen (SaaS) (Ergänzung zu Allgemeine Geschäftsbedingungen audeosoft GmbH staffitpro Web-SaaS ) staffitpro WEB Produkte und Lizenzen (SaaS) (Ergänzung zu Allgemeine Geschäftsbedingungen audeosoft GmbH staffitpro Web-SaaS ) Verantwortlich für den Inhalt: audeosoft GmbH, Kreuzberger Ring 44a, 65205

Mehr

In diesem Abschnitt wollen wir uns mit der Architektur von Datenbank Managements Systemen beschäftigen.

In diesem Abschnitt wollen wir uns mit der Architektur von Datenbank Managements Systemen beschäftigen. 1 In diesem Abschnitt wollen wir uns mit der Architektur von Datenbank Managements Systemen beschäftigen. Zunächst stellt sich die Frage: Warum soll ich mich mit der Architektur eines DBMS beschäftigen?

Mehr

Verteilte Echtzeit-Systeme

Verteilte Echtzeit-Systeme - Verteilte Echtzeit-Systeme Hans-Albrecht Schindler Wintersemester 2015/16 Teil B: Echtzeit-Betriebssysteme Abschnitt 13: Echtzeit-Primärspeicherverwaltung CSI Technische Universität Ilmenau www.tu-ilmenau.de

Mehr

Beim Programmieren mit MMIX habt ihr vielleicht schon öfter eine der folgenden Fehlermeldungen von MMIXAL bekommen:

Beim Programmieren mit MMIX habt ihr vielleicht schon öfter eine der folgenden Fehlermeldungen von MMIXAL bekommen: 1 ADRESSIERUNG IN MMIX Beim Programmieren mit MMIX habt ihr vielleicht schon öfter eine der folgenden Fehlermeldungen von MMIXAL bekommen: no base address is close enough to the address A! relative address

Mehr

Kompetitive Analysen von Online-Algorithmen

Kompetitive Analysen von Online-Algorithmen Kompetitive Analysen von Online-Algorithmen jonas echterhoff 16. Juli 004 1 Einführung 1.1 Terminologie Online-Algorithmen sind Algorithmen, die Probleme lösen sollen, bei denen Entscheidungen getroffen

Mehr

Echtzeit-Multitasking

Echtzeit-Multitasking Technische Informatik Klaus-Dieter Thies Echtzeit-Multitasking Memory Management und System Design im Protected Mode der x86/pentium-architektur. Shaker Verlag Aachen 2002 Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

Betriebssysteme 1. Thomas Kolarz. Folie 1

Betriebssysteme 1. Thomas Kolarz. Folie 1 Folie 1 Betriebssysteme I - Inhalt 0. Einführung, Geschichte und Überblick 1. Prozesse und Threads (die AbstrakFon der CPU) 2. Speicherverwaltung (die AbstrakFon des Arbeitsspeichers) 3. Dateisysteme (die

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 21.12.2016 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Prozessor (CPU, Central Processing Unit)

Prozessor (CPU, Central Processing Unit) G Verklemmungen G Verklemmungen Einordnung: Prozessor (CPU, Central Processing Unit) Hauptspeicher (Memory) Ein-, Ausgabegeräte/ Periphere Geräte (I/O Devices) externe Schnittstellen (Interfaces) Hintergrundspeicher

Mehr

Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur

Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur Themen heute Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur Besprechung des 8. Übungsblattes Aufgabe 2.6. In diesem

Mehr

Systemvoraussetzungen und Installation

Systemvoraussetzungen und Installation Systemvoraussetzungen und Installation Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 2 2. Einzelarbeitsplatzinstallation... 3 3. Referenz: Client/Server-Installation... 5 3.1. Variante A:

Mehr

Die Linux Kernel Virtual Machine - Wo steht der Linux Hypervisor? 2. März 2008

Die Linux Kernel Virtual Machine - Wo steht der Linux Hypervisor? 2. März 2008 Die Linux Kernel Virtual Machine - Wo steht der Linux Hypervisor? 2. März 2008 Jörg Rödel Virtualization - Whats out there? Virtualisierung hat bereits längere Geschichte auf x86 Startete mit VMware Setzte

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 05. Dezember 2012 Betriebssysteme Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr